Monografías del Semin. Matem. García de Galdeano. 27: 233-240, (2003).

Decomposition of Mueller matrices in pure optical media

J. M. Correas ${ }^{1}$, P. Melero ${ }^{1}$, J. J. Gil ${ }^{2}$
${ }^{1}$ Departamento de Matemática Aplicada. Universidad de Zaragoza
${ }^{2}$ I.C.E. Universidad de Zaragoza

Abstract

The mathematical model of Mueller matrices is able to represent polarimetric properties of every material samples. In this paper an algebraic operation is performed to decompose a Mueller matrix M into the corresponding matrices of the pure optical media embedded into the complex material sample modelized by M.

Keywords: Polarized light, Mueller matrix.
AMS Classification: 00A79, 78A97.

1 Introduction

In optical polarimetry, the state of polarization of a light beam is represented by the "Stokes vector" with four real elements arranged in a column vector. When a light beam interacts with a material medium, the Stokes vector s that characterizes the incident light is transformed by the 4×4 real Mueller matrix M that corresponds to the medium. The emerging light beam is characterized by another Stokes vector \mathbf{s}^{\prime} given by the product $\mathrm{s}^{\prime}=M \mathrm{~s}$.

The mathematical structure of M depends on the complexity of the optical medium, so that we can distinguish between "pure Mueller matrices" and "non-pure Mueller matrices". Some previous papers [1-5] deal with this property and its mathematical formulation.

The structure of Mueller matrices is studied by means of a transformation of M into a "coherency matrix" H given by [6]

$$
H=\frac{1}{2}\left[\begin{array}{cccc}
m_{00}+m_{01}+ & m_{02}+m_{12}+ & m_{20}+m_{21}- & m_{22}+m_{33}+ \tag{1}\\
m_{10}+m_{11} & i\left(m_{03}+m_{13}\right) & i\left(m_{30}+m_{31}\right) & i\left(m_{23}-m_{32}\right) \\
m_{02}+m_{12}- & m_{00}-m_{01}+ & m_{22}-m_{33}- & m_{20}-m_{21}- \\
i\left(m_{03}+m_{13}\right) & m_{10}-m_{11} & i\left(m_{23}+m_{32}\right) & i\left(m_{30}-m_{31}\right) \\
m_{20}+m_{21}+ & m_{22}-m_{33}+ & m_{00}+m_{01}- & m_{02}-m_{12}+ \\
i\left(m_{31}+m_{31}\right) & i\left(m_{23}+m_{32}\right) & m_{10}-m_{11} & i\left(m_{03}-m_{13}\right) \\
m_{22}+m_{33}- & m_{20}-m_{21}+ & m_{02}-m_{12}- & m_{00}-m_{01} \\
i\left(m_{23}-m_{32}\right) & i\left(m_{30}-m_{31}\right) & i\left(m_{03}-m_{13}\right) & -m_{10}+m_{11}
\end{array}\right] .
$$

This expression indicates that there exists a simple linear relation between M and H, so that we can analyze the problem in terms of coherency matrices, which have a simpler mathematical characterization.

The degree and indices of purity of the material sample are given through the eigenvalues of H, so that H can be decomposed into a sum of one to four pure coherency matrices (i.e. the optical media can be represented by a combination of one to four pure material elements). Each pure coherency matrix contains a unique non-null eigenvalue, whereas non-pure coherency matrices contain 2,3 or 4 non-null eigenvalues.

In this paper we deal with the mathematical resolution of a physical problem that appears frequently in polarimetry: Once obtained a measurement of the coherency matrix corresponding to the whole complex media, we want to "subtract" the action of a pure component that we know (or suspect) is present into the complex medium under measurement. We have developed a mathematical procedure to perform a proper subtraction and obtain the coherency matrix corresponding to the complex system regardless the effect of the known component.

2 Algebraic decomposition procedure

Given two positive semidefinite hermitic matrices H and A with dimension n such that $\operatorname{rang} A=1, \operatorname{rang} H=\mathrm{r}, 0<r \leq n$, the following problem is stated:
"Is there exist a positive real number α such that $\operatorname{rang}(H-\alpha A)=r-1$?"
This question can be completely answered in two steps: regular H case, and general H case.

Regular H case

If rang $H=n$, then $\alpha \neq 0$ is a necessary condition for $\operatorname{det}(H-\alpha A)=0$. Therefore the problem stated before is equivalent to the problem of eigenvalues

$$
\begin{equation*}
\operatorname{det}\left(\frac{1}{\alpha} I-H^{-1} A\right)=0 . \tag{2}
\end{equation*}
$$

It is easy to prove that only one eigenvalue $1 / \alpha>0$ exists, whereas 0 is the other eigenvalue with multiplicity degree $n-1$.

The solution to this problem also could be solved using the classical procedure for simultaneous diagonalization of two cuadratic forms [7], extending it to the case of two hermitic forms with coordenate matrices H (positive definite) and A (positive semidefinite) in a base $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$. The procedure consists of building an orthonormal base $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ by means of the Gramm-Schmidt method applied to the hermitic product

$$
\begin{equation*}
P_{H}(\mathbf{z}, \mathbf{w})=\mathbf{z}^{T} H \overline{\mathbf{w}}, \quad \mathbf{z}, \mathbf{w} \in \mathcal{C}^{n} . \tag{3}
\end{equation*}
$$

The hermitic form associated with the matrix H expressed in the base E is

$$
\begin{equation*}
P_{H}(\mathbf{z}, \mathbf{z})=\mathbf{z}^{T} \mathbf{z} \tag{4}
\end{equation*}
$$

and the hermitic form given by the matrix A is

$$
P_{A}(\mathbf{z}, \mathbf{z})=\mathbf{z}^{T}\left[\begin{array}{lll}
\lambda_{1} & & \tag{5}\\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \mathbf{z},
$$

where $\lambda_{i}, i=1, \ldots, n$ are the eigenvalues of the hermitic matrix $\bar{C}^{T} \bar{A} C$ and C is the matrix of the basis change from the base B to the base E. The equation rang $(H-\alpha A)=$ $n-1$ formerly stated is solved computing α such that $1-\alpha \lambda_{i}=0$ for some $i=1, \ldots, n$, with $\lambda_{i} \neq 0$. Taking into account that $\bar{C}^{T} \bar{A} C$ is a hermitic matrix, we have that λ_{i} are positive, and then $\alpha>0$. The uniqueness of the solution α is justified by the hypothesis $\operatorname{rang} A=1$.

General H case

From the simultaneous diagonalization procedure above described, we can approach the general case of $\operatorname{rang} H=r$, where $0<r<n$. If rang $H=r<n$, is not always possible to make the subtraction $H-\alpha A$ with $\operatorname{rang}(H-\alpha A)=r-1$. On the light of this consideration, we see that now the goal is to characterize the existence of solution α by means of the most efficient test.

To obtain the test proposed below, we need some suitable notation.
The matrix A, with rang $A=1$, is denoted by $A=\left(a_{1} \mathbf{t}, a_{2} \mathbf{t}, \ldots, a_{n} \mathbf{t}\right)^{T}$ where \mathbf{t} is a nonzero row vector.
The vector $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$ is named the proportionality vector of the matrix A.
If $L=\left[l_{k j}\right]$ is a order n regular matrix such that $L H=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}, 0, \ldots, 0\right)^{T}$, with \mathbf{v}_{i} row vectors, then:

$$
\begin{equation*}
L(H-\alpha A)=\left(\mathbf{v}_{1}-\alpha \lambda_{1} \mathbf{t}, \ldots, \mathbf{v}_{r}-\alpha \lambda_{r} \mathbf{t},-\alpha \lambda_{r+1} \mathbf{t}, \ldots,-\alpha \lambda_{n} \mathbf{t}\right)^{T}, \tag{6}
\end{equation*}
$$

where $\lambda_{k}=\sum_{j=1}^{n} l_{k j} a_{j}, k=1, \ldots, n$.
Denoting $V_{l}=\operatorname{span}\{$ columns of $A\}, V_{r}=\operatorname{span}\{$ rows of $H\}$ it is shown that $\lambda_{i}=0$ $(i=r+1, \ldots, n)$, is a necessary and sufficient condition to $V_{l} \subset V_{r}$, and there exists α such that $\operatorname{rang}(H-\alpha A)=r-1$.

On the other hand, if $\lambda_{i} \neq 0$ for some $i=1, \ldots, n$, then $\mathcal{C}^{r+1}=V_{l} \oplus V_{r}$, and we have that the subtraction $H-\alpha A$ is not possible.

A similar test can be stated regarding the product $H \bar{L}^{T}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}, 0, \ldots, 0\right)$ where $\mathbf{s}_{j}(j=1, \ldots, n)$, are column vectors. Taking the matrix A made by columns, both tests are equivalents.

If the test performed with H and A has been successful, then the transformation $L(H-\alpha A) \bar{L}^{T}$ leads, for every α, to a matrix bordered with zeros in the last $n-r$ rows and columns:

Now, considering the previously solved regular case, and taking $H=H^{\prime}, A=A^{\prime}$ and $n=r$, the general problem is solved and we can finally state:
"Given $n \times n$ positive semidefinite hermitic complex matrices H and A such that $\operatorname{rang} A=1, \operatorname{rang} H=r, 0<r \leq n$, there exists a unique real $\alpha>0$ such that $\operatorname{rang}(H-$ $\alpha A)=r-1 "$.

3 Iterative scheme

4 An application example

In order to clarify the method, we present here an example of application of the procedure described in the previous sections.

We consider the matrix

$$
H=\frac{1}{320}\left[\begin{array}{cccc}
53 & 15 & 15 & 61 \tag{8}\\
15 & 53 & 5-48 i & 15 \\
15 & 5+48 i & 53 & 15 \\
61 & 15 & 15 & 53
\end{array}\right]
$$

that corresponds to a non-pure material, with $\operatorname{rang} H=3$, and the matrix

$$
P=\frac{1}{32}\left[\begin{array}{llll}
9 & 3 & 3 & 9 \tag{9}\\
3 & 1 & 1 & 3 \\
3 & 1 & 1 & 3 \\
9 & 3 & 3 & 9
\end{array}\right],
$$

that corresponds to a pure polarizer [8]. In this case, the test is successful an the subtraction is possible with $\alpha_{1}=1 / 2$.

This value of α_{1} represents the proportion of the material represented by P into the complex material represented by H. Then, the rest is

$$
H-\frac{1}{2} P=\frac{1}{40}\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \tag{10}\\
0 & 6 & -6 i & 0 \\
0 & 6 i & 6 & 0 \\
2 & 0 & 0 & 4
\end{array}\right]
$$

and it can be tested if the pure material represented by

$$
P_{1}=\frac{1}{8}\left[\begin{array}{llll}
1 & 0 & 0 & 2 \tag{11}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 0 & 4
\end{array}\right]
$$

is a component of the rest (10). Now, we can verify the test again and we obtain $\alpha_{2}=1 / 5$. This value means the concentration of polarizer $P_{1}[8]$ into the material H.

Following the iterative procedure, the difference

$$
H-\frac{1}{2} P-\frac{1}{5} P_{1}=\frac{3}{20}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{12}\\
0 & 1 & -i & 0 \\
0 & i & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is a new matrix, which range is 1 , that constitutes a retarder [8] and represents the remaining rest material:

$$
R=\frac{3}{20}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{13}\\
0 & 1 & -i & 0 \\
0 & i & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is easily tested that others optically pure materials are not present into the complex material represented by matrix H. For example, if the test is made for a retarder given by the matrix [8]

$$
R_{l}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \tag{14}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

the result of the test is negative and the subtraction is not possible.

Acknowledgements

This paper has been carried out in the context of the research line supported by grand DGA Po64/2000 of Diputación General de Aragón. The authors are members of Grupo de Optica Matemática (GOM), Universidad de Zaragoza.

References

[1] J.M. Correas, J.J. Gil, P. Melero, P.M. Arnal, C. Ferreira, J. Delso and I. San José, Mathematical modelling of the polarimetric properties of optical media, Actas de las VI ${ }^{\text {as }}$ Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 175-184, 1999.
[2] José J. Gil and E. Bernabeu, A depolarization criterion in Mueller matrices, Opt. Acta 32, 259-261, 1985.
[3] K. Kim, L. Mandel and E. Wolf, Relationship between Jones and Mueller matrices for random media, J. Opt. Soc. Am. 4, 433-437, 1987.
[4] A. V. Gopala and K. S. Mallesh, On the algebraic characterization of a Mueller matrix in polarization optics. II Necessary and sufficient conditions for Jones-derived Mueller matrices, J. Mod. Optics 45, 989-999 (1998)
[5] José J. Gil, Characteristic properties of Mueller matrices, Journal Optical Society of America A 17, 328-334, 2000.
[6] José J. Gil, Mueller matrices in Light Scattering from microestructures, Lecture Notes in Physics. Ed. Springer, 63-78, 2000.
[7] E. Hernández, Algebra y Geometría Addison-Wesley/UAM 1994.
[8] P. M. Arnal, Modelo Matricial para el estudio de fenómenos de polarización de la luz, Ph. D. Thesis. Facultad de Ciencias. U. de Zaragoza, 1990.

