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Abstract

In this paper we present a family of modified quadrature methods for the numer-

ical approximation of integral equations of the first kind with logarithmic kernel.

We prove the stability and the existence, under some smoothness assumptions for

the exact solution, of an expansion in powers of the discretization parameter of the

error. Using this expansion we deduce that a particular method reaches order three.

Some comments on the use of Richardson extrapolation are given.
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1 The equation and its approximation

We are interested in solving numerically equations of the form

Vu :=

∫ 1

0

[
A( · , t) log(sin2(π( · − t))) + K(·, t)

]
u(t) dt = f, (1)

with A, K ∈ C∞(R2) and 1–periodic in both variables. We demand that A(s, s) 6= 0 for

all s. Such equations appear when solving some boundary value problems in partial dif-

ferential equations (Laplace, Helmholtz,...) on smooth domains of the plane by boundary

element methods.
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A natural frame for this kind of operator equations is that of periodic Sobolev spaces.

To introduce these spaces we construct the following family of norms: let p be a trigono-

metric polynomial, for s ∈ R we consider

‖p‖s :=
[
|p̂(0)|2 +

∑

m6=0

|m|2s|p̂(m)|2
]1/2

, p̂(m) :=

∫ 1

0

p(s) exp(−2πm ı s) ds,

and Hs is defined as the completeness of trigonometric polynomials in the norm ‖ · ‖s.

Obviously H0 can be identified with L2(0, 1), whereas H1 is simply H1(0, 1) with periodic

continuity conditions. The spaces Hs and H−s form a dual pair when as dual product we

take the extension of L2–product

(f, g) := f̂(0)ĝ(0) +
∑

m6=0

f̂(m)ĝ(m), f ∈ Hs, g ∈ H−s.

It is well known that V : Hs → Hs+1 is bounded [10]. Furthermore, it is a Fredholm

operator of index 0, that is, injectivity is equivalent to the existence of bounded inverse.

In the context of classical theory of pseudodifferential operators V is said to be a pseu-

dodifferential operator of order −1 [9]. Given N ∈ N, h := 1/N we set xα := αh, α ∈ R.

The numerical method we propose is defined by the following scheme:
∣∣∣∣∣∣∣∣∣∣∣∣

(u0, u1, . . . , uN−1) ∈ CN ,

h
N−1∑

j=0

(
ε[V (xj, xi−1+ε) + V (xj, xi+1−ε)]+(1 − ε)[V (xj, xi−ε) + V (xj, xi+ε)]

)
uj

=ε[f(xi−1+ε) + f(xi+1−ε)]+(1 − ε)[f(xi−ε) + f(xi+ε)], i = 0, . . . , N − 1.

The unknowns uj are approximations of the pointwise values u(xj). This class of methods

extends a simpler family of quadrature methods studied in [6]. The parameter ε is free

and can be chosen in (0, 1/2]. The choice ε = 0 is not valid since it implies evaluating the

kernel V on the diagonal. Notice that there is no use of any quadrature approximation to

assemble the linear system and that it just requires to evaluate V in 2N 2 different points.

In order to analyze the method we write it in a more compact form. Let δz be the

Dirac delta distribution at point z. We set

Sh :=
{ N−1∑

j=0

ujδxj

∣∣∣ uj ∈ C

}
⊂ H−1, Th :=

{
rh ∈ H1

∣∣∣ rh|[xi,xi+1] ∈ P1, ∀i
}

,

a discrete space of Dirac deltas and the continuous piecewise linear functions over the grid

{xi} respectively. We also define the inner discrete product given by

〈f, g〉h :=
h

2

N−1∑

j=0

[
f(xj+ε)g(xj+ε) + f(xj−ε)g(xj−ε)

]
≈ (f, g) =

∫ 1

0

f(t)g(t)dt.

Then, our method is equivalent to
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∣∣∣∣∣
uh ∈ Sh,

〈Vuh, rh〉h = 〈f, rh〉h, ∀rh ∈ Th,
(2)

in the following sense: if (u0, u1, . . . , uN−1) ∈ C
N is the solution of the quadrature method,

uh := h
N−1∑

j=0

ujδxj
(3)

is the solution of (2). From this new point of view, the method can be seen as a noncon-

forming ‘qualocation’ method (qualocation is a portmanteau word for quadrature modi-

fied collocation and names a class of numerical methods for integral and pseudodifferential

equations) with a discrete space of Dirac deltas as trial, instead of the commonly used

periodic splines (see [8] and references therein).

2 Stability

Foreword. In the sequel C (with posible sub- and superscripts) denotes a constant

independent of h and of any quantity it is multiplied by. �

We first introduce some elements and technical results necessary for the proof of the

main result of this section. Consider

Λg :=

∫ 1

0

log(sin2(π( · − t)))g(t) dt (4)

and

Sh 3 ξh := h

N−1∑

j=0

δxj
≈ 1.

It can be easily verified that

‖1 − ξh‖−1 ≤ Ch. (5)

Lemma 1 For all ε 6= 0 there exists C > 0 (depending on ε) such that

|〈Λ(ξh − 1), rh〉h| ≤ Ch‖rh‖−1, ∀rh ∈ Th.

Proof. Consider the 1–periodic function η → Eh(η)

Eh(η) := h
N−1∑

j=0

log(sin2(πh(j − η))) −

∫ 1

0

log(sin2(πs)) ds.

Obviously, Eh is the error of approximating
∫ 1

0
log(sin2(πt))dt by a composite rectangular

rule. For η 6∈ Z, we have [1]

|Eh(η)| ≤ Cηh.
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Applying this bound, it follows that

|〈Λ(ξh − 1), rh〉h| = |〈Eh( · /h), rh〉h|

≤ 1
2

∣∣∣Eh(ε)h

N−1∑

j=0

rh(xj+ε)
∣∣∣ + 1

2

∣∣∣Eh(−ε)h

N−1∑

j=0

rh(xj−ε)
∣∣∣

≤ Ch|r̂h(0)| ≤ C ′h‖rh‖−1.

�

Let us consider the isomorphisms

D + J : H0 → H−1, D
−1 + J : H−1 → H0,

where Ju := û(0), Du = u′ and

(D−1u)(x) =

∫ x

0

(
u(t) −

∫ 1

0

u(s)ds

)
dt.

Note that these maps are inverse of each other.

A key point to the stability result is the definition of discrete versions of these maps.

To do this, we set B1(x) := x − 1/2 for x ∈ [0, 1), and denote by B1 its 1–periodic

extension. The discrete operators

Jhu := û(0)ξh, χhu := (1 + hB1(·/h))û(0).

can be understood as approximations of J. Furthermore, if

T 0
h := {uh ∈ H0 : uh|(xi,xi+1) ∈ P0, ∀i}.

is the space of piecewise constant functions on the grid {xi}, then

D + Jh : T 0
h → Sh, D

−1 + χh : Sh → T 0
h ,

satisfy (D + Jh)
−1 = D−1 + χh and are therefore reciprocal inverses (see the proof of [3]

Proposition 16). Since there exist c and C, independent of h, such that

c‖(D + Jh)vh‖−1 ≤ ‖vh‖0 ≤ C‖(D + Jh)vh‖−1, ∀vh ∈ Sh, (6)

then both sequences of maps are uniformly bounded.

Proposition 2 Let A be a pseudodifferential operator of the following form

Ag := p.v.

∫ 1

0

cotπ( · − t)g(t)dt +

∫ 1

0

[
A0( · , t) log(sin2 π( · − t)) + A1( · , t)

]
g(t) dt,

(p.v. stands for the Cauchy principal value), where A0 and A1 are smooth and periodic.

Then, for h small enough, there exists β > 0 independent of h such that

sup
rh∈Th

|〈Avh, rh〉h|

‖rh‖−1
≥ β‖vh‖0, ∀vh ∈ T 0

h .
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Proof. This inf–sup condition is a consequence of the convergence of the ‘qualocation’

method for A with T 0
h and Th as respective trial and test spaces [7, 5]. �

Theorem 3 Let ε 6= 0, 1/2. Then for h small enough there exists β > 0, independent of

h, such that

sup
rh∈Th

|〈Vuh, rh〉h|

‖rh‖−1

≥ β‖uh‖−1, ∀uh ∈ Sh. (7)

Proof. Suppose first that the coefficient A(s, s) (see (1)) is constant. Without loss of

generality, we can suppose A(s, s) ≡ 1. Let uh ∈ Sh and vh := (D−1 + χh)uh and notice

that ûh(0) = v̂h(0). Then

Vuh = V(D + Jh)(D
−1 + χh)uh

= V(D + J)vh + V(Jh − J)vh

= V(D + J)vh + ûh(0)V(ξh − 1).

Since K := V−Λ : H−1 → H1 is bounded (see [4] and recall the definition of Λ in (4)), it

is clear by Lemma 1 that for all rh ∈ Th

|〈V(ξh − 1), rh〉h| ≤ C1h‖rh‖−1 + |〈K(ξh − 1), rh〉h|

≤ C1h‖rh‖−1 + C2‖K(ξh − 1)‖1‖rh‖−1

≤ C1h‖rh‖−1 + C3‖ξh − 1‖−1‖rh‖−1 ≤ C4h‖rh‖−1,

where we have also applied that |〈u, rh〉h| ≤ C‖u‖1‖rh‖−1 for all u ∈ H1 and rh ∈ Th (see

[4] Corollary 2) and (5).

On the other hand it can be easily seen that V(D+J) fulfills the hypotheses of Lemma

2. Thus, gathering all the previous inequalities and applying (6) we obtain that for all

uh ∈ Sh

sup
rh∈Th

|〈Vuh, rh〉h|

‖rh‖−1

≥ β‖(D−1 + ξh)uh‖0 − Ch|ûh(0)| ≥ (β ′ − Ch)‖uh‖−1.

This proves the result for h small enough.

Suppose now that V is a general integral operator with logarithmic kernel. Define

a(s) := A(s, s) 6= 0 for all s. The operator Wu := V(u/a) satisfies the hypothesis of the

first part of the proof and Vuh = W(auh). Since the elements of Sh are linear combinations

of Dirac deltas, we have that auh ∈ Sh for all uh ∈ Sh. Hence,

sup
rh∈Th

|〈Vuh, rh〉h|

‖rh‖−1
= sup

rh∈Th

|〈W(auh), rh〉h|

‖rh‖−1
≥ β‖auh‖−1 ≥ β ′‖uh‖−1

and the result is proven. �

The case ε = 1/2 must be excluded since the matrix of the numerical method can be

singular. For instance, this happens when V (s, t) := log(sin2(π(s − t))) and N is even.
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Remark 4 Condition (7) can be shown to be equivalent to the existence of C > 0 such

that
‖uh‖−1 ≤ C‖u‖0,

being u the exact solution, uh the numerical one, and C independent of h and u (see [4]

for similar arguments). �

3 Asymptotic behaviour of the error

Let us introduce the discrete operator

Qhu := h
N−1∑

j=0

u(xj)δxj
.

This operator enjoys of good approximation properties in weak Sobolev norms (see [3]

Lemma 3): for all t > 1/2

‖Qhu − u‖−t ≤ Cht‖u‖t, ∀u ∈ H t.

Proposition 5 There exists a sequence of differential operators {Gk} (Gk of order 2k)

and a sequence of periodic functions Ck, both independent of h and ε, such that for all for

all M , u ∈ HM+1 and rh ∈ Sh

〈V(Qhu − u), rh〉h =
M∑

k=1

h2k−1Ck(ε)〈Gku, rh〉h + O(hM+1)‖u‖M+1‖rh‖−1.

Moreover, if ε = 1/6 then C1(1/6) = 0.

Proof. It is a simple consequence of [3] Theorem 7. Since C1 = log(2 sin2(π·)), the choice

ε = 1/6 implies that the first term of expansion vanishes and the first power of h appearing

is 3. �

In the remainder of the paper we restrict ourselves to the case ε = 1/6, since this value

of the parameter will define the method of highest order. Let Vu = f and Chu ∈ Sh be

the solution of (2). By Remark 4, Ch : H0 → Sh is uniformly bounded in h.

Theorem 6 There exits a sequence of pseudodifferential operators {Dk} (with Dk of order

k) such that for all u ∈ HM+1 (and all M)

max
j=0,...,N−1

∣∣∣u(xj) − uj − h3
D3u(xj) −

M∑

k=5

hk
Dku(xj)

∣∣∣ ≤ ChM+1‖u‖M+3.

Proof. Notice that for all rh ∈ Th

∣∣∣
〈
V(Qhu − Chu −

M∑

k=1

h2k−1ChV
−1

Gku), rh

〉
h

∣∣∣ ≤ ChM+1‖u‖M+1‖rh‖−1.
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Applying Theorem 3 it follows readly that

∥∥∥Qhu − Chu − h3QhD3u −

M∑

k=5

hkQhDku
∥∥∥
−1

≤ ChM+1‖u‖M+1,

being Dk : Hs → Hs−k a new sequence of pseudodifferential operators. From [2] Lemma

9, we have the following estimate

h
N−1∑

j=0

|uj| ≤ C
∥∥∥

N−1∑

j=0

ujδxj

∥∥∥
−1

=
1

h
‖uh‖−1.

Therefore, using the definition of Qh, that the order of Dk is k, and the Sobolev imbedding

theorem, we have

∣∣∣u(xj) − uj − h3
D3u(xj)−

M∑

k=5

hk
Dku(xj)

∣∣∣ ≤ ChM+1(‖u‖M+3+‖DM+1u‖∞ + ‖DM+2u‖∞)

≤ C ′hM+1‖u‖M+3

uniformly in j. �

The expansion of the error allows the use of Richardson extrapolation to improve the

accuracy of the solution. In this way, if we denote by

(uN
0 , uN

1 , . . . , uN
N−1) ∈ C

N

to the numerical solution with N unknowns, we have that one step of Richardson extrap-

olation

vN
j :=

8u2N
2j − uN

j

7
, j = 0, . . . , N − 1

defines a new solution that satisfies (assuming sufficient smoothing requirements over the

exact solution)

max
j=0,...,N−1

|vN
j − u(j/N)| ≤ Ch5.

More steps of Richardson extrapolation can be taken, increasing in one the order of

accuracy with each step.
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