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Abstract

The aim of this paper is to obtain a stabilized solution of the solute transport

equation, as described in references such as Oñate [1] among others. The solution

obtained by means of either finite element or finite volume methods may have un-

desirable oscillations (this may happen if, for example, the Peclet number id high).

Those oscillations may be avoided by implementing stabilization techniques, as the

one described in this paper. It consists of modifying the original partial differential

equation (PDE) by considering higher order terms in the Taylor expansions, which

is equivalent to introduce a certain amount of artificial diffusion in de convective

and diffusive terms. This problem is then solved by the application of finite vol-

umes, in order to obtain an approached solution, which is then substituted in the

original PDE to aobtain a residual, which must be minimized by means of an it-

erative method. This iterative method keeps on, until a suffiently stable solution

is achieved. Results are shown when the method es applied to velocity fields and

diffusive coefficients strongly depending on the spatial coordinate.
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1 Boundary problem formulation

The 1-D solute transport boundary problem is formulated as:

∂(a(x, t) · U(x, t))

∂t
+

∂

∂x

(

v(x, t) · U(x, t)−K(x, t)
∂U(x, t)

∂x

)

+ q(x, t) · U(x, t) = f(x, t)
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(+ boundary conditions and initial conditions)

where x is the spatial coordinate, t is the time, U(x, t) is the unknown (mass concentra-

tion), a(x, t) is the retardation factor, v(x, t) is the velocity field, K(x, t) is the dispersion-

diffusion coefficient, q(x, t) is a reaction coefficient and f(x, t) is the source term.

When referring to the steady-state, the previous equation takes the form:

d

dx

(

v(x) · U(x) −K(x)
dU(x)

dx

)

+ q(x) · U(x) = f(x) (1)

with the addition of boundary conditions.

This boundary problem may be solved by means of several well-known techniques

such as: finite difference, finite element or finite volume methods. Whichever technique

be used, an approached solution is achieved.

In this work, a finite volume technique is used. This method requires the problem to

be formulated as a conservation law,as it will be explained below.

2 Finite volume scheme

In order to apply a finite volume scheme to the 1-D boundary problem (1), let us consider

an interior domain, S = [Si, Sd], within Ω. Integration of (1) over the domain S yields:

−

∫

S

d

dx

(

K(x)
dU(x)

dx

)

dx+

∫

S

d

dx
(v(x) · U(x)) dx+

∫

S

q(x) ·U(x) dx =

∫

S

f(x) dx (2)

By direct integration of the convective-diffusive term, expression (2) may be re-written

as:
(

−K(x)
dU(x)

dx
+ v(x) · U(x)

)

Si

−

(

−K(x)
dU(x)

dx
+ v(x) · U(x)

)

Sd

+

∫

S

q(x) · U(x) dx

=

∫

S

f(x) dx (3)

The leading idea of the finite volume methods consists of estimating the exact solution

U(x) by means of an approaching function ϕ(x), whose restriction to the sub-domain S

will be denoted as ϕS(x). First of all, we oblige this function to satisfy the equation (3):
(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

Si

−

(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

Sd

+

∫

S

q(x) · ϕS(x) dx =

∫

S

f(x) dx

The flux between two neighbour sub-domains must conserve, hence, if we consider two

adjacent intervals: S = [Si, Sd] and S ′ = [S ′

i, s?d], where Sd ≡ S ′

i, the fluxes must verify:
(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

Sd

≡

(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

S′

i
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Let us consider a one-dimensional mesh to approximate U(x). The nodal values can be

evaluated if an accurate choice of the subdomains S ⊂ Ω is fulfilled. In order to carry out

the finite volume discretization, a cell-centered scheme (with nodes placed in the center

of the control volumes) has been chosen, as represented in the next figure

. . . . . .

x1 x2 xk−2 xk−1 xk xk+1 xk+2 xn−1 xn

← Sk →

x3/2 x5/2 xk−1/2 xk+1/2 xn−3/2 xn−1/2

v v v v v v v v v

Figure 1. Finite volume discretization

The nodal coordinates are denoted by x1, x2, . . . , xk, . . . , xn−1, xn while volume coordinates

are represented by x1, x3/2, . . . , xk−1/2, xk+1/2, . . . , xn−1/2, xn. Moreover, Sk stands for the

control volume associated to node k, with extremities k − 1/2 y k + 1/2.

According to the new notation, expression (3) must be written as:
(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

k+1/2

−

(

−K(x)
dϕS(x)

dx
+ v(x) · ϕS(x)

)

k−1/2

+

∫

Sk

q(x) · ϕS(x) dx =

∫

Sk

f(x) dx

In order to approximate the exact solution U(x), a scheme based on linear interpolation

is being applied, since the solution supplied by this sort of interpolation has stability

problems in certain situations. That’s why it may be considered as a suitable scheme to

check how stabilization techniques work.

Therefore, a first order piecewise polynomial function is considered to approximate

U(x). This function will be denoted as u(x), and is expressed according to Lagrange

interpolation as:

U(x) ∼= u(x) =
n

∑

k=0

uk · φk(x)

where the φk(x) are the classical first order Lagrange basis functions, and uk are the nodal

values of the approached solution u(x).

The first spatial derivative of the unknown U(x), appearing in the dispersive-diffusive

term, is calculated as:
∂U(x)

∂x
∼=

∂u(x)

∂x
=

n
∑

k=1

uk ·
dφk(x)

dx

The application of this scheme leads to a system of linear equations as:

A · × = b

where the matrix coefficients matrix A is tridiagonal, so the system is easy to solve.
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3 Stabilization technique

As it was indicated above, the linear interpolation used, entails loss of stability in certain

situations, for instance when Peclet number is high. In other words, when the convective

term is much bigger than the diffusive one.

One stabilization techniques is based upon the addition of some sort of artificial dif-

fusion to the convective term.

So, considering higher order terms in Taylor expansions for the diffusive, convective,

reactive and source terms (see Oñate [1] and [2] for more details) the equation (1) may

be modified as follows:

r −
h

2
·
dr

dx
= 0 (4)

where r is the residual given by the expression:

r = f(x)−
d

dx

(

v(x) · U(x)−K(x)
dU(x)

dx

)

− q(x) · U(x)

and h is the so called, ”characteristic length”.

This stabilization technique consists of evaluating the optimal value of the ”charac-

teristic length” over each element h(e), in order to obtain a stable solution. With this

purpose, the following procedure may be used (described in Oñate [1] and [2]):

Suppose an approached solution, u(x), of the problem (4) has been achieved, by means

of a numerical scheme (for example, a finite volume one). When the u(x) es replaced in

(4), it can be rewritten as:

r̂ −
h

2
·
dr̂

dx
= r (5)

where

r̂ = f(x)−
d

dx

(

v(x) · u(x)−K(x)
du(x)

dx

)

− q(x) · u(x)

In expression (5), r represents the residual.

Denoting by the super-index (e) the restriction of equation (5) to each element, the

following expression will be obtained:

r̂(e)
−

h(e)

2
·
dr̂(e)

dx
= r(e) (6)

where: e = 1, . . . , NE, being NE the number of elements (NE = n− 1).

Let us suppose that, using the same partition of the interval as before, an improved

residual has been achieved. This may be fulfilled, for instance, smoothing derivatives

(see Oñate [1] y [2]). Denoting by r
(e)
1 and r

(e)
2 the elementary residuals due to the first

solution and the improved one, respectively, it will happen:

r
(e)
1 − r

(e)
2 (7)
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Taking into account expressions (5) and (6), it is easily obtained:

h(e)
≥ 2

r̂
(e)
2 − r̂

(e)
1

dr̂
(e)
2

dx
−

dr̂
(e)
1

dx

(8)

Let introduce a so-called stabilization parameter, α̃(e), defined as: α̃(e) = h(e)

l(e)
where

l(e) is a characteristic dimension of the element (in 1-D problems, it is usually the element

length: l(e) = xk+1 − xk). So, taking into account the expression (8), the stabilization

parameter will adopt the form:

α̃(e)
≥

2

xk+1 − xk
·

r̂
(e)
2 − r̂

(e)
1

dr̂
(e)
2

dx
−

dr̂
(e)
1

dx

(9)

The stabilization parameter is given an initial value in between 0 and 1, and is fitted,

according to the following iterative process (see Oñate [1] and [2]):

1) Solve the stabilized problem by the finite volume scheme to obtain nodal values: uk

2) Obtain a residual by a simple approach of the derivatives, using the nodal values

achieved in step 1); r̂
(e)
1

3) Obtain another residual by a smoother approximation of the derivatives: r̃
(e)
2

4) Evaluate the stabilization parameters, h(e) and α̃(e), using the expressions (8) and (9)

5) Repeat the process is finished, a stable solution is obtained.

When this iterative process is finished, a stable solution is obtained.

4 Numerical results

Let us consider the boundary problem:

d

dx
[(1000x + 2)U ]−

d

dx

(

2x ·
dU

dx

)

− 1000 · U = 0

0 ≤ x ≤ 5, U(0) = 1, U(5) = 0

The analytical solution is given by

U(x) =
e50000−e500x

e50000 − 1

which is represented in Figure 2:
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Figure 2. Analytical solution

Figure 3 shows the numerical solution obtained by the finite volume method, with

linear interpolation, described before, while Figure 4 shows the numerical solution after

the stabilization process

0.00 2.00 4.00 6.00

0.00

1.00

2.00

0.00 2.00 4.00 6.00

0.00

0.40

0.80

1.20

Figure 3. Non-stabilized solution Figure 4. Stabilized solution

5 Conclusions and future research

This stabilization technique works quite well in stationary problems, even with space-

depending physical parameters.

Some work is being done for its application to time depending problems, bidimensional

problems and Neumann boundary conditions. An extension to time depending problems

may be found in Oñate and Manzan [3].

Comparison to other stabilization techniques (ENO schemes, upwinding,. . . ) are also

being carried out.
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