Analysis of a Non-overlapping Domain Decomposition Method for Stokes Equations

Tomás Chacón Rebollo, Eliseo Chacón Vera

Depto de Ecuaciones Diferenciales y Análisis Numérico. Universidad de Sevilla

chacon@numer.us.es, eliseo@numer.us.es

Abstract

In this note we extend the analysis for elliptic problems performed in [1] to saddle point problems like the Stokes equations. We use a non overlapping domain decomposition and the introduction of a penalty term. In a simply connected bounded domain $\Omega \subset \mathbb{R}^2$ with Lipschitz boundary, we decompose Ω into two non-overlapping Lipschitz subdomains Ω_1 and Ω_2 with $\Omega_1 \cap \Omega_2 = \emptyset$, and suppose that $\partial \Omega_i = \Gamma_i \cup \Gamma$ where Γ_i is the common boundary with Ω , $\Gamma_i = \partial \Omega \cap \partial \Omega_i$ and Γ is the interface with Ω_j , $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$. The Stokes equations on Ω are solved via the following parallel process: For n = 0, 1, 2, ..., given u_i^n , p_i^n we compute u_i^{n+1} and p_i^{n+1} (i = 1, 2) such that

$$\begin{pmatrix}
-\Delta \mathbf{u}_{i}^{n+1} + \nabla p_{i}^{n+1} &= \mathbf{f} & \text{in } \Omega_{i} \\
\nabla \cdot \mathbf{u}_{i}^{n+1} &= 0 & \text{in } \Omega_{i} \\
\mathbf{u}_{i}^{n+1} &= 0 & \text{on } \Gamma_{i} \\
\frac{\partial \mathbf{u}_{i}^{n+1}}{\partial \mathbf{n}_{ij}} - p_{i}^{n+1} \mathbf{n}_{ij} &= -\frac{1}{\epsilon} (\mathbf{u}_{i}^{n+1} - \mathbf{u}_{j}^{n}) \text{ on } \Gamma$$

where \mathbf{n}_{ij} is the outward normal vector on Γ pointing from Ω_i into Ω_j , $\epsilon > 0$ is a parameter that tends to cero and inforce the transmision conditions on the interface Γ and we stress that the pressures p_i do not longer have cero mean average. We present the convergence analysis of this technique and some numerical tests. An ampliation of this work will appear in [2].

Keywords: Stokes Problem, Parallel technique, Non Overlapping AMS CLASSIFICATION: 65L50, 65L60, 65L70

1 Introduction

In a simply connected bounded domain $\Omega \subset \mathbf{R}^d$ (d = 2, 3) with a Lipschitz boundary $\partial \Omega$ and with $\mathbf{f} \in [L^2(\Omega)]^d$, we search for a velocity field $\mathbf{u} \in [H^1_0(\Omega)]^d$ and a pressure

 $p \in L^2_0(\Omega)$ such that

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f}, \ \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\ \mathbf{u} = 0 & \text{on } \partial \Omega. \end{cases}$$

In the classical mixed formulation of this problem we look for $(\mathbf{u}, p) \in [H_0^1(\Omega)]^d \times L_0^2(\Omega)$ with

$$(\nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega} - (p, \nabla \cdot \mathbf{v})_{\Omega} - (\nabla \cdot \mathbf{u}, q)_{\Omega} = (\mathbf{f}, \mathbf{v})_{\Omega},$$
(1)

for all $(\mathbf{v}, q) \in [H_0^1(\Omega)]^d \times L_0^2(\Omega)$. Now we decompose Ω into two non-overlapping Lipschitz subdomains Ω_1 and Ω_2 with $\Omega_1 \cap \Omega_2 = \emptyset$ (this choice is made to ease the exposition of the main ideas, but these can be extended to more than two subdomains). Suppose that $\partial \Omega_i = \Gamma_i \cup \Gamma$ where Γ_i is the common boundary with Ω , $\Gamma_i = \partial \Omega \cap \partial \Omega_i$ and Γ is the interface with Ω_j , $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$, all of these boundaries are Lipschitz (d-1)-dimensional manifolds. Next, we consider the Sobolev spaces

$$\mathbf{X}_{i} = \left[H_{0}^{1}(\Omega_{i};\Gamma_{i})\right]^{d} = \{\mathbf{v} \in \left[H^{1}(\Omega_{i})\right]^{d} \text{ s.t. } \mathbf{v}_{|\Gamma_{i}|} = 0\}$$

normed by $|\mathbf{v}|_{1,\Omega_i}^2 = (\nabla \mathbf{v}, \nabla \mathbf{v})_{\Omega_i}$ and the Hilbert spaces $M_i = L^2(\Omega_i)$ normed as usual. Now for $\epsilon > 0$ we consider the problem (P_{ϵ}) :

Find $(\mathbf{u}_i, p_i) \in \mathbf{X}_i \times M_i$ with

$$(P_{\epsilon}) \begin{cases} (\nabla \mathbf{u}_1, \nabla \mathbf{v}_1)_{\Omega_1} - (p_1, \nabla \cdot \mathbf{v}_1)_{\Omega_1} - (q_1, \nabla \cdot \mathbf{u}_1)_{\Omega_1} + \frac{1}{\epsilon} (\mathbf{u}_1 - \mathbf{u}_2, \mathbf{v}_1)_{0,\Gamma} = (\mathbf{f}, \mathbf{v}_1)_{\Omega_1}, \\ (\nabla \mathbf{u}_2, \nabla \mathbf{v}_2)_{\Omega_2} - (p_2, \nabla \cdot \mathbf{v}_2)_{\Omega_2} - (q_2, \nabla \cdot \mathbf{u}_2)_{\Omega_2} + \frac{1}{\epsilon} (\mathbf{u}_2 - \mathbf{u}_1, \mathbf{v}_2)_{0,\Gamma} = (\mathbf{f}, \mathbf{v}_2)_{\Omega_2}, \end{cases}$$

for all $(\mathbf{v}_i, q_i) \in \mathbf{X}_i \times M_i$, i = 1, 2. This problem is the variational formulation of the following coupled partial differential equations

$$\begin{cases} -\Delta \mathbf{u}_1 + \nabla p_1 &= \mathbf{f} & \text{in } \Omega_1 \\ \nabla \cdot \mathbf{u}_1 &= 0 & \text{in } \Omega_1 \\ \mathbf{u}_1 &= 0 & \text{on } \Gamma_1 \\ \frac{\partial \mathbf{u}_1}{\partial \mathbf{n}_{12}} - p_1 \mathbf{n}_{12} &= -\frac{1}{\epsilon} (\mathbf{u}_1 - \mathbf{u}_2) \text{ on } \Gamma \end{cases} \begin{cases} -\Delta \mathbf{u}_2 + \nabla p_2 &= \mathbf{f} & \text{in } \Omega_2 \\ \nabla \cdot \mathbf{u}_2 &= 0 & \text{in } \Omega_2 \\ \mathbf{u}_2 &= 0 & \text{on } \Gamma_2 \\ \frac{\partial \mathbf{u}_2}{\partial \mathbf{n}_{21}} - p_2 \mathbf{n}_{21} &= -\frac{1}{\epsilon} (\mathbf{u}_2 - \mathbf{u}_1) \text{ on } \Gamma \end{cases}$$

where \mathbf{n}_{ij} is the outward normal vector on Γ pointing from Ω_i into Ω_j and we stress that the pressures p_i do not longer have cero mean average. The apprpriated transmission conditions are enforced when $\epsilon \longrightarrow 0$ because we show that $\|\mathbf{u}_1 - \mathbf{u} - 2\|_{0,\Gamma} = \mathcal{O}(\epsilon)$. The iteration process that we propose is the following: For n = 0, 1, 2, ..., given $\mathbf{u}_1^n, \mathbf{u}_2^n$ we compute \mathbf{u}_1^{n+1} , \mathbf{u}_2^{n+1} and p_1^{n+1} , p_2^{n+1} such that the following problems are satisfied

$$\begin{cases} -\Delta \mathbf{u}_{1}^{n+1} + \nabla p_{1}^{n+1} = \mathbf{f} & \text{in } \Omega_{1}, \\ \nabla \cdot \mathbf{u}_{1}^{n+1} = 0 & \text{in } \Omega_{1}, \\ \mathbf{u}_{1}^{n+1} = 0 & \text{on } \Gamma_{1}, \\ \frac{\partial \mathbf{u}_{1}^{n+1}}{\partial \mathbf{n}_{12}} - p_{1}^{n+1} \mathbf{n}_{12} = -\frac{1}{\epsilon} (\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n}) \text{ on } \Gamma, \\ -\Delta \mathbf{u}_{2}^{n+1} + \nabla p_{2}^{n+1} = \mathbf{f} & \text{in } \Omega_{2}, \\ \nabla \cdot \mathbf{u}_{2}^{n+1} = 0 & \text{in } \Omega_{2}, \\ \mathbf{u}_{2}^{n+1} = 0 & \text{on } \Gamma_{2}, \\ \frac{\partial \mathbf{u}_{2}^{n+1}}{\partial \mathbf{n}_{21}} - p_{2}^{n+1} \mathbf{n}_{21} = -\frac{1}{\epsilon} (\mathbf{u}_{2}^{n+1} - \mathbf{u}_{1}^{n}) \text{ on } \Gamma. \end{cases}$$

We remark that our method may be viewed as a variation of the Robin

2 Analysis of problem (P_{ϵ})

Let us introduce the product spaces $\mathbf{X} = \mathbf{X}_1 \times \mathbf{X}_2$, $\mathbf{M} = M_1 \times M_2$ and denote by capital letters the elements (pairs) of \mathbf{X} and \mathbf{M} . Then we norm \mathbf{M} with $\|\mathbf{P}\|_{\mathbf{M}}^2 = \sum_{i=1}^2 \|p_i\|_{0,\Omega_i}^2$ and \mathbf{X} via $((\mathbf{U}, \mathbf{V}))_{\epsilon} = \sum_{i=1}^2 (\nabla \mathbf{u}_i, \nabla \mathbf{v}_i)_{\Omega_i} + \frac{1}{\epsilon} (\mathbf{u}_1 - \mathbf{u}_2, \mathbf{v}_1 - \mathbf{v}_2)_{0,\Gamma}$ i.e., the norm in \mathbf{X} is given by $\|\mathbf{U}\|_{\epsilon} = ((\mathbf{U}, \mathbf{U}))_{\epsilon}$. Next we define the forms $b(\mathbf{P}, \mathbf{V}) = -\sum_{i=1}^2 (p_i, \nabla \cdot \mathbf{v}_i)_{\Omega_i}, F(\mathbf{V}) =$ $\sum_{i=1}^2 (\mathbf{f}, \mathbf{v}_i)_{\Omega_i}$ and write problem (P_{ϵ}) in terms of the variational problem:

$$\begin{cases} \text{Find } (\mathbf{U}, \mathbf{P}) \in \mathbf{X} \times \mathbf{M} \text{ such that} \\ ((\mathbf{U}, \mathbf{V}))_{\epsilon} + b(\mathbf{P}, \mathbf{V}) + b(\mathbf{Q}, \mathbf{U}) = F(\mathbf{V}), \quad \forall (\mathbf{V}, \mathbf{Q}) \in \mathbf{X} \times \mathbf{M}. \end{cases}$$

Now we consider the following symmetric and continuous, according to $\|\cdot\|_{\epsilon}$ and $\|\cdot\|_{\mathbf{M}}$, bilinear form on $\mathbf{X} \times \mathbf{M}$ given by

$$B_{\epsilon}(\mathbf{U}, \mathbf{P}; \mathbf{V}, \mathbf{Q}) = ((\mathbf{U}, \mathbf{V}))_{\epsilon} + b(\mathbf{P}, \mathbf{V}) + b(\mathbf{Q}, \mathbf{U})$$

for all pairs $(\mathbf{U}, \mathbf{P}), (\mathbf{V}, \mathbf{Q}) \in \mathbf{X} \times \mathbf{M}$. We have

Lemma 1 There exists a positive constant γ independent of $\epsilon > 0$ such that for all $(\mathbf{U}, \mathbf{P}) \in \mathbf{X} \times \mathbf{M}$

$$S = \sup_{(\mathbf{V},\mathbf{Q})\in\mathbf{X}\times\mathbf{M}} \frac{|B_{\epsilon}(\mathbf{U},\mathbf{P};\mathbf{V},\mathbf{Q})|}{\|\mathbf{V}\|_{\epsilon} + \|\mathbf{Q}\|_{\mathbf{M}}} \geq \epsilon \gamma (\|\mathbf{U}\|_{\epsilon} + \|\mathbf{P}\|_{\mathbf{M}}).$$

As a consequence, given $\mathbf{f} \in [L^2(\Omega)]^d$ and for each $\epsilon > 0$ problem (P_{ϵ}) has a unique solution $(\mathbf{U}^{\epsilon}, \mathbf{P}^{\epsilon}) \in \mathbf{X} \times \mathbf{M}$.

We introduce next the consistency error of problem (P_{ϵ}) as an approximation of the Stokes equations in variational form. This error is the result of plugging the solution of (1) into (P_{ϵ}) .

Lemma 2 Let (\mathbf{u}, p) be the solution of the Stokes problem and $\mathbf{U} = (\mathbf{u}_{|_{\Omega_1}}, \mathbf{u}_{|_{\Omega_2}}), \mathbf{P} = (p_{|_{\Omega_1}}, p_{|_{\Omega_2}})$. Then, we consider the consistency error of problem (P_{ϵ}) via

$$G(\mathbf{V}) = ((\mathbf{U}, \mathbf{V}))_{\epsilon} + b(\mathbf{P}, \mathbf{V}) - F(\mathbf{V})$$

=
$$\sum_{i=1}^{2} (\nabla \mathbf{u}, \nabla \mathbf{v}_{i})_{\Omega_{i}} - \sum_{i=1}^{2} (p, \nabla \cdot \mathbf{v}_{i})_{\Omega_{i}} - \sum_{i=1}^{2} (\mathbf{f}, \mathbf{v}_{i})_{\Omega_{i}}$$

for all $\mathbf{V} = (\mathbf{v}_1, \mathbf{v}_2) \in \mathbf{X}$. Then, assuming $\mathbf{u} \in [H^2(\Omega) \cap H^1_0(\Omega)]^d$ and $p \in H^1(\Omega)$, let $\mathbf{n}_{1,2} = \mathbf{n}$, we have

$$G(\mathbf{V}) = \int_{\Gamma} (\partial_{\mathbf{n}} \mathbf{u} - p \,\mathbf{n}) \cdot (\mathbf{v}_1 - \mathbf{v}_2) \, d\sigma$$

and therefore

$$|G(\mathbf{V})| \leq \|\partial_{\mathbf{n}}\mathbf{u} - p\,\mathbf{n}\|_{0,\Gamma} \|\mathbf{v}_1 - \mathbf{v}_2\|_{0,\Gamma}.$$

Now we can estimate the error in approximating the variational formulation of the Stokes Equations with problem (P_{ϵ})

Lemma 3 Suppose that $\mathbf{u} \in [H^2(\Omega) \cap H^1_0(\Omega)]^d$ and $p \in H^1(\Omega)$ is the solution to the Stokes problem. For each $\epsilon > 0$ let $(\mathbf{U}^{\epsilon}, \mathbf{P}^{\epsilon}) \in \mathbf{X} \times \mathbf{M}$ be the unique solution of problem (P_{ϵ}) , with $\mathbf{U}^{\epsilon} = (\mathbf{u}_1^{\epsilon}, \mathbf{u}_2^{\epsilon})$ and $\mathbf{P}^{\epsilon} = (p_1^{\epsilon}, p_2^{\epsilon})$. Let $c(\mathbf{u}, p) = \|\partial_{\mathbf{n}}\mathbf{u} - p\mathbf{n}\|_{0,\Gamma}$, $\mathbf{U} = (\mathbf{u}_{|\Omega_1}, \mathbf{u}_{|\Omega_2})$ and construct

$$\pi^{\epsilon} = p_1^{\epsilon} \chi_{\Omega_1} + p_2^{\epsilon} \chi_{\Omega_2} - \frac{1}{|\Omega|} \left(\int_{\Omega_1} p_1^{\epsilon} + \int_{\Omega_2} p_2^{\epsilon} \right).$$

Then

$$\|\mathbf{U} - \mathbf{U}^{\epsilon}\|_{\epsilon} \le c(\mathbf{u}, p)\sqrt{\epsilon} \quad and \quad \|p - \pi^{\epsilon}\|_{0,\Omega} \le c(\mathbf{u}, p)\sqrt{\epsilon}.$$

As a consequence we have

$$\sum_{i=1}^{2} |\mathbf{u} - \mathbf{u}_{i}^{\epsilon}|_{1,\Omega_{i}} \leq c(\mathbf{u}, p)\sqrt{\epsilon} \quad and \quad \|\mathbf{u}_{1}^{\epsilon} - \mathbf{u}_{2}^{\epsilon}\|_{0,\Gamma} \leq c(\mathbf{u}, p) \ \epsilon.$$

3 Discrete problem and error estimates

We suppose that the domain Ω is polygonal and take for h > 0 an admissible and regular triangulation \mathcal{T}_h of $\overline{\Omega}$ formed by polygons (d = 2) or polyhedra (d = 3) elements such that Γ is formed by faces or sides of elements K in \mathcal{T}_h . Then we use $\mathcal{T}_h^i = \mathcal{T}_h \cap \overline{\Omega_i}$, for i = 1, 2. These triangulations of $\overline{\Omega_i}$ are compatible on Γ , i.e., they share the same edges on Γ . For the triangulation \mathcal{T}_h we consider finite element subspaces (V_h, P_h) of $([H_0^1(\Omega)]^d, L_0^2(\Omega))$ satisfying the discrete inf-sup condition of Ladyzhenskya-Brezzi-Babuška on Ω . Now we consider the discrete solution $(\mathbf{u}_h, p_h) \in V_h \times P_h$ of the discrete version of the Stokes problem posed on $V_h \times P_h$ and assume that, when the solution (\mathbf{u}, p) to the continuous Stokes problem in Ω satisfies $\mathbf{u} \in \left[H^{k+1}(\Omega) \cap H^1_0(\Omega)\right]^d$ and $p \in H^k(\Omega)$ $(k \ge 1)$, then

$$|\mathbf{u}_{h} - \mathbf{u}|_{1,\Omega} + ||p_{h} - p||_{0,\Omega} \le C_{0} h^{k}$$
(2)

for some constant $C_0 = C_0(\mathbf{u}, p)$. Now, based on \mathcal{T}_h^i , use finite element subspaces of (\mathbf{X}_i, M_i) , denoted by $(\mathbf{X}_{i,h}, M_{i,h})$, such that each pair $(\mathbf{Y}_{i,h}, N_{i,h})$, where $\mathbf{Y}_{i,h} = \mathbf{X}_{i,h} \cap [H_0^1(\Omega_i)]^d$ and $N_{i,h} = M_{i,h} \cap L_0^2(\Omega_i)$ also satisfies the discrete inf-sup condition on Ω_i . For instance we could use the restriction of the spaces V_h and P_h to each of the Ω_i . Set now $\mathbf{X}_h = \mathbf{X}_{1,h} \times \mathbf{X}_{2,h}$ and $\mathbf{M}_h = M_{1,h} \times M_{2,h}$ and pose the discrete version of (P_{ϵ}) , that we denote by $(P_{\epsilon,h})$:

$$\begin{cases} \text{Find } (\mathbf{U}_{h}^{\epsilon}, \mathbf{P}_{h}^{\epsilon}) \in \mathbf{X}_{h} \times \mathbf{M}_{h} \text{ such that} \\ ((\mathbf{U}_{h}^{\epsilon}, \mathbf{V}_{h}))_{\epsilon} + b(\mathbf{P}_{h}^{\epsilon}, \mathbf{V}_{h}) + b(\mathbf{Q}_{h}, \mathbf{U}_{h}^{\epsilon}) = F(\mathbf{V}_{h}), \quad \forall (\mathbf{V}_{h}, \mathbf{Q}_{h}) \in \mathbf{X}_{h} \times \mathbf{M}_{h}. \end{cases}$$

The existence and uniqueness of solution for $(P_{\epsilon,h})$ is carried out as for (P_{ϵ}) and we have the estimates

Theorem 4 Let $\mathbf{u} \in [H^{k+1}(\Omega) \cap H_0^1(\Omega)]^d$ and $p \in H^k(\Omega)$ $(k \ge 1)$ be the solution to the Stokes problem in Ω and for each h > 0 let $(\mathbf{u}_h, p_h) \in V_h \times P_h$ solve the discrete Stokes problem on $V_h \times P_h$. Now consider $\mathbf{U}_h = (\mathbf{u}_{h|\Omega_1}, \mathbf{u}_{h|\Omega_2}) \in \mathbf{X}_h$, $\mathbf{P}_h = (p_{h|\Omega_1}, p_{h|\Omega_2}) \in \mathbf{M}_h$. For each $\epsilon > 0$ let $(\mathbf{U}_h^{\epsilon}, \mathbf{P}_h^{\epsilon}) \in \mathbf{X}_h \times \mathbf{M}_h$ solve $(P_{\epsilon,h})$ and write $\mathbf{U}_h^{\epsilon} = (\mathbf{u}_{1,h}^{\epsilon}, \mathbf{u}_{2,h}^{\epsilon})$ and $\mathbf{P}_h^{\epsilon} = (p_{1,h}^{\epsilon}, p_{2,h}^{\epsilon})$. Now construct

$$\pi_h^{\epsilon} = p_{1,h}^{\epsilon} \chi_{\Omega_1} + p_{2,h}^{\epsilon} \chi_{\Omega_2} - \frac{1}{|\Omega|} \left(\int_{\Omega_1} p_{1,h}^{\epsilon} + \int_{\Omega_2} p_{2,h}^{\epsilon} \right)$$
(3)

then, the following error estimate hold

$$\|\mathbf{U}_h - \mathbf{U}_h^{\epsilon}\|_{\epsilon} \leq C \left(h^k + \sqrt{\epsilon}\right) \tag{4}$$

$$\|p_h - \pi_h^{\epsilon}\|_{0,\Omega} \leq C \left(h^k + \sqrt{\epsilon}\right) \tag{5}$$

where $C = C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p) . As a consequence of (4) we have

$$\sum_{i=1}^{2} |\mathbf{u}_{h} - \mathbf{u}_{i,h}^{\epsilon}|_{1,\Omega_{i}} \leq C (h^{k} + \sqrt{\epsilon}) \quad and \quad \|\mathbf{u}_{1,h}^{\epsilon} - \mathbf{u}_{2,h}^{\epsilon}\|_{0,\Gamma} \leq C (\sqrt{\epsilon} h^{k} + \epsilon).$$

Via the triangular inequality, we give the main result of this section

Theorem 5 Let $\mathbf{u} \in [H^{k+1}(\Omega) \cap H_0^1(\Omega)]^d$ and $p \in H^k(\Omega)$, $(k \ge 1)$ be the solution to the Stokes problem in Ω . For each h > 0 and $\epsilon > 0$ let $(\mathbf{U}_h^{\epsilon}, \mathbf{P}_h^{\epsilon}) \in \mathbf{X}_h \times \mathbf{M}_h$ solve $(P_{\epsilon,h})$ with finite dimensional spaces of accuracy $k \ge 1$ and write $\mathbf{P}_h^{\epsilon} = (p_{1,h}^{\epsilon}, p_{2,h}^{\epsilon})$. Then construct π_h^{ϵ} as in (3). The following bounds hold

$$\sum_{i=1}^{2} |\mathbf{u} - \mathbf{u}_{i,h}^{\epsilon}|_{1,\Omega_{i}} + \frac{1}{\sqrt{\epsilon}} \|\mathbf{u}_{1,h}^{\epsilon} - \mathbf{u}_{2,h}^{\epsilon}\|_{0,\Gamma} \leq C (h^{k} + \sqrt{\epsilon})$$
(6)

$$\|p - \pi_h^{\epsilon}\|_{0,\Omega} \leq C \left(h^k + \sqrt{\epsilon}\right) \tag{7}$$

where $C = C(\mathbf{u}, p, \mathbf{f})$ is a positive constant just depending on the data. When $\epsilon = O(h^{2k})$ we have

$$\sum_{i=1}^{2} |\mathbf{u} - \mathbf{u}_{i,h}^{\epsilon}|_{1,\Omega_{i}} + ||p - \pi_{h}^{\epsilon}||_{0,\Omega} \le C h^{k} \quad and \quad ||\mathbf{u}_{1,h}^{\epsilon} - \mathbf{u}_{2,h}^{\epsilon}||_{0,\Gamma} \le C h^{2k}$$

4 Iteration process

We search for the solution of $(P_{\epsilon,h})$ via the following parallelizable technique: For n = 0, 1, 2, ..., given $\mathbf{u}_1^n = \mathbf{u}_{1,h}^{\epsilon,n}$ and $\mathbf{u}_2^n = \mathbf{u}_{2,h}^{\epsilon,n}$ we compute $\mathbf{u}_1^{n+1} \in \mathbf{X}_{1,h}, \ \mathbf{u}_2^{n+1} \in \mathbf{X}_{2,h}$ and $p_1^{n+1} \in M_{1,h}, \ p_2^{n+1} \in M_{2,h}$ such that the following problem $(P_{\epsilon,h}^n)$ is satisfied

$$\begin{cases} (\nabla \mathbf{u}_{1}^{n+1}, \nabla \mathbf{v}_{1})_{\Omega_{1}} - (p_{1}^{n+1}, \nabla \cdot \mathbf{v}_{1})_{\Omega_{1}} - (q_{1}, \nabla \cdot \mathbf{u}_{1}^{n+1})_{\Omega_{1}} + \frac{1}{\epsilon} (\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n}, \mathbf{v}_{1})_{0,\Gamma} = (\mathbf{f}, \mathbf{v}_{1})_{\Omega_{1}}, \\ (\nabla \mathbf{u}_{2}^{n+1}, \nabla \mathbf{v}_{2})_{\Omega_{2}} - (p_{2}^{n+1}, \nabla \cdot \mathbf{v}_{2})_{\Omega_{2}} - (q_{2}, \nabla \cdot \mathbf{u}_{2}^{n+1})_{\Omega_{2}} + \frac{1}{\epsilon} (\mathbf{u}_{2}^{n+1} - \mathbf{u}_{1}^{n}, \mathbf{v}_{2})_{0,\Gamma} = (\mathbf{f}, \mathbf{v}_{2})_{\Omega_{2}} \end{cases}$$

for all $(\mathbf{v}_1, \mathbf{v}_2) \in \mathbf{X}_h$ (we drop the indices ϵ and h when not needed). We obtain the following geometric rate of convergence

Theorem 6 Let $\mathbf{U}_{h}^{\epsilon} = (\mathbf{u}_{1,h}^{\epsilon}, \mathbf{u}_{2,h}^{\epsilon}) \in \mathbf{X}_{h}$ and $\mathbf{P}_{h}^{\epsilon} = (p_{1,h}^{\epsilon}, p_{2,h}^{\epsilon}) \in \mathbf{M}_{h}$ be the solution of $(P_{\epsilon,h})$ and $\mathbf{U}_{h}^{\epsilon,n} = (\mathbf{u}_{1,h}^{\epsilon,n}, \mathbf{u}_{2,h}^{\epsilon,n}) \in \mathbf{X}_{h}$, $\mathbf{P}_{h}^{\epsilon,n} = (p_{1,h}^{\epsilon,n}, p_{2,h}^{\epsilon,n}) \in \mathbf{M}_{h}$ be the solution of $(P_{\epsilon,h}^{n})$. Let us define π_{h}^{ϵ} and $\pi_{h}^{\epsilon,n}$ as in (3). Then, starting off the iterative process, for instance, with $\mathbf{u}_{i,h}^{0,\epsilon} = 0$, there exists a positive constant C_{0} such that for each $\epsilon, h > 0$ and all $n \geq 0$

$$\sum_{i=1}^{2} |\mathbf{u}_{i,h}^{\epsilon,n+1} - \mathbf{u}_{i,h}^{\epsilon}|_{1,\Omega_{i}} \leq \frac{\mathcal{P} \|\mathbf{f}\|_{0,\Omega}}{\sqrt{\epsilon} (1 + 2C_{0}\epsilon)^{n/2}}, \\ \|\pi_{h}^{\epsilon,n+1} - \pi_{h}^{\epsilon}\|_{0,\Omega} \leq \frac{\mathcal{P} \|\mathbf{f}\|_{0,\Omega}}{\epsilon (1 + 2C_{0}\epsilon)^{n/2}}$$

for some constant \mathcal{P} proportional to the constant in Poincare's Inequality.

Via the triangular inequality we obtain the final bound

Theorem 7 Let $\mathbf{u} \in [H^{k+1}(\Omega) \cap H_0^1(\Omega)]^d$ and $p \in H^k(\Omega)$, for $k \ge 1$, be the solution to the Stokes problem in Ω . For each h > 0 and $\epsilon > 0$ let $(\mathbf{U}_h^{\epsilon,n}, \mathbf{P}_h^{\epsilon,n}) \in \mathbf{X}_h \times \mathbf{M}_h$ $(n \ge 1)$ solve the iteration problem $(P_{\epsilon,h}^n)$ starting off the iteration with $\mathbf{U}_h^{\epsilon,0} = 0$, and using finite element spaces of accuracy $k \ge 1$. Then the following bounds hold for all $n \ge 0$

$$\sum_{i=1}^{2} |\mathbf{u} - \mathbf{u}_{i,h}^{n+1,\epsilon}|_{1,\Omega_i} \leq C \left(h^k + \sqrt{\epsilon} + \frac{1}{\sqrt{\epsilon} (1 + 2C_0 \epsilon)^{n/2}}\right)$$
(8)

$$\|p - \pi_h^{n+1,\epsilon}\|_{0,\Omega} \leq C \left(h^k + \sqrt{\epsilon} + \frac{1}{\epsilon \,(1 + 2\,C_0\,\epsilon)^{n/2}}\right) \tag{9}$$

where $C = C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p) . When $\epsilon = O(h^{2k})$ and n large enough we obtain error bounds $O(h^k)$ for velocity and pressure

$$\sum_{i=1}^{2} |\mathbf{u} - \mathbf{u}_{i,h}^{n,\epsilon}|_{1,\Omega_{i}} + ||p - \pi_{h}^{n,\epsilon}||_{0,\Omega} \le C h^{k}$$

where $C = C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p) .

5 Numerical experiments

We use a known solution of the incompressible Stokes equations to compute the error between the exact solution and the numerical approximation in the case k = 1. In this test $\Omega = (0, 1) \times (0, 1)$ and the boundary condition is $\mathbf{u} = 0$ on the boundary $\partial \Omega$ of Ω . The exact solution is

$$u(x,y) = -\cos(2\pi x) \sin(2\pi y) + \sin(2\pi y)$$

$$v(x,y) = \sin(2\pi x) \cos(2\pi y) - \sin(2\pi x)$$

$$p(x,y) = 2\pi(-\cos(2\pi x) + \cos(2\pi y))$$

and we take viscosity $\nu = 1$. We consider the interface Γ as the line y = 0.5 and then $\Omega_1 = (0, 1) \times (0, 0.5)$ and $\Omega_2 = (0, 1) \times (0.5, 1)$. Next, we consider a uniform triangular mesh of mesh size $h = h_x = h_y$, take $\epsilon = h^2$ and use \mathbf{P}_1 finite elements with the Brezzi-Pitkaranka stabilization technique for computing the solutions $\mathbf{u}_{i,h}$ and $p_{i,h}$ on each Ω_i . Then we construct the approximated velocity field \mathbf{u}_h and pressure $\pi_h \in L^2_0(\Omega)$ via

$$\begin{cases} \mathbf{u}_{h} = \mathbf{u}_{i,h}, & \text{in } \Omega_{i} \\ \mathbf{u}_{h} = (\mathbf{u}_{1,h} + \mathbf{u}_{2,h})/2, & \text{on } \partial \Gamma, \\ \pi_{h} = p_{1,h} \chi_{\Omega_{1}} + p_{2,h} \chi_{\Omega_{2}} - \frac{1}{|\Omega|} (\int_{\Omega_{1}} p_{1,h} + \int_{\Omega_{2}} p_{2,h}), & \text{in } \Omega \end{cases}$$

where $|\Omega| = 1$. Finally we compute the errors $eu(h) = (\sum_{i=1}^{2} \int_{\Omega_i} |\nabla(u_h - u_{ih}^{n,\epsilon})|^2 dx)^{1/2}$ and $ep(h) = ||p - p_h||_{0,\Omega}$. The following table shows the values obtained for these measures.

wesh	$16 \times 16 (h = 1/16)$	$32 \times 32 (h = 1/32)$	64×64 $(h = 1/64)$
eu(h)	0.4600	0.13413	0.0412
ep(h)	0.5773	0.1942	0.066

Indeed, an order of convergence slightly larger that 1 is obtained on this example.

References

 CHACÓN REBOLLO, T., CHACÓN VERA, E., DOMÍNGUEZ DELGADO, A. Analysis of a Non-overlapping Domain Decomposition Method for Elliptic Equations XVII CEDYA/VII CMA, Salamanca (Spain) 2001.

- [2] CHACÓN REBOLLO, T., CHACÓN VERA, E.A non-overlapping Domain Decomposition Method for the Stokes equations via a penalty term on the interface C.R. Acad. Sci. Paris, t. 334, Serie I, p. 2002.
- [3] J.L. LIONS, PIRONNEAU, O., Overlapping domain decomposition of evolution operators. C.R. Acad. Sci. Paris, t. 330, Serie I, p. 937-942, 2000.
- [4] P.L. LIONS On the Schwarz alternating method III: a variant for non-overlapping subdomains Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 202-231, 1990.