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Abstract

Functional networks are a general framework useful for solving a wide range of

problems. In this paper we introduce the elements of functional networks and the

steps involved in the modeling process, illustrated with several examples. Our main

purpose is to show functional networks power as an unified approach for statistical

applications.
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1 Introduction

Functional networks are a very useful general framework for solving a wide range of

problems. In probability and statistics they have been used for: characterization of uni-

variate and bivariate distributions, finding conjugate families of distributions, obtaining

reproductive families and stable families with respect to maxima operations, modeling

fatigue problems, computing convenient posterior probability distributions, conditional

specification of statistical models, time series and regression modeling, etc. Some of these

applications have been developed in [2], [3], [4], [5] and [6].

The main purpose of this paper is to introduce functional networks and to show their

power as an unified approach for statistical applications. In Section 2 the elements of a

functional network are introduced. In Section 3 we describe the steps involved in model

building. The process is illustrated and applied to solve the problem of stability with

respect to maxima operations using exact learning. In Section 4, the technique is used to
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discover optimal transformations in the response and/or the explanatory variables in a

linear regression model and it is applied to a real example in Section 5. Some concluding

remarks are given in Section 6.

2 Elements of functional networks

A functional network consists of the following elements:

1. Several layers of storing units: These units are represented by small filled

circles. They are used for storing input, output, and intermediate information.

2. One or more layers of functional units: These units are represented by open

circles with the name of the unit inside the circle. They evaluate a set of input values

and return a set of output values to the next layer of storing units. Thus, each of these

units represents a function.

3. A set of directed links: The computing units are connected to the storing units

by directed arrows. The arrows indicate the direction of information flow. Converging

arrows to an intermediate or output unit indicate that the functions from which they

emanate must produce identical outputs and represent constraints which arise from the

characteristics of the problem at hand.

The elements are illustrated by the following example:

Example 1: Conjugate Families. Let X be a random variable which belongs to a

parametric family of distributions with likelihood function L(x, θ), where x stands for

a sample value and θ ∈ Θ is a possibly vector-valued parameter. Let F (θ; η) be the

prior probability density function. A classical problem in Bayesian statistics is to find

a parametric family of probability density functions such that both the prior and the

posterior probability density function, F (θ; G(x; η)), belong to the family. Using Bayes’

theorem, this problem can be represented by the functional equation

F (θ; G(x; η)) = H(x; θ)F (θ; η), (1)

where H(x; θ) = h(x)L(x; θ) and G specifies the value of the new parameter. This

functional equation can be represented by the functional network depicted in Figure 1.

x

η

θ

H

G

I

F

d
F

H(x;θ)

G(x;η)

θ

F(θ;η)

Figure 1: Functional network associated with conjugate families problem.
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1. This functional network has three layers of storing units: the first (left) layer

contains three input units (x, θ, and η), the second layer consists of four intermediate

units, (H(x; θ), G(x; η), θ and F (θ; η)) and the third (right) consists of one output unit

(d).

2. The first layer of functional units consists of four functions H, G, I (the identity

function) and F . The second layer has two functions: the product operator “×” and F .

3. The product operator, “×”, and F must give identical output, which is represented

by the output unit d.

3 Model building

The steps required in functional networks modeling will be introduced using the following

example:

Example 2: Stability with respect to Maxima Operations. Let X and Y be two

independent random variables which cumulative probability distribution functions (CDF)

belong to the parametric family {F (z; θ), θ ∈ Θ}. Then the CDF of the random variable

Z = max(X, Y ) is T (z; a, b) = F (z; a)F (z; b). If we wish X, Y and Z to be stable with

respect to maxima operations (i.e., to belong to the same parametric family), we have the

following functional equation

F (z; G(a; b)) = F (z; a)F (z; b), (2)

represented by the functional network in Figure 2(a).
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Figure 2: (a) Functional network associated with the stability with respect to maxima

operations, and (b) the corresponding simplified functional network.

Modeling by functional networks consists of:

1. Specifying the initial topology: The elements and structure of a functional

network is based on the characteristics of the problem at hand. In Example 2, the func-

tional network is obtained from the functional equation which represents the stability

with respect to maxima operations.
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2. Simplifying functional networks: Sometimes, solving the functional equation

which describes the problem at hand allows us to simplify the initial topology. The

result is an equivalent functional network with a simpler structure. Methods for solving

functional networks can be found in [1] and [7].

Example 2 (continued): A solution of the functional equation (2) is

F (x; y) = f(x)h(y), G(x; y) = h−1[h(x) + h(y)], (3)

where f is a CDF and h is a positive and invertible function, both arbitrary. Replacing

(3) in (2), we get f(z)h(a)+h(b). Figure 2(b) represents the simplified functional network

where H(h(a), f(z), h(b)) = f(z)h(a)+h(b).

3. Checking uniqueness. For a given functional network, several functional units

can lead to the same output for any input. In order to solve estimation problems we need

to know what conditions must hold for uniqueness.

Example 2 (continued): Assuming that we have two sets of functions {f1, h1} and

{f2, h2} such that f1(z)h1(a)+h1(b) = f2(z)h2(a)+h2(b), then

h2(a) + h2(b)

h1(a) + h1(b)
=

log f1(z)

log f2(z)
= k, (4)

where k is an arbitrary constant. To obtain uniqueness, we just need to fix the value of

some of the functions f1, f2, h1, or h2 at a point.

4. Learning functional units: To complete the model building process, it is nec-

essary to learn the functional units. There are two types of methods: exact and approx-

imate. Exact learning is illustrated with an example based on the problem of stability

with respect to maxima operations. Approximate learning is discussed in Sections 4 and

5.

Example 2 (continued): The solution of the functional equation (2) given by the

equation (3) can be applied to the problem of fatigue of longitudinal elements problem. In

this case, F (x, y) is the survival function of an element with length y and G(x, y) = x+y,

then h(x) = cx. Therefore, F (x, y) = f(x)cy, where c is a positive constant and f is a

survival function, both arbitrary.

4 Optimal transformations in a regression model

In this section we illustrate the approximate learning method using an example based on

the problem of finding optimal transformations of the response and/or the explanatory

variables in a linear regression model.
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4.1 Selecting and simplifying the initial topology

We consider the additive model

f(y) = h1(x1) + h2(x2) + . . . + hk(xk), (5)

where y is the response variable, x1, x2, . . . , xk are the explanatory variables and f ,

h1, h2, . . . , hk are parametric functions known or unknown, which define the required

transformations of the variables in order to obtain a linear model in the parameters.

Furthermore, we assume that f is an invertible function.

The functional network associated with the equation is shown in Figure 3. Since the

estructure has no converging arrows in the output node, this functional network can not

be simplified.
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Figure 3: Functional network associated with the additive model.

4.2 Uniqueness problem

Given two sets of functions {h1, h2, . . . , hk, f} and {h?
1, h

?
2, . . . , h

?
k, f

?} such that,

f−1[h1(x1) + h2(x2) + . . . + hk(xk)] = f ?−1[h?
1(x1) + h?

2(x2) + . . . + h?
k(xk)]; ∀x1, . . . , xk,

we obtain a functional equation whose general solution is:

h?
1(x) = ah1(x) + b1,

h?
2(x) = ah2(x) + b2,

. . . . . . . . .

h?
k(x) = ahk(x) + bk,

f ?(x) = af(x) + b1 + b2 + . . . + bk,

(6)

where a and b1, b2, . . . , bk are arbitrary constants (see [2], page 98, for details). Then to

obtain uniqueness we need to fix the functions f and h1, h2, . . . , hk at a point.

4.3 Approximate learning

The approximate learning consists of estimating the functional units using a linear com-

bination of linearly independent functions and an estimation method to obtain the coef-

ficients. Some possible families are:
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1. Polinomial family: Φ = {1, x, x2, . . . , xq},

2. Exponential family: Φ = {1, ex, e−x, e2x, e−2x . . . , eqx, e−qx}, and

3. Fourier family: Φ = {1, sin x, cos x, sin(2x), cos(2x), . . . , sin(qx), cos(qx)}.

Given a set of observations D = {yi, x1i, . . . , xki; i = 1, 2, . . . , n}, the approximation of

the additive model can be written as:

q0
∑

j=1

αjφ0j(yi) =
q1
∑

j=1

β1jφ1j(x1i) + · · · +
qk
∑

j=1

βkjφkj(xki) + εi, i = 1, . . . , n, (7)

where φsj, j = 1, . . . , qs, s = 0, 1, . . . , k, are the elements of the chosen family, and εi is

the error.

In matrix form we can write:

Yα = Xβ + ε, (8)

where, using the polynomial family, Y and X contain q0 and 1 +
∑k

s=1 qs columns, re-

spectively. For instance, if k = 2 and q0 = q1 = q2 = 2, the rows of Y and X are {y, y2}

and {1, x1, x
2
1, x2, x

2
2}, respectively. Notice that the constant is included only in one of the

matrices as a condition to obtain uniqueness.

To obtain the parameters, we use the least squares method subject to one more con-

straint necessary for uniqueness, that is, we minimize (Yα −Xβ)T (Yα−Xβ) subject to

w0β = c.

To select the best model we apply a search procedure based on a goodness-of-fit

measure. We choose the adjusted correlation coefficient

R2
a = 1 −

∑n
i=1 e2

i /(n − p)

∑n
i=1

(

f̂(yi) − f̂(yi)
)2

/(n − 1)

, (9)

where p is the number of parameters and f̂(y) = 1
n

∑n
i=1 f̂(yi). This measure allows us to

compare models when different families of polynomials are used.

5 An example

To illustrate the use of the approximate learning method we present an example based

on a set of real data analyzed in [8] and obtained from [9]. The response variable is the

average January minimum temperature (in Fahrenheit degrees) and the predictors are the

latitude and longitude of 56 U.S. cities.

Using the additive model f(y) = g1(x1) + g2(x2), [8] reports a study in which no

transformation is made to temperature and latitude (f and g1 are the identity function)

and a cubic polynomial (g2) is used for longitude. This model obtains R2
a = 0.8971 and
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Figure 4: Scatter plot of (a) y versus ĝ1(x1)+ ĝ2(x2), and (b) residuals versus fitted values.

leads to a good linear approximation, as we can see in Figure 4 (a). However, Figure 4

(b) shows some specification problems.

Using the approximate learning method proposed in this paper, with polynomial family

Φ = {1, t, t2, t3}, and the exhaustive search method, the obtained model is

y2 = 113.10 − 13.74 x1 + 25.64 x2
1 − 16.08 x3

1 + 15.05 x2 − 16.88 x2
2 + 6.19 x3

2, (10)

with R2
a = 0.9771. The obtained model is more complex than that suggested in [8],

but Figures 5 (a) and (b) show a very good linear approximation and no pattern in the

residuals plot.

Figure 5: Scatter plot of (a) f̂(y) versus ĝ1(x1) + ĝ2(x2), and (b) residuals versus fitted

values.

6 Conclusions

In this work we have shown an unified approach based on functional networks to solve

statistical problems. The characteristics of the problem at hand allow us to select the

structure of the functional network. It can sometimes be simplified solving the associate

functional equation. Once we have solved the uniqueness problem, functional units should

be learned using exact or approximate learning.

A specially interesting problem is to select regression models when the response or the

explanatory variables should be transformed. This problem can be solved via approximate

183



learning in functional networks. In this work we have chosen the additive model to

represent the regression problem and the least squares method for parameter estimation.

Other functional equations that, for example, allow for including interactions, and other

estimation methods have been used to solve the problem of transformations in linear

regression. They can be found in [5] and [6].
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