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Abstract

Asymptotic least-squares is a well known estimation method in the framework of

parametric generalized linear models. The aim of this paper is to extend this method

to the functional data analysis setting. After the presentation of the method, the

data motivating the study will be analyzed as an example.
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1 Introduction

Asymptotic least-squares is a well known estimation method in the framework of para-

metric statistics models, especially the generalized linear models. It was considered by

Taylor W.F. [8] in the framework of the parametric logistic regression fit (Berkson’s and

minimum Khi-square methods). More recently, Baccini et al. [1] took Taylors’ arguments

back to justify the use of least-squares as an alternative for the maximum likelihood

method for fitting association models to contingency tables analysis. Parametric gener-

alized linear models can be fitted consistently by asymptotic least-squares which appear

as an alternative method to maximum likelihood method, particularly when an efficient

computation algorithm is not available (Gouriéroux & Monfort [4], pp.301-314). This is

achieved in a two-step procedure combining least-squares with a consistent estimation of

the mean. The aim of this study is to extend the asymptotic least-squares method to the

functional data analysis framework (Green & Silverman [5]).
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2 Functional regression model with time-varying co-

variate

2.1 Model with additive interaction component

Let Y denotes a numeric response variable; let Z be a J-levels factor covariate and X

denotes a numeric valued covariate. We consider a functional version of the generalized

linear model as follows

E (Y \Z = j, X = x) = µj (x)

V ar (Y \Z = j, X = x) = σ2

j V (µj (x))

where V is some known function, µj is a functional parameter and σj is a numeric param-

eter, and both are unknown. Such a model is closely related to the varying-coefficients

models (Hastie & Tibshirani [6] )

Let us model the regression function µj additively through a link function g as follows:

ηj (x) = g (µj (x)) = αj + β (x) + γj (x).

2.2 Saturated model vs reduced rank model

The model stated above will be called a saturated model if the parameters (the sequence

{αj, j = 1, · · · , J}, and the functions β and γj (j = 1, · · · , J)) are unrestricted. The model

is a reduced rank additive model if there is an integer r ≥ 1 such that γj =
∑r

k=1
ckjφk,

where the parameters {ckj} are numeric while {φk} are smooth functions, both unknown.

The functions φk may be interpreted as interaction components we can plot to improve

data analysis, while the parameters ckj may be considered as loadings for the level j of

the factor covariate.

2.3 Identifiability constraints

Neither the saturated model or the reduced rank model is identifiable, since it is not

guaranted that the equations below have unique solution

ηj = αj + β + γj; ηj = αj + β +
r∑

k=1

ckjφk

So, additional constraints on the model parameters are needed to achieve identifiability.

Such constraints can be stated as follows:

J∑

j=1

πjαj = α0,
J∑

j=1

πjckj = 0,

∫
1

0

τ (x) β (x) dx = β0,

∫
1

0

τ (x) φk (x) φl (x) dx = δkl,
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where: πj (j = 1, · · · , J) and τ are specified positive weights, while α0 and β0 are numeric

unknown parameters to be estimated.

3 Fitting the reduced rank additive model by asymp-

totic least-squares

As in the parametric setting, our proposal to fit a functional additive model to data by

an asymptotic least-squares method consists of a two-step procedure combining quasi-

likelihood and least-squares. A two-step estimation procedure has been proposed by

Fan & Zhang [2] in the gaussian functional linear model setting. Taking into account

the gaussian framework, the first step of their method uses least-squares to calculate raw

estimates of the coefficient functions for each value of the numeric covariate X. The second

step consists in smoothing the raw estimates. They applied the method to the estimation

of some functional ANOVA models. This may need a great amount of computation if the

data design involves a great number of distinct values of the covariate X. A contrario,

taking into account that the covariate Z is a factor, our method starts by smoothing the

mean of the response for each level of the covariate Z. Reduced rank model parameters

are obtained at the second stage by applyng least-squares to the first step estimates.

Compared to Fan & Zhang, our method may involve less computation.

3.1 Estimating the mean functions by local polynomial quasi-

likelihood

The first step of the model fitting procedure consists of a consistent nonparametric esti-

mation of ηjx = g (µjx). It is achieved through the estimates of the functional parameters

ηj which are calculated by local polynomial quasi-likelihood maximization. Let η̂j denote

these estimates which are such that η̂j (x) converge in probability to the coefficient ηj (x)

(Loader[6]).

3.2 Least-squares criterion

The weights πj and τ may depend on data and if such is the case, additional asymptotic

assumptions on πj and τ should be required to obtain consistent estimates of the model

parameters.

Let f , f1 and f2 be numeric functions belonging to the same linear space of smooth

functions. Fix: (f1 | f2)τ =
∫

1

0
τ (x) f1 (x) f2 (x) dx,‖f‖2

τ̂ =
∫

1

0
τ (x) f 2 (x) dx and then
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consider the least-squares criterion

Q =
J∑

j=1

πj

∥∥∥∥∥η̂j − αj − β −
r∑

k=1

ckjφk

∥∥∥∥∥

2

τ

.

Let

α̂0 = β̂0 =
1

2

J∑

j=1

πj

∫
1

0

τ (x) η̂j (x) dx; α̂j =
∫

1

0
τ (x) η̂j (x) dx − β̂0;

β̂ =
J∑

j=1

πj η̂j − α̂0; η̃j = η̂j − α̂j − β̂;

V =
J∑

j=1

πj η̃j ⊗ η̃j.

Assuming that the following constraints apply

J∑

j=1

πjαj = α0;
J∑

j=1

πjγj = 0;

∫
1

0

τ (x) β (x) dx = β0;
∫

1

0

τ (x) γj (x) dx = 0,

one can prove, as in Gabriel [3], that the minimum of the criterion Q is attained at the

values α̂j, β̂, φ̂k and ĉkj where:
{
φ̂k, k = 1, · · · , r

}
is an orthonormal sequence (relative to

the inner product related to weight function τ) of eigenvectors of the linear kernel operator

V τ associated with its eigenvalues in the decreasing order; ĉkj =
∫

1

0
τ (x) η̃j (x) φ̂k (x) dx.

4 Application: Young eels fishing index data

The motivation of our study comes from an analysis of data we have got from IFREMER,

a French institution in charge of marine environment studies. The dataset consists in

a daily index of the activity of the young eels fishers during an authorized period from

November to March devoted to the fishing of young eels in the estuary of the Adour river

in the south-west of France. The data analysed were collected during 9 fishing seasons

and a time period included between 16th November 1983 and 15th March 1993. Our goal

is to point out the effect of the moon on the young eels fishing activity, if any. Thus the

factor covariate Z values are the lunar phases at the days corresponding to the fishing

indexes in the fishing season.

As shown in the graphs below, the variations of the fishing index do not exhibit the same

shape for the different lunar phases. This suggests there is an interaction between the

days in a fishing period and the moon.
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a random variable Ystsk
with mean E (Ystsk

\ Zstsk
= j, Xstsk

= xsk) = µj(xsk) and variance

V ar (Ystsk
\ Zstsk

= j, Xstsk
= xsk) = σ2

j µj(xsk) where xsk = tsk−1

119
. Furthermore, the

random variables Ystsk
, s = 1, · · · , n, tsk ∈ {1, · · · , 120} are assumed to be independent.

Taking into account the results of the preliminary analysis of the data in the preceding

section, the relationship of the mean µj(xsk) with the phase j of the moon (j = 1, · · · , 4)

and the daily period tsk of a fishing season (tsk ∈ {1, · · · , 120}) is modelled additively

through some known link function g as follows: g (µj(xsk)) = ηj(xjh) = αj + β(xsk) +

γj(xsk). We assume β(xsk) and γj(xsk) are respectively the values of smooth functions β

and γj at xsk = tsk−1

119
∈ [0, 1]. Then we are dealing with a functional parameters model

which involves functional (nonparametric) estimation procedures. Let ηj = αj + β + γj

and µj = g−1 (ηj). For this particular example we have chosen g as the square-root

function, since the data are modelled as quasi-poisson and the square-root function has a

nice variance stabilisation property in this situation. Thus it seems evident to choose the

weight πj = σ̄

σ̂j
,where σ̄ =

∑
4

j=1
σ̂j and the weight function τ is the identity function.

4.2 Interpreting the results

The main results of the data analysis are presented in the graphics below. The left figure

in the top panel shows the main behaviour of the fishing activity during a fishing season.

It is shown that the young eels catch is a maximum between the forty-fifth and the

seventy-fifth days of the season. The figure in the right side of this first panel suggests

that the new moon is globally more favorable than the other lunar phases to fishing for

young eels.

In the middle panel the left figure shows the first interaction component variations in a

fishing season while the right figure shows the corresponding loadings for the lunar phases.

The interpretation of these loadings is that the first interaction component puts the new

moon against the other lunar phases. The loading of the new moon is positive while

the other loadings are negative. Moreover the first interaction function is significantly

positive from the 70th day to the 100th day of a fishing season. The interpretation of the

component is obtained by considering together the interaction function and the loadings.

Then one can say that, from the 70th day to the 100th day of a fishing season, the young

eels catch increases during the days of the new moon. Furthermore, at the beginning or

at the end of a fishing season, the young eels fishing level is reduced from the main level

during the days where the new moon happens.

The bottom panel is devoted to the second interaction component which puts the first

quarter of the moon against the full moon. The interaction function is positive in the first

half of a fishing season and exhibits mainly negative values in the second half of a fishing

season. Between the 40th and the 70th days of the fishing season the young eels fishing
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