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Abstract

We study here a non cooperative system of n equations defined on IR
N which we

insert into a cooperative system of n+1 equations to obtain a ”Maximum Principle.”
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1 Introduction

We consider the following elliptic system on IRN :

(1)







for 1 ≤ i ≤ n,

(1i) Lqi
ui := (−∆ + qi)ui =

∑n
j=1 aijuj + fi in IRN

where:

(H1) for 1 ≤ i, j ≤ n, aij ∈ L∞(IRN)

(H2) for 1 ≤ i ≤ n, qi is a continuous potential defined on IRN such that:

qi(x) ≥ 1, ∀x ∈ IRN and qi(x) → +∞ when |x| → +∞

(H3) for 1 ≤ i ≤ n, fi ∈ L2(IRN)

Our paper is organized as follow:

- first, we recall some results on M-matrices and on cooperative systems

- in section 2, we adapt a method used by D.G. de Figueiredo and E. Mitidieri (see [8])

for insertion of a non cooperative system of two equations into a cooperative system of

three equations to obtain a ”Maximum Principle”

-in section 3, we obtain a ”Maximum Principle” for a non cooperative system of 3 equa-

tions then of n equations
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Definition 1.1 ([4]) A matrix M = sI − B is called a non singular M-matrix if B is a

positive matrix and s > ρ(B) > 0 the spectral radius of B.

Proposition 1.1 ([4] th2.3 p.134) If M is a matrix with nonpositive off-diagonal coeffi-

cients, the conditions (P0), (P1) and (P2) are equivalents where:

(P0) M is a non singular M-matrix

(P1) all the principal minors of M are strictly positive

(P2) M is semi-positive i.e.: ∃X >> 0 such that MX >> 0

X >> 0 signify ∀i, Xi > 0 if X = (X1, ..., Xn)

Let D(IRN) be the set of functions C∞ on IRN with compact support and q be a

continuous potential in IRN such that: q ≥ 1 and q(x) → +∞ when |x| → +∞. The

variational space is Vq(IR
N): the completion of D(IRN) for the norm ‖.‖q where ‖u‖q =

[
∫

IRN |∇u|2 + q|u|2]
1

2 . (Vq(IR
N), ‖.‖q) is an Hilbert space whose embedding into L2(IRN ) is

dense. (see A.Abachti-Mchachti [1] prop.I.1.1)

Proposition 1.2 (see [1] p25 to 27; [2] th1.1p4,p6,8,11; [3] p3,th3.2p45; [7] p488,489)

−∆ + q, considered as an operator in L2(IRN), is positive, selfadjoint, with compact in-

verse. Its spectrum is discrete and consists in an infinite sequence of positive eigenvalues

tending to +∞. The smallest one, denoted by λ(q), is a principal eigenvalue, positive and

simple.

For a ∈ L∞(IRN), let a∗ = supIRN a and λ(q − a) = inf{

∫

IRN [|∇φ|2+(q−a)φ2 ]
∫

IRN φ2
; φ ∈

D(IRN ); φ 6= ′}.

We say that System (1) is called cooperative if the hypothesis (H1∗) : for1 ≤ i, j ≤

n, aij ∈ L∞(IRN); aij ≥ 0 a.e for i 6= j, is satisfied.

We say that System (1) satisfies the Maximum Principle if: ∀fi ≥ 0, 1 ≤ i ≤ n, each

solution u = (u1, ..., un) of (1) is nonnegative.

For any matrix A = (aij) with bounded coefficients, let: A∗ = (a∗
ij) and let E = (eij) be

the matrix n × n defined by: ∀1 ≤ i ≤ n, eii = λ(qi − aii) and ∀1 ≤ i, j ≤ n, i 6= j ⇒

eij = −a∗
ij. Let F = (fij) the matrix n × n be defined by: ∀1 ≤ i ≤ n, fii = λ(qi − aii)

and ∀1 ≤ i, j ≤ n, i 6= j ⇒ fij = − | aij |
∗ .

Recall the following theorems.

Theorem 1.1 (see [5] Th 4.2.2) Assume that (H1∗), (H2), (H3) are satisfied. If E is a

non singular M-matrix, then System (1) satisfies the Maximum Principle.

Theorem 1.2 (see [6] Th 3.1) Assume that (H1), (H2), (H3) are satisfied. If F is a non

singular M-matrix, then System (1) has a solution.
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2 Insertion of a non cooperative system of two equa-

tions into a cooperative system of three equations

We redefine System (1) for n=2 by

(1′)







(−∆ + q1)u = au + bv + f in IRN

(−∆ + q2)v = cu + dv + g in IRN

where (H1) becomes a, b, c, d ∈ L∞(IRN). We follow here a method used in [8].

Theorem 2.1 (see [5] Th 5.2.1) Consider System (1′) where a, b, c, d are reals and q1 =

q2 = q, b < 0, c > 0, a > d, (a − d)2 + 4bc ≥ 0. Assume (H2) and (H3) satisfied. Let:

δ = (a−d)2 +4bc, r = −2bc

a−d+
√

δ
, s = a+d−

√
δ

2
, γ = − b

r
. If λ(q) > a− r, λ(q) > d, λ(q) > s,

then: f ≥ 0, g ≥ 0, f − γg ≥ 0 ⇒ u ≥ 0, v ≥ 0.

Proof of Theorem 2.1:

Let w = u − γv, where (u, v) is a solution of (1′). Then (u, v, w) is a solution of the

following cooperative system (2):

(2)



















(−∆ + q)u = (a − r)u + (b + rγ)v + rw + f in IRN

(−∆ + q)v = cu + dv + g in IRN

(−∆ + q)w = (a − cγ − s)u + (b − dγ + sγ)v + sw + f − γg in IRN

Let:

B =











λ(q) − a + r 0 −r

−c λ(q) − d 0

0 0 λ(q) − s











Since B is a non singular M-matrix, System (2) satisfies the Maximum Principle.

So: f ≥ 0, g ≥ 0, f − γg ≥ 0 ⇒ u ≥ 0, v ≥ 0, w ≥ 0.

Theorem 2.2 Consider System (1′). Assume that (H1), (H2), (H3) are satisfied. Let

(u, v) solution of (1′). Let:

(H4) b < 0 ; c > 0

(H5) q2 = q1 + k with k ∈ L∞(IRN) ∩ C(IRN).

(H6) a + k − d > 0; δ = (a + k − d)2 + 4bc > 0

(H7) m = supIRN (−a−k+d−
√

δ
2c

) ≤ M = infIRN (−a−k+d+
√

δ
2c

).

Let α ∈]m, M [(α = m if m = M). Note that α < 0.

(H8) λ(q1 − a) > 0; λ(q2 − d) > 0; λ(q1 − a)λ(q2 − d) > (−b)∗c∗ > 0
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(H9) λ(q1 − a) > (a + k − d)∗ > 0

Assume that Hypothesis (H4) to (H9) are satisfied.

Then: (f ≥ 0, g ≥ 0, f + αg ≥ 0 ⇒ u ≥ 0, v ≥ 0.)

Proof of Theorem 2.2: Denote k1 = −1
2
q1+

1
2
q2, r = b

α
∈ L∞(IRN) and s = a+αc+k1 ∈

L∞(IRN). Let w = u + αv and q3 = 1
2
q1 + 1

2
q2. We have:

(2)































(−∆ + q1)u = (a − r)u + (b − αr)v + rw + f in IRN

(−∆ + q2)v = cu + dv + g in IRN

(−∆ + q3)w = (a + αc − s + k1)u + (b + αd − sα + α(k1 − k))v

+ sw + f + αg in IRN

By (H4) and (H6) we show that System (2) is cooperative. Let:

L =











λ(q1 − a + r) 0 −r∗

−c∗ λ(q2 − d) 0

0 −[b + αd − sα + α(k1 − k)]∗ λ(q3 − s)











We use (H8) and (H9) to prove that L is a non singular M-matrix. Applying Theorem

1.1, we deduce that: (f ≥ 0, g ≥ 0, f + αg ≥ 0 ⇒ u ≥ 0, v ≥ 0.)

3 Insertion of a non cooperative system of n equa-

tions into a cooperative system of n + 1 equations

First consider in this section the non cooperative System (1) for n = 3 and q = q1 = q2 =

q3. We study two cases: first, we study a particular case when one off-diagonal coefficient

is equal to 0, another one is negative and all the others are positive; then we study another

case when all the off-diagonal coefficients are constants not equal to 0.

Theorem 3.1 Let:

(H10) a21 = 0; a12 ∈ IR∗−; a13 ∈ IR∗+.

(H11) ∀(i, j) 6∈ {(1, 2); (2, 1); (1, 3)}, aij ∈ L∞(IRN); a31 6≡ 0 and

∀(i, j) 6∈ {(1, 2); (2, 1); (1, 3)}i 6= j ⇒ aij ≥ 0

(H12) a13a32+a22a12

a12

= a13a33+a23a12

a13

= γ ∈ L∞(IRN)

(H13) ∃r ∈ IR∗+, a11 > γ + r = s ∈ L∞(IRN)

(H14) F a non singular M-matrix (see section 1 for the definition of F )

(H15) (λ(q − a11))
2 > r(a11 − s)∗ + (a13a31)

∗
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Assume that the hypothesis (H2), (H3) and (H10) to (H15) are satisfied.

Then: (f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, f1 + a12

r
f2 + a13

r
f3 ≥ 0 ⇒ u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.)

Proof of Theorem 3.1:

a) Remark: The existence of a solution for System (1) is due to the hypothesis (H2),

(H3) and (H14).

b) Let u4 = u1 + a12

r
u2 + a13

r
u3. By (H12) and since s = r + γ, (u1, u2, u3, u4) is solution

of the following System (2).

(2)































(−∆ + q)u1 = (a11 − r)u1 + ru4 + f1 in IRN

(−∆ + q)u2 = a22u2 + a23u3 + f2 in IRN

(−∆ + q)u3 = a31u1 + a32u2 + a33u3 + f3 in IRN

(−∆ + q)u4 = (a11−s)r+a13a31

r
u1 + su4 + f1 + a12

r
f2 + a13

r
f3 in IRN

c) We show by (H10) and (H13) that System (2) is cooperative.

d) Let

D =

















λ(q − a11 + r) 0 0 −r

0 λ(q − a22) −a∗
23 0

−a∗
31 −a∗

32 λ(q − a33) 0

−( (a11−s)r+a13a31

r
)∗ 0 0 λ(q − s)

















We verify that D is a non singular M-matrix.Indeed, by (H14) and (H15), we prove

that all the principal minors of D are positive.

Hence System (2) satisfies the Maximum Principle and:

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, f1 +
a12

r
f2 +

a13

r
f3 ≥ 0 ⇒ u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

Remark: If a12 = −a13 ∈ IR∗−, then (H12) becomes a22 − a32 = a33 − a23.

Theorem 3.2 Let:

(H16) ∀i 6= j, aij ∈ IR∗ and ∃i0 6= j0, ai0j0 > 0.

(H17) a13a23 > 0, a21a31 > 0, a12a32 > 0.

If i 6= j and aij > 0, let sij < 0 such that aij + sij > 0.

If i 6= j and aij < 0, let sij > 0 such that aij + sij > 0.

(H18) s12s31s23 = s21s13s32.
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By (H17) and (H18) we can choose a14 > 0, a24 > 0, a34 > 0 and α1, α2, α3 reals such

that: s21 +a24α1 = s31 +a34α1 = s12 +a14α2 = s32 +a34α2 = s13 +a14α3 = s23 +a24α3 = 0.

Let:

(H19) a11 = −α2a21+α3a31

α1

, a22 = −α1a12+α3a32

α2

, a33 = −α1a13+α2a23

α3

.

(H20)

M =











λ(q − a11 + a14α1) −(a12 + s12) −(a13 + s13)

−(a21 + s21) λ(q − a22 + a24α2) −(a23 + s23)

−(a31 + s31) −(a32 + s32) λ(q − a33 + a34α3)











a non singular M-matrix.

(H21) F a non singular M-matrix.

Assume that the hypothesis (H2), (H3) and (H16) to (H21) are satisfied.

Then: (f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, α1f1 + α2f2 + α3f3 ≥ 0 ⇒ u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.)

Proof of Theorem 3.2:

a) Remarks: The existence of a solution for System (1) is due to the hypothesis (H2),

(H3) and (H21). Note that: ∀i, αi has the same sign than aji ∀j 6= i. By (H16),

there exists at least one αi > 0.

b) Let u4 = α1u1 + α2u2 + α3u3. By (H19), (u1, u2, u3, u4) is solution of the following

cooperative System (S).

(S)































(−∆ + q + α1a14)u1 = a11u1 + (a12 + s12)u2 + (a13 + s13)u3 + a14u4 + f1 in IRN

(−∆ + q + α2a24)u2 = (a21 + s21)u1 + a22u2 + (a23 + s23)u3 + a24u4 + f2 in IRN

(−∆ + q + α3a34)u3 = (a31 + s31)u1 + (a32 + s32)u2 + a33u3 + a34u4 + f3 in IRN

(−∆ + q)u4 = α1f1 + α2f2 + α3f3 in IRN

c) Let

O =

















λ(q − a11 + a14α1) −(a12 + s12) −(a13 + s13) −a14

−(a21 + s21) λ(q − a22 + a24α2) −(a23 + s23) −a24

−(a31 + s31) −(a32 + s32) λ(q − a33 + a34α3) −a34

0 0 0 λ(q)

















By (H20), O is a non singular M-matrix.

Hence System (S) satisfies the Maximum Principle and:

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, α1f1 + α2f2 + α3f3 ≥ 0 ⇒ u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

We give some examples.
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Example 1 Let

(1)



















(−∆ + q)u1 = 1
2
u1 − u2 + 2u3 + f1 in IRN

(−∆ + q)u2 = −u1 + 1
2
u2 + 2u3 + f2 in IRN

(−∆ + q)u3 = −u1 − u2 + 8u3 + f3 in IRN

We can choose s13 = s23 = −1, s21 = s31 = s12 = s32 = 2, a14 = a24 = a34 =

1, α1 = α2 = −2, α3 = 1.

Example 2 Let a ∈ IR∗+ and

(1)



















(−∆ + q)u1 = −au2 + au3 + f1 in IRN

(−∆ + q)u2 = −au1 + au3 + f2 in IRN

(−∆ + q)u3 = −au1 − au2 + 2au3 + f3 in IRN

We can choose s13 = s23 = −s21 = −s31 = −s12 = −s32 ∈ IR∗−, a14 = a24 = a34 ∈

IR∗+, α1 = α2 = −α3 ∈ IR∗−.

Example 3 Let α, β, γ reals, a ∈ IR∗+, b ∈ IR∗−, c ∈ IR∗− and

(1)



















(−∆ + q)u1 = αu1 + cu2 + au3 + f1 in IRN

(−∆ + q)u2 = bu1 + βu2 + au3 + f2 in IRN

(−∆ + q)u3 = bu1 + cu2 + γu3 + f3 in IRN

We can choose s13 = s23 = s ∈ IR∗−, s21 = s31 = s′ ∈ IR∗+, s12 = s32 = s” ∈ IR∗+.

Then : ∃α1 ∈ IR∗−, ∃α2 ∈ IR∗−, ∃α3 ∈ IR∗+ such that: s′

α1

= s”
α2

= s
α3

.

(H19) becomes: α = −bα3+α2

α1

, β = −cα3+α1

α2

, γ = −aα2+α1

α3

.

We conclude by giving a generalization for a system of n equations.

Theorem 3.3 Let: ∀i, qi = q and

(H22) ∀i, j, aij ∈ IR and ∃j0, ∀i, i 6= j0 ⇒ aij0 > 0

Let ∀j, αj = mini(aij).

(H23) ∀j, αj(ajj − 1) ≥ −
∑n

i=1,i6=j αiaij

(H24) ∀i, λ(q) > 1 +
∑n

j=1(aij − αj) and λ(q) >
∑n

j=1(
∑n

i=1 αiaij − αj) + 1

Assume that the hypothesis (H2), (H3) and (H22) to (H24) are satisfied.

Then: ∀i, fi ≥ 0 and
∑

i αifi ≥ 0 ⇒ ∀i, ui ≥ 0.

Proof of Theorem 3.3: Let un+1 =
∑n

i=1 αiui. We have: ∀i = 1, ..., n, (−∆ + q)ui =
∑n

j=1(aij −αj)uj +un+1 +fi and (−∆+q)un+1 =
∑n

j=1(
∑n

i=1 αiaij −αj)uj +un+1 +
∑

i αifi.

Let B be the matrix associated to the above system and tX = (1, ...1). We have BX >> 0

so B is a non singular M-matrix. Applying Theorem 1.1, we obtain the result of the

Theorem 3.3.
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