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Abstract

The asymptotic behavior of the solution to a degenerate convection-reaction-

diffusion equation is studied in two dimensions via symmetrization. Under some

linking conditions between the terms of diffusion and reaction, the existence of a

unique bounded time-global solution is given and a convergence result to the null

function is proved.
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1 Introduction

The existence of a time-global solution to partial differential equations is easier to prove

as soon as the space variable belongs to a ball of R
n and when, moreover, the local

solution is radially symmetric. Indeed, in that case, the unknown may be considered as a

solution of an equation with only one space variable, the radial one. Therefore to deal with

the general problem it will be interesting to introduce, through the use of symmetrical

rearrangements of a function (cf J. Mossino [11]), a symmetrized problem to which the

first one can be compared.

Here, our purpose is to study the asymptotic behavior in time of the solution to the

homogeneous Dirichlet problem

(PG)





ut − ∆ϕ(u) + div(∇Pg(u)) + f(u) = 0,

u|∂Ω = 0,

u(0, .) = u0,
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where Ω is a bounded domain of R
2 with Lipschitz boundary ∂Ω.

Several authors have considered the time behavior of the solution of (PG) in the

strictly parabolic case. Most of them treated this problem when the equation of (PG) is

given by

ut − ∆u+ f(t, x, u) = 0 (1)

(See for instance, X.Y. Chen and P. Polacik [1], J.K. Hale and G. Raugel [8], A. Haraux

[9], T.I. Zelenyak [15]). The strictly parabolic nonlinear case is studied in L. Simon [13],

P. Polacik and K.P. Rybakowski [12] when f is an analytical function, and it is shown in

[12] that this condition on f may be necessary as soon as f really depends on x. Now the

degenerate parabolic problem (PG) has been considered by few authors. Assuming that a

bounded solution to the problem (PG) exists, E. Feireisl and F. Simondon prove that the

ω− limit set is a singleton under an analytical condition on f , firstly in a one dimensional

framework [6] and then in several space dimensions with ϕ(u) = um [7]. Under some

linking condition between the functions f and ϕ, it is known that the problem (PG) has

a unique bounded strong solution in one space dimension (F. Simondon [14]). Then in [3],

M. Falliero and F. Simondon study the asymptotic behavior of this solution by application

of H. Matano’s works [10]. The previous results have been extended by M. Falliero and

M. Madaune-Tort [5] for radially symmetric solutions in two dimensions.

The aim of this article is to prove via symmetrization the existence of a unique bounded

solution to (PG) that converges to 0 as t→ +∞.

Notations and hypotheses.

We assume that

(H1)





P ∈ W 1,∞(Ω) and ∆P = 0,

u0 ∈ L∞(Ω) and u0 ≥ 0,

ϕ ∈ C([0,+∞[) ∩ C1(]0,+∞[ ); ϕ(0) = 0 and ∀x ∈ ]0,+∞[ , ϕ′(x) > 0,

f ∈ C1(R), f is concave on R+ and f(0) = 0;

∃α ∈ [0, 1[, ∃(K0, A0) ∈ ( R
∗
+)2; ∀s ≥ K0, |f(s)| ≤ A0ϕ(s)α;

g is Lipschitz on each bounded set of R.

For any measurable subset A of R
2, we note |A| the measure of A and Λ2 is the measure

of the unit ball of R
2 (Λ2 = π). Let Ω̃ be the open ball of R

2 centered at the origin with

boundary Γ = ∂ Ω̃ and such that
∣∣∣Ω̃

∣∣∣ = |Ω| .

For any u, measurable function on R+ × Ω, the decreasing rearrangement of u is the

function u∗ defined on R+ × [0, |Ω|] by:




u∗(t, s) = inf {τ, µ(t, τ) ≤ s} , if 0 < s < |Ω| ,

u∗(t, |Ω|) = inf ess {u(t, x); x ∈ Ω} ,

u∗(t, 0) = sup ess { u(t, x); x ∈ Ω} .
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with µ(t, τ) = |{u(t, .) > τ}| .

Now, we introduce U the solution of the symmetrized problem

(Ps )





∂U

∂t
− ∆ϕ(U) + f(U) = 0 on R+ × Ω̃,

U|Γ = 0,

U(0, .) = U0,

where U0 is the symmetrical rearrangement (decreasing along the radius) of u0, defined

by

∀x ∈ Ω̃, U0(x) = u∗(0, Λ2 |x|
2).

2 Existence of a bounded solution

Let be (u0,n) a decreasing sequence in C∞( Ω ) such that





ϕ(u0,n) → ϕ(u0) in H1(Ω),

u0,n ≥
1

n
on Ω and u0,n |

Γ
=

1

n
,

−∆ϕ(u0,n) + div(∇Pg(u0,n)) + f(u0,n) = 0 on ∂Ω.

We deduce from [4] that for each n ∈ N
∗, the symmetrized problem

(Pn,s)





∂Un

∂t
− ∆ϕ(Un) + f(Un) = 0 on R+ × Ω̃,

Un |
Γ
=

1

n
,

Un(0, .) = U0,n ,

with U0,n(x) = u∗0, n(0,Λ2 |x|
2), has a unique solution such that

∀T > 0, Un ∈ C1,2(QT ) and
∂Un

∂t
∈ L2(0, T ;H1

0(Ω̃))

where QT = ]0, T [ × Ω̃ .

Moreover, for each n ∈ N
∗, Un is a positive and bounded function on R+× Ω̃ such that for

each t ∈ R+, Un(t, .) is radially symmetric and decreases along the radius, this property

being fulfilled by U0,n. Then, denoting by R the radius of Ω̃, we know that the function

vn defined on R+ × [0, R] by vn(t, r) = Un(t, r cos θ, r sin θ), θ ∈ [0, 2π] decreases on [0, R].

Therefore Un coincides with its symmetrical rearrangement in the following sense

Un(t, r cos θ, r sin θ) = U ∗
n(t,Λ2r

2).
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Now as the sequence of functions (Un) decreases, (Un) converges everywhere on [0,+∞[×Ω̃

to the solution U of the problem

(Ps)





∀T > 0, U ∈ C([0, T ]; L2(Ω̃) );
∂U

∂t
∈ L2(0, T ;H − 1(Ω̃));

ϕ(U) ∈ L2(0, T ;H1
0(Ω̃));

p.p. t ∈]0, T [,
∂U

∂t
− ∆ϕ(U) + f(U) = 0 dans D ′(Ω̃);

U(0, .) = U0 dans Ω̃.

Moreover, the sequence (Un) is uniformly bounded on R+× Ω̃ by M = sup ess U1. There-

fore

∀n ∈ N
∗, sup ess Un ≤M.

Then, we introduce the Lipschitz function ĝ defined by ĝ(x) = g(x) on ]−∞,M ] and

ĝ(x) = M on ]M,+∞[.

For each n ∈ N
∗, we consider the approximating problem

(PGn)





∂un

∂t
− ∆ϕ(un) + div(∇P ĝ(un)) + f (un) = 0,

un |∂Ω =
1

n
,

un(0, .) = u0,n.

This problem has a unique solution such that

∀T > 0, un ∈ C1,2([0, T ] × Ω) and
∂un

∂t
∈ L2(0, T ;H1

0(Ω)).

For each n ∈ N
∗, we put

d(s) = Λ2 s, kn(t, s) =

s∫

0

u∗n(t, σ) dσ and Kn(t, s) =

s∫

0

U∗
n(t, σ)dσ.

Let be L the operator defined by

L(Y )(t, s) =
∂Y

∂t
(t, s) − Λ2s

∂

∂s

(
ϕ

(
∂Y

∂s

))
(t, s) +

s∫

0

f

(
∂Y

∂s

)
(t, σ)dσ.

Following [11], [2], we first prove the
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Lemma 1 ∀n ∈ N
∗, L(kn) ≤ 0 et L(Kn) = 0.

Now, as f is concave, we can compare the functions kn and Kn. Indeed:

Lemma 2 ∀n ∈ N
∗, ∀ (t, s) ∈ R+ × [0, |Ω|], kn(t, s) ≤ Kn(t, s).

We deduce from the last lemma the

Proposition 3

The problem (PG) has a unique bounded solution u on R+ × Ω such that

∀t ∈ R+, ∀p ∈ [1,+∞], ‖u(t, .)‖Lp( Ω ) ≤ ‖U(t, .)‖Lp( eΩ) ,

where U is the unique solution of the symmetrized problem (Ps).

Proof.

Since for each t ∈ R+ the functions u∗n(t, .) and U∗
n(t, .) are nonnegative on [0, |Ω|]

and u∗n(t, .) decreases, Lemma 2 implies

∀n ∈ N
∗, ∀ p ≥ 1, ∀ (t, s) ∈ R+ × [0, |Ω|],

∫ s

0

|u∗n(t, σ)|p dσ ≤

∫ s

0

|U∗
n(t, σ)|p dσ.

When p → +∞, we deduce from this inequality that the sequence (un) is uniformly

bounded by M because M is the upper bound of (Un) on R+ × Ω̃.

Therefore, for each n ∈ N
∗, ĝ(un) = g(un) and we can prove that (un) converges every-

where on R+ × Ω to the solution u of the problem (PG).

3 Convergence to 0

In this section, we give some conditions that ensure the convergence of the solution u(t, .)

of the problem (PG) to the null function as t→ +∞.

Proposition 4

Under the hypotheses (H1) and the conditions

(H2)

{
ϕ−1 is Hölder continuous with order γ ∈ ]0, 1[ ,

∃A1 > 0, ∃mf > 0, ∀x ∈ [0, A1], −f(x) ≤ mf ϕ(x),

there exists a real µ such that if the open set Ω fulfills the assumption |Ω| ≤ µ then
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∀p ∈ [1,+∞[, lim
t→+∞

‖u (t, .)‖Lp(Ω) = 0.

Proof.

First, we prove the convergence property in L1 (Ω) .

Let n be in N
∗. We compare Kn to the function Z defined on ]0,+∞[×[0, |Ω|] by

Z (t, s) =

∫ s

0

ϕ−1
(
Cσ−(1/2) (1 + t)−λ

)
dσ

where we choose C such that ϕ−1
(
Cσβ−1

)
≥M in order to have

Z (0, .) ≥ Kn (0, .) .

Let T be fixed in ]0,+∞[ . We prove that there exists an integer nT such that

n ≥ nT =⇒ ∀t ∈ [0, T ],
∂Z

∂s
(t, |Ω|) ≥

∂Kn

∂s
(t, |Ω|).

Lastly, thanks to the condition (H2), we can choose a real λ > 0 such that L(Z) ≥ 0, as

soon as the measure of Ω, |Ω| , is small enough..

Therefore

∀T > 0, ∃nT ∈ N
∗; n ≥ nT =⇒ Kn ≤ Z on [0, T ] × [0, |Ω|].

Now as (U∗
n) converges everywhere on [0,+∞[× ]0, |Ω|[ to U ∗,

∀T > 0, K ≤ Z on [0, T ] × [0, |Ω|],

where K is defined on R+ × [0, |Ω|] by K(t, s) =

∫ s

0

U∗(t, σ)dσ.

Finally K ≤ Z on [0,+∞[×[0, |Ω|]. Then

∃c ≥ 0, K ≤ c (1 + t)−λγ on ]0,+∞[×[0, |Ω|]. (2)

Hence, the convergence property in L1 (Ω) ,

lim
t→+∞

∫

Ω

u(t, x)dx = 0.

Now let be p > 1. Thanks to the upper bound (2) and an Hölder’s inequality, the conver-

gence property is proved in Lp (Ω).

Proposition 5

Under the hypotheses (H1), if f is a nonnegative function on R+, then
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∀p ∈ [1,+∞[, lim
t→+∞

‖u (t, .)‖Lp(Ω) = 0.

Proof.

We prove that 0 is the only element of the ω-limit set of the solution U of the symmetrized

problem (Ps). Indeed, let be U the solution of the problem (Ps) and ω(U0) its ω-limit set.

Let W ∈ ω(U0).

We know that W is radially symmetric. Then, we introduce the function w defined

on [0, R] by

w(r) = W (r cos θ, r sin θ) where θ ∈ [0, 2π].

We put F = f ◦ ϕ−1. Then, w is a solution of the stationary equation

d

dr

(
r
dw

dr

)
= rF (w).

Consequently

R

2
(w′)2 (R) +

1

2

∫ R

0

(w′)2 (τ)dτ = −

∫ R

0

F̂ (w)dr,

where F̂ is defined on R by F̂ (x) =

∫ x

0

F (τ)dτ.

We deduce from this last inequality that if f fulfills the assumption f ≥ 0 on R+ Then

w′ = 0 on [0, R] and, therefore w = 0 on [0, R].

Hence, thanks to Proposition 3 of Section 2,

∀p ∈ [1,+∞[, lim
t→+∞

‖u (t, .)‖Lp(Ω) = 0.
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