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Abstract

Integral equation methods are often used to deal with exterior problems of wave

propagation. This approach is used here for an exterior problem where a side of

an homogeneous opaque heat–conducting material (drilled by a finite number of

cylinders made of a different material) is illuminated by a laser beam at constant

frequency. By an indirect method for the two–dimensional Helmholtz equation

the problem is reduced to a system of integral equations. We propose a Petrov–

Galerkin method with piecewise constant functions to approximate the unknowns

on the boundaries (densities). The method is shown to be stable and convergent.

Keywords: Boundary integral methods, Galerkin methods, scattering, transmis-

sion problems
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1 Statement of the problem

Let us consider a finite number of simply connected bounded open sets Ω1, . . . ,Ωd strictly

contained in the half–plane R
2
− := {(x1, x2) | x2 < 0} and such that Ωi ∩Ωj = ∅ for i 6= j.

Let also Π := {(x1, 0) | x1 ∈ R}. The boundary of each Ωk, denoted Γk, is assumed to be

a C2 curve (see figure 1).

Let uinc be a solution of the Helmholtz equation in the half plane (incident wave)

∆uinc + λ2uinc = 0 in R
2
−.

We are looking for a solution of the problem

∆u+ λ2u = 0, in Ω := R
2
− \ (∪d

k=1Ωk),

∆u+ λ2
ku = 0, in Ωk k = 1, . . . , d,
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Figure 1: The geometry of the problem

where λ, λk ∈ (1 + i) R
+ = {z ∈ C | re z = im z > 0}. We also demand that the solution

satisfies the boundary condition

∂nu|Π = ∂nuinc|Π

and the transmission conditions on the inner boundaries

u|int
Γk

= u|ext
Γk
,

νk∂nu|
int
Γk

= ν∂nu|
ext
Γk
,

with νk, ν > 0. Normals are directed towards the exterior of Ωk for each k. The normal

on Π is directed upwards (pointing towards the exterior of Ω).

Finally we demand that u − uinc is a radiating wave, i.e., that u − uinc satisfies the

Sommerfeld condition at infinity [3], i.e.,

lim
r→∞

r1/2(∂r(u− uinc) − iλ(u− uinc)) = 0

uniformly in all available directions (∂r denotes the radial derivative).

Physical motivation. This problem arises in quality control of composite materials

consisting in a base with cilindrical incrustations to strengthen its structure. A particu-

larly suitable means of inspecting this kind of materials is to use photothermal techniques

as illuminating the upper surface by a defocused laser beam modulated at a given fre-

quency ω.

After a sufficiently long time the temperature distribution becomes time-harmonic.

The periodic term of the temperature has the form T (x, t) = Re(u(x) exp (iωt)). Our

unknown is u(x), the complex amplitude of the thermal wave.

The boundary condition models an adiabatic situation whereas the transmission con-

ditions model the continuity of temperature and heat flux [8]. �
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2 Uniqueness

If we take as unknown

v :=

∣∣∣∣∣
u− uinc, in Ω,

u, in Ωk k = 1, . . . , d,

(u− uinc is called scattered wave), the transmission problem becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆v + λ2v = 0, in Ω,

∆v + λ2
kv = 0, in Ωk, k = 1, . . . , d,

v|int
Γk

− v|ext
Γk

= gk
0 , k = 1, . . . , d,

νk∂nv|
int
Γk

− ν∂nv|
ext
Γk

= gk
1 , k = 1, . . . , d,

∂nv|Π = 0,

limr→∞ r1/2(∂rv − iλv) = 0 (Sommerfeld condition)

(1)

where gk
0 := −uinc|Γk

and gk
1 := −ν∂nuinc|Γk

.

By construction we have that for all k

gk
0 ∈ H1/2(Γk), gk

1 ∈ H−1/2(Γk),

(see [3] for definitions of these usual Sobolev spaces in the boundary). The solution is

assumed to be such that v|Ωk
∈ H1(Ωk) for all k and

v|Ω ∈ H1
loc(Ω) := {v ∈ D′(Ω) | v φ ∈ H1(Ω), ∀φ ∈ D(Ω)}.

It can be seen that any solution to this problem is smooth, up to Π, and therefore

the boundary condition ∂nv|Π = 0 is satisfied in a classical way, as happens with the

Sommerfeld radiation condition.

Moreover, we can prove the following result (see [2]).

Proposition 1 For arbitrary gk
0 ∈ H1/2(Γk), g

k
1 ∈ H−1/2(Γk), there exists a unique solu-

tion to (1) in the sense specified above.

3 Boundary integral formulation

In order to simplify the discussion we consider the simplest transmission problem in R
2
−

with a single obstacle. Superscripts “+” and “–” correspond to the exterior (unbounded)

and the interior (bounded) domain respectively and Γ is the common boundary.

We propose an indirect formulation with unknown densities ψ+, ψ− : Γ → C

v =

∣∣∣∣∣
S+ψ+, in Ω+,

S−ψ−, in Ω−,
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where

S+ψ := −

∫

Γ

(Φ(λ+| · −y|) + Φ(λ+| · −ỹ|))ψ(y) dγ(y) : Ω+ −→ C,

S−ψ := −

∫

Γ

Φ(λ−| · −y|)ψ(y) dγ(y) : Ω− −→ C,

being ỹ = (y1,−y2) the reflected point of y = (y1, y2) and Φ(x) = − i
4
H

(1)
0 (x) the Han-

kel function of first kind and order zero (cf [1]), that can be decomposed as Φ(x) =

a(x2) log(x) + b(x2) with a, b entire functions.

By definition, v satisfies the corresponding Helmholtz equations in the exterior and

in the interior domains, the boundary condition on Π and the Sommerfeld radiation

condition at infinity (see [3] Chapter 7).

The traces of the single layer potentials are given by the operators

V +ψ := S+ψ|Γ = −

∫

Γ

(Φ(λ+| · −y|) + Φ(λ+| · −ỹ|))ψ(y) dγ(y) : Γ −→ C,

V −ψ := S−ψ|Γ = −

∫

Γ

Φ(λ−| · −y|)ψ(y) dγ(y) : Γ −→ C.

On the other hand, the traces of the normal derivatives of the single layer potentials

satisfy

∂nS
+ψ|+Γ = −1

2
ψ − J+ψ,

∂nS
−ψ|−Γ = 1

2
ψ − J−ψ,

being

J+ψ :=

∫

Γ

∂n( · )(Φ(λ+| · −y|) + Φ(λ+| · −ỹ|))ψ(y) dγ(y) : Γ −→ C,

J−ψ :=

∫

Γ

∂n( · )Φ(λ−| · −y|)ψ(y) dγ(y) : Γ −→ C.

Remark. The kernels of the operators J± are continuous whereas the operators V ± have

kernels with logarithmic singularities. �

Now we can express the transmission conditions in matrix form

L

[
ψ−

ψ+

]
:=

[
V − −V +

ν−(1
2
I − J−) ν+(1

2
I + J+)

] [
ψ−

ψ+

]
=

[
g0

g1

]
. (2)

The first equation is the continuity of temperature and the second one is the continuity

of heat flux. Then we have the following result (see [2])

Theorem 2 L : H−1/2(Γ) ×H−1/2(Γ) → H1/2(Γ) ×H−1/2(Γ) is an isomorphism. More-

over, there exists an elliptic operator V0 : H−1/2(Γ) → H1/2(Γ) (i.e., ξ〈V0ψ, ψ〉 ≥

‖ψ‖2
−1/2,Γ, ξ ∈ C ) independent of λ± such that

L−

[
V0 −V0

ν−

2
I ν+

2
I

]

is compact.
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4 A Petrov–Galerkin method

Let x : [0, 1] → Γ be a regular parameterization of the boundary Γ which henceforth is

assumed to be smooth. We consider new unknowns,

ψ± := ψ±(x(·)) |x′(·)| : [0, 1] −→ C,

data

g0 := g0(x(·)),

g1 := |x′(·)|g1(x(·)),

and parameterized versions of the operators for which we keep the same notation,

V +η := −

∫ 1

0

(Φ(λ+|x(·) − x(t)|) + Φ(λ+|x(·) − x̃(t)|)) η(t) dt : [0, 1] −→ C,

V −η := −

∫ 1

0

Φ(λ−|x(·) − x(t)|) η(t) dt : [0, 1] −→ C,

J+η :=

∫ 1

0

|x′(·)|∂n(·)(Φ(λ+|x(·) − x(t)|) + Φ(λ+|x(·) − x̃(t)|)) η(t) dt : [0, 1] −→ C,

J−η :=

∫ 1

0

|x′(·)|∂n(·)Φ(λ−|x(·) − x(t)|) η(t) dt : [0, 1] −→ C.

We consider the Sobolev spaces (see [4] Chapter 8, [7]),

Hr := {φ ∈ D′ | |φ̂(0)|2 +
∑

06=k∈Z

|k|2r|φ̂(k)|2 <∞},

where D′ is the space of 1–periodic distributions at the real line and

φ̂(k) := 〈φ, exp(−2kπi ·)〉D′×D

are the Fourier coefficients of φ. For all r ∈ R, Hr is a Hilbert space with inner product

(φ, ψ)r := φ̂(0)ψ̂(0) +
∑

06=k∈Z

|k|2rφ̂(k)ψ̂(k).

Proposition 3 In the new notations,

L :=

[
V − −V +

ν−(1
2
I − J−) ν+(1

2
I + J+)

]
: H−1/2 ×H−1/2 → H1/2 ×H−1/2

is an isomorphism and there exists an elliptic operator V0 : H−1/2 → H1/2 independent of

λ± such that

L−

[
V0 −V0

ν−

2
I ν+

2
I

]

is compact.

197



We propose a Petrov–Galerkin method for the parameterized versions of the equations

above. Trial and test spaces are defined as follows: we construct a uniform mesh in [0, 1]

with nodes si = ih and take a space of piecewise constant functions,

S0
h := {ϕ : [0, 1] → C | ϕ|[si−1,si] ∈ P0},

as trial space for both unknowns and as test space for the first equation. The space

S1
h := {ϕ ∈ C([0, 1]) | ϕ(0) = ϕ(1), ϕ|[si−

h

2
,si+

h

2
] ∈ P1}

is taken as test space for the second equation. S1
h is formed by periodic first degree

polynomials between consecutive midpoints of the mesh nodes.

Remark. We base our choice of displaced polygonal functions on stability questions.

The first equation takes place in H1/2 whereas the second one occurs in H−1/2; as they

have different character, we take different test spaces to achieve the same convergence

order. �

Given f, g ∈ H0, we denote (f, g) :=
∫ 1

0
f(t)g(t) dt. The numerical method is then:

∣∣∣∣∣∣∣∣

Find ψ+
h , ψ

−
h ∈ S0

h, such that

(V −ψ−
h − V +ψ+

h , uh) = (g0, uh), ∀uh ∈ S0
h,

(ν−(1
2
I − J−)ψ−

h + ν+(1
2
I + J+)ψ+

h , vh) = (g1, vh), ∀vh ∈ S1
h.

(3)

5 Analysis of convergence

Theorem 4 The equations (3) are uniquely solvable for h small enough. There exist

constants C1, C2 > 0 independent of ψ± and h such that

‖ψ+ − ψ+
h ‖−1/2 + ‖ψ− − ψ−

h ‖−1/2 ≤ C1 h
3/2(‖ψ+‖1 + ‖ψ−‖1), (4)

‖ψ+ − ψ+
h ‖−2 + ‖ψ− − ψ−

h ‖−2 ≤ C2 h
3(‖ψ+‖1 + ‖ψ−‖1). (5)

Sketch of the proof:

The numerical method for the principal part of the operator L is:
∣∣∣∣∣∣∣∣

Find ϕ+
h , ϕ

−
h ∈ S0

h, such that

(V0ϕ
−
h − V0ϕ

+
h , uh) = (g0, uh), ∀uh ∈ S0

h,

(ν−

2
ϕ−

h + ν+

2
ϕ+

h , vh) = (g1, vh), ∀vh ∈ S1
h.

(6)

The principal part of the operator L can be decomposed as
[

V0 −V0

ν−

2
I ν+

2
I

]
=

[
V0 0

0 I

]

︸ ︷︷ ︸
=: P

[
I −I

ν−

2
I ν+

2
I

]

︸ ︷︷ ︸
=: Q

.
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The operator Q allows to do a change of variables and the equations (6) for the new

unknowns are uncoupled since P is diagonal. The numerical method in terms of the new

unknowns is ∣∣∣∣∣∣∣∣

Find η+
h , η

−
h ∈ S0

h, such that

(V0η
−
h , uh) = (g0, uh), ∀uh ∈ S0

h,

(η+
h , vh) = (g1, vh), ∀vh ∈ S1

h.

(7)

The first equation in (7) is a S0
h–Galerkin method for the operator V0. Ellipticity of

V0 : H−1/2 → H1/2 implies that the S0
h–Galerkin method for V0 is H−1/2–stable (see [4]

Chapter 13).

The second equation is a Petrov–Galerkin method for the identity operator with S0
h

and S1
h as trial and test spaces respectively. We prove in first term H0–stability for the

identity operator and then, by means of inverse inequalities in the space S1
h (see [5] for

approximation and in verse properties of splines), we show H−1/2–stability. This follows

the same ideas given in [6].

Undoing the change of variables we obtain H−1/2–stability for the principal part:

‖ϕ+
h ‖−1/2 + ‖ϕ−

h ‖−1/2 ≤ C (‖ϕ+‖−1/2 + ‖ϕ+‖−1/2).

Hence we have Céa’s estimate and from it and the approximation property of S0
h in H−1/2

we obtain convergence of the method (6) in H−1/2 ×H−1/2.

Standard compactness arguments yield stability and convergence in H−1/2×H−1/2 for

the global operator L.

Finally, we obtain the convergence bounds: Céa’s lemma leads to (4) and Aubin–

Nitsche duality argument yields (5) (see [5] Chapter 1 for this kind of argumentation).

�
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