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Abstract

The mathematical model of Mueller matrices is able to represent polarimetric

properties of every material samples. In this paper an algebraic operation is per-

formed to decompose a Mueller matrix M into the corresponding matrices of the

pure optical media embedded into the complex material sample modelized by M .
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1 Introduction

In optical polarimetry, the state of polarization of a light beam is represented by the

“Stokes vector” with four real elements arranged in a column vector. When a light beam

interacts with a material medium, the Stokes vector s that characterizes the incident light

is transformed by the 4× 4 real Mueller matrix M that corresponds to the medium. The

emerging light beam is characterized by another Stokes vector s′ given by the product

s′ = Ms.

The mathematical structure of M depends on the complexity of the optical medium,

so that we can distinguish between “pure Mueller matrices” and “non-pure Mueller matri-

ces”. Some previous papers [1-5] deal with this property and its mathematical formulation.

The structure of Mueller matrices is studied by means of a transformation of M into

a “coherency matrix” H given by [6]
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. (1)

This expression indicates that there exists a simple linear relation between M and H,

so that we can analyze the problem in terms of coherency matrices, which have a simpler

mathematical characterization.

The degree and indices of purity of the material sample are given through the eigen-

values of H, so that H can be decomposed into a sum of one to four pure coherency

matrices (i.e. the optical media can be represented by a combination of one to four pure

material elements). Each pure coherency matrix contains a unique non-null eigenvalue,

whereas non-pure coherency matrices contain 2, 3 or 4 non-null eigenvalues.

In this paper we deal with the mathematical resolution of a physical problem that

appears frequently in polarimetry: Once obtained a measurement of the coherency ma-

trix corresponding to the whole complex media, we want to “subtract” the action of a

pure component that we know (or suspect) is present into the complex medium under

measurement. We have developed a mathematical procedure to perform a proper sub-

traction and obtain the coherency matrix corresponding to the complex system regardless

the effect of the known component.

2 Algebraic decomposition procedure

Given two positive semidefinite hermitic matrices H and A with dimension n such that

rangA=1, rangH=r, 0 < r ≤ n, the following problem is stated:

“Is there exist a positive real number α such that rang(H − αA) = r − 1?”

This question can be completely answered in two steps: regular H case, and general

H case.

Regular H case

If rangH = n,then α 6= 0 is a necessary condition for det(H −αA) = 0. Therefore the

problem stated before is equivalent to the problem of eigenvalues

det(
1

α
I − H−1A) = 0. (2)
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It is easy to prove that only one eigenvalue 1/α > 0 exists, whereas 0 is the other

eigenvalue with multiplicity degree n − 1.

The solution to this problem also could be solved using the classical procedure for

simultaneous diagonalization of two cuadratic forms [7], extending it to the case of two

hermitic forms with coordenate matrices H(positive definite) and A(positive semidefinite)

in a base B = {u1,u2, . . . ,un}. The procedure consists of building an orthonormal base

E = {e1, e2, . . . , en} by means of the Gramm-Schmidt method applied to the hermitic

product

PH(z,w) = zT Hw, z, w ∈ Cn. (3)

The hermitic form associated with the matrix H expressed in the base E is

PH(z, z) = zTz, (4)

and the hermitic form given by the matrix A is

PA(z, z) = zT











λ1

. . .

λn











z, (5)

where λi, i = 1, . . . , n are the eigenvalues of the hermitic matrix C
T
AC and C is the

matrix of the basis change from the base B to the base E. The equation rang(H −αA) =

n − 1 formerly stated is solved computing α such that 1 − αλi = 0 for some i = 1, . . . , n,

with λi 6= 0. Taking into account that C
T
AC is a hermitic matrix, we have that λi are

positive, and then α > 0. The uniqueness of the solution α is justified by the hypothesis

rangA = 1.

General H case

From the simultaneous diagonalization procedure above described, we can approach

the general case of rangH = r, where 0 < r < n. If rangH = r < n, is not always

possible to make the subtraction H − αA with rang(H − αA) = r − 1. On the light of

this consideration, we see that now the goal is to characterize the existence of solution α

by means of the most efficient test.

To obtain the test proposed below, we need some suitable notation.

The matrix A, with rangA = 1, is denoted by A = (a1t, a2t, . . . , ant)
T where t is a nonzero

row vector.

The vector a = (a1, a2, . . . , an)
T is named the proportionality vector of the matrix A.

If L = [lkj] is a order n regular matrix such that LH = (v1,v2, . . . ,vr, 0, . . . , 0)T , with

vi row vectors, then:

L(H − αA) = (v1 − αλ1t, . . . ,vr − αλrt,−αλr+1t, . . . ,−αλnt)
T , (6)
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where λk =
∑n

j=1 lkjaj, k = 1, . . . , n.

Denoting Vl = span{columns of A}, Vr = span{rows ofH} it is shown that λi = 0

(i = r + 1, . . . , n), is a necessary and sufficient condition to Vl ⊂ Vr, and there exists α

such that rang(H − αA) = r − 1.

On the other hand, if λi 6= 0 for some i = 1, . . . , n, then Cr+1 = Vl ⊕ Vr, and we have

that the subtraction H − αA is not possible.

A similar test can be stated regarding the product HL
T

= (s1, . . . , sr, 0, . . . , 0) where

sj (j = 1, . . . , n), are column vectors. Taking the matrix A made by columns, both tests

are equivalents.

If the test performed with H and A has been successful, then the transformation

L(H − αA)L
T

leads, for every α, to a matrix bordered with zeros in the last n − r rows

and columns:

LHL
T

=



























H ′











0

0 0

















, LAL
T

=



























A′











0

0 0

















. (7)

Now, considering the previously solved regular case, and taking H = H ′, A = A′ and

n = r, the general problem is solved and we can finally state:

“Given n × n positive semidefinite hermitic complex matrices H and A such that

rangA = 1, rangH = r, 0 < r ≤ n, there exists a unique real α > 0 such that rang(H −

αA) = r − 1”.
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3 Iterative scheme

Input n,H,A1,...., Ap, p<=n

i=1 

Read H, Ai

Hdim = H

Rang Hdim = n

H' = H,  A' = A

Compute αi

Hdim = Hdim - αi Ai

Results

i = p ? END

i=i+1

Read Ai

to substract Ai ?

It's possible To border with zeros

dim = n- (i-1)

H' = (box)Hdim after A' = (box)Ai  bordering

PRINT: Ai  is not included in H

i = p ? END

Yes

Yes

Yes

Yes

No

No

No

No
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4 An application example

In order to clarify the method, we present here an example of application of the procedure

described in the previous sections.

We consider the matrix

H =
1

320

















53 15 15 61

15 53 5 − 48i 15

15 5 + 48i 53 15

61 15 15 53

















, (8)

that corresponds to a non-pure material, with rangH = 3, and the matrix

P =
1

32

















9 3 3 9

3 1 1 3

3 1 1 3

9 3 3 9

















, (9)

that corresponds to a pure polarizer [8]. In this case, the test is successful an the sub-

traction is possible with α1 = 1/2.

This value of α1 represents the proportion of the material represented by P into the

complex material represented by H. Then, the rest is

H −
1

2
P =

1

40

















1 0 0 2

0 6 −6i 0

0 6i 6 0

2 0 0 4

















, (10)

and it can be tested if the pure material represented by

P1 =
1

8

















1 0 0 2

0 0 0 0

0 0 0 0

2 0 0 4

















, (11)

is a component of the rest (10). Now, we can verify the test again and we obtain α2 = 1/5.

This value means the concentration of polarizer P1 [8] into the material H.

Following the iterative procedure, the difference

H −
1

2
P −

1

5
P1 =

3

20

















0 0 0 0

0 1 −i 0

0 i 1 0

0 0 0 0

















, (12)
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is a new matrix, which range is 1, that constitutes a retarder [8] and represents the

remaining rest material:

R =
3

20

















0 0 0 0

0 1 −i 0

0 i 1 0

0 0 0 0

















. (13)

It is easily tested that others optically pure materials are not present into the complex

material represented by matrix H. For example, if the test is made for a retarder given

by the matrix [8]

Rl =
1

2

















1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

















, (14)

the result of the test is negative and the subtraction is not possible.
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[2] José J. Gil and E. Bernabeu, A depolarization criterion in Mueller matrices, Opt. Acta

32, 259-261, 1985.

[3] K. Kim, L. Mandel and E. Wolf, Relationship between Jones and Mueller matrices for

random media, J. Opt. Soc. Am. 4, 433-437, 1987.

[4] A. V. Gopala and K. S. Mallesh, On the algebraic characterization of a Mueller matrix

in polarization optics. II Necessary and sufficient conditions for Jones-derived Mueller

matrices, J. Mod. Optics 45, 989-999 (1998)
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