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Abstract

Uniqueness of solution for the Primitive Equations with Dirichlet conditions

on the bottom is an open problem even in 2D domains. In this work we prove

a result of additional regularity for a weak solution v for the Primitive Equations

when we replace Dirichlet boundary conditions by friction conditions. This allows

to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed,

we show weak regularity for the vertical derivative of the solution, ∂zv for all time.

This is because this derivative verifies a linear pde of convection-diffusion type with

convection velocity v, and the pressure belongs to a L2-space in time with values in

a weighted space.
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1 Introduction and motivation.

Primitive Equations are one of the models used to forecast the fluid velocity and pressure

in the ocean. Such equations are obtained from the dimensionless Navier-Stokes equations,

letting the aspect ratio (quotient between vertical dimension and horizontal dimensions)

go to zero. The first results about existence of solution (weak, in the sense of the Navier-

Stokes equations) are proved for boundary conditions of Dirichlet type on the bottom of

the domain and with wind traction on the surface, in the works by Lions-Temam-Wang,
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[5, 6], for domains with vertical walls and in the work of Azérad-Guillén, [1], for domains

without vertical walls. However, uniqueness of solution remained as an open problem due

to the necessity of a more regular solution. In the case of vertical sidewalls, the authors

proved in [4] the existence of a more regular solution, global in time for small data or

local in time for any data. In these cases, uniqueness of solution is guaranteed.

But, from a physical point of view, homogeneous Dirichlet boundary conditions (on

the bottom) are only justified when considering a molecular viscosity fluid. In many

geophysical fluids, the role of this viscosity is negligible, being more relevant the viscosity

due to turbulent effects. It seems then logical to use Navier boundary conditions for

the Primitive Equations. Moreover, they prevent the appearance of a boundary layer

phenomena on the bottom.

The authors obtained the Primitive Equations model with Navier type boundary con-

ditions from the Navier-Stokes equations in [2]. Here, we will focus on the uniqueness

problem in the 2D case, see also [3]. We will present what we consider is the first result

of uniqueness of weak solution for the 2D Primitive Equations.

2 The model.

The domain considered is defined by:

Ω = {(x, z) ∈ R
2/ x ∈ S, −h(x) < z < 0},

where S (ocean surface) is an open interval and h : S̄ → R+ is a nonnegative continuous

function defined on S̄ that vanishes on ∂S. The boundary of the domain is ∂Ω = Γ̄b ∪Γs,

where the bottom is Γb = {(x, z) ∈ R
2 : x ∈ S, z = −h(x)} and the surface Γs = {(x, 0) :

x ∈ S}. Therefore, the fluid velocity (v, w) and the pressure p satisfy the following

equations:

(PE)





∂tv + v ∂xv + w ∂zv − νh∂
2
xxv − νv∂

2
zzv + ∂xp = f in (0, T ) × Ω,

∂zp = 0, w(t, x, z) =

∫ 0

z

∂xv(t, x, s)ds, 〈v〉 = 0 in (0, T ) × S,

νv∂zv = α|vair|(vair − v) on (0, T ) × Γs,

νv∂zv = β(x) v on (0, T ) × Γb,

v|t=0 = v0 in Ω,

where 〈v〉(t; x) =

∫ 0

−h(x)

v(t; x, z)dz, vair is the horizontal velocity of the wind at the

surface, v0 the horizontal initial velocity, (νh, νv) the anisotropic turbulent viscosity, α ∈ R
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a positive constant and β = β(x) a positive function defined on S.

Remark 2.1 The model for Primitive Equations with Navier conditions deduced in [2]

was formed by (PE)1, ∂zp = 0 and ∂xv + ∂zw = 0 in (0, T )× Ω, νv∂zv = α(vair − v) and

w = 0 on (0, T ) × Γs, νv∂zv = βv and (v, w) · n = 0 on (0, T ) × Γb and v|t=0 = v0 in

Ω. The equation ∂xv + ∂zw = 0 and boundary conditions for w imply that w(t; x, z) =
∫ 0

z
∂xv(t; x, s)ds and ∂x〈v〉 = 0. Finally, as 〈v〉 is a 1-dimensional function, the hypothesis

〈v〉 = 0 on (0, T ) × ∂S implies that 〈v〉 = 0 on (0, T ) × S.

3 Definitions and previous results.

For the velocity v, we introduce the following spaces:

V = {ϕ ∈ C∞

s (Ω) : 〈ϕ〉 = 0 in S,}

where C∞

s (Ω) is the space of C∞-functions that vanish in a neighbourghood of ∂Γs. We

will denote by H and V its closures in the L2(Ω) and H1(Ω)− norms respectively.

Definition 3.1 (Weak solution) We say that v is a weak solution for (PE) in (0, T )

if:

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

satisfies the variational formulation: ∀ϕ ∈ C1([0, T ];V) with ϕ(T ) = 0,





−
∫ T

0

∫

Ω

(∂tϕ+ v∂xϕ+ w∂zϕ) v +

∫ T

0

∫

Ω

(νh∂xv∂xϕ+ νv∂zv∂zϕ)

+

∫ T

0

∫

S

δ(x)v|Γb
ϕ|Γb

+

∫ T

0

∫

S

α|vair|(v|Γs − vair)ϕ|Γs

=

∫

Ω

v0ϕ(0) +

∫ T

0

∫

Ω

f ϕ+ νh

∫ T

0

∫

S

v|Γb
∂x[ϕ|Γb

h′(x)],

with w =
∫ 0

z
∂xv and satisfies the following energy inequality





1

2
‖v(t)‖2

L2(Ω) + νh

∫ t

0

‖∂xv(s)‖2
L2(Ω) + νv

∫ t

0

‖∂zv(s)‖2
L2(Ω)

+

∫ t

0

∫

S

γ(x)|v|Γb
|2 +

1

2

∫ t

0

∫

S

α|vair||v|Γs|2 ≤
1

2
‖v0‖2

L2(Ω) +
1

2

∫ t

0

∫

S

α|vair|3

with δ(x) = β(x)

(
1 +

νh

νv
|h′(x)|2

)
and γ(x) = δ(x) − νh

2
h′′(x).

Remark 3.1 In order to ensure that the system is dissipative (necessary property from a

physical point of view), we assume that γ(x) ≥ 0.
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Remark 3.2 Notice that the boundary condition on the bottom is not standard because

∂zv is not the Neumann condition respect to the laplacian operator. This fact produces

the term νh

∫ T

0

∫
S
v|Γb

∂x[ϕ|Γb
h′(x)] in the variational formulation. In other words, giving

a weak solution v, we can get an associate pressure p through the De Rham Lemma (as

a Lagrange multiplier) in such a way that (v, w, p) verify the differential problem (PE)

in the distribution sense (see [3] for more details). In particular, the following mixed

variational formulation can be obtained: ∀ϕ ∈ C1([0, T ];C∞

s (Ω)), with ϕ(T ) = 0, there

exists a function ψ smooth enough, satisfying (ϕ, ψ) · n|∂Ω = 0 such that:

−
∫ T

0

∫

Ω

(∂tϕ+ v∂xϕ+ w∂zϕ) v +

∫ T

0

∫

Ω

(νh∂xv∂xϕ+ νv∂zv∂zϕ)

+

∫ T

0

∫

S

δ(x)v|Γb
ϕ|Γb

+

∫ T

0

∫

S

α|vair| (v|Γs − vair)ϕ|Γs

=

∫

Ω

v0ϕ(0) +

∫ T

0

∫

Ω

fϕ+ νh

∫ T

0

∫

S

v|Γs∂x (ϕ|Γb
h′) +

∫ T

0

∫

Ω

p∇ · (ϕ, ψ).

(1)

Theorem 3.2 (See [2] for a proof of this result.) Suppose that h ∈ H 2(S) with |h′| > 0

on ∂S, β ∈ L∞(S), f ∈ L2(0, T ;L2(Ω)), vair ∈ L3(0, T ;L3(S)), v0 ∈ H and γ(x) ≥ 0 on

S. Then, there exists a weak solution v for (PE) in (0, T ).

Definition 3.3 (Weak-vorticity solution) We will say that v is a weak-vorticity solu-

tion of (PE) in (0, T ) if it is a weak solution that also satisfies the additional regularity:

∂zv ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 3.3 ∂zv can be seen as the vorticity associated to the Primitive Equations. In-

deed, if we consider the vorticity for the 2D Navier-Stokes equations, ωNS = ∂zvNS −
∂xwNS, letting the aspect ratio go to zero we arrive at ∂zv.

4 Main result.

Theorem 4.1 (Uniqueness of weak solution) Under the hypothesis of Theorem 3.2, if

we also consider that β ∈ H1
0 (S), vair ∈ L∞(0, T ;H1

0(S)), ∂tvair ∈ L2(0, T ;L1(S)), ∂zf ∈
L2(0, T ;H−1(Ω)), ∂zv0 ∈ L2(Ω) and the depth function h verifies |h′|/h ≤ c/dist(x, ∂S),

then there exists a unique weak solution for (PE). Moreover, this solution is a weak-

vorticity solution.

Outline of the proof: Here, we will explain the main ideas that we have followed

to prove Theorem 4.1. For a complete proof of this result see [3].

Following the method of P. L. Lions, [7], to prove uniqueness of weak solution for

the Navier-Stokes equations we observed that additional regularity is necessary for one
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of the two solutions compared. Applying the argument to (PE), we observed that this

regularity should be ∂zv ∈ L4(0, T ;L4(Ω)). In order to obtain more regularity for ∂zv,

we search for the problem verified by ∂zv. First, we formally derive (PE)1 respect to z,

obtaining that ∂zv satisfies in D′((0, T ) × Ω):

∂t(∂zv) + v ∂x(∂zv) + w ∂z(∂zv) − νh∂
2
xx(∂zv) − νv∂

2
zz(∂zv) = ∂zf.

Knowing v and w, the previous equation is linear and parabolic, because the pressure p

has disappeared, so we could expect weak regularity for ∂zv. To this end, we need to

study a homogeneous system, so we consider the auxiliary function ψ = νv∂zv − φ v − e

with

φ(t; x, z) = −α
(

1 +
z

h(x)

)
|vair(t; x)| −

z

h(x)
β(x)

and

e(t; x, z) = α|vair(t; x)|vair(t; x)

(
1 +

z

h(x)

)

auxiliary functions such that ψ|∂Ω = 0. Then, ψ verifies the problem:

(P )





∂tψ + v ∂xψ + w ∂zψ − νv∂
2
xxψ − νv∂

2
zzψ = F in (0, T ) × Ω,

ψ = 0 on (0, T ) × ∂Ω,

ψ|t=0 = νv∂zv0 − φ|t=0v0 − e|t=0 in Ω,

where F = G(φ, v, w, e, f) + φ ∂xp.

At this point, we have 2 problems: getting an additional regularity for the pressure p to

obtain weak regularity for ψ, and identifying ψ+φ v+ e with νv∂zv. Once these problems

are solved, then ∂zv ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) and in particular belongs to

L4(0, T ;L4(Ω)), so we will be able to conclude weak uniqueness for (PE).

5 Additional regularity for the pressure.

Thanks to ∂zp = 0, we can identify p with a function ps only defined on S, ps(x) = p(x, z),

through the relation:
∫

Ω

p(x, z)ϕ(x, z)dx dz =

∫

S

ps(x)〈ϕ〉(x)dx ∀ϕ ∈ L2(Ω).

Theorem 5.1 Assume the hypothesis for the data of Theorem 4.1. If (v, p) is a weak

solution of (PE), we have:

√
h ∂xps ∈ L2(0, T ;H−1(S)).

Outline of the proof: For the equations of Navier-Stokes type, the pressure regularity is

normally obtained from the regularity of the remaining terms of the equation. The term
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∂tv prevents a L2-regularity in time for the pressure. The fact that 〈v〉 = 0 on (0, T )× S

implies that ∂t〈v〉 = 0 on (0, T ) × S, so integrating (PE)1 in z we try to improve the

regularity for the pressure. In a rigorous form, this vertical integration corresponds to

take test functions independent from z in the mixed variational formulation (1).

On the other hand, as the pressure p is independent from z, its integration on z only

adds a factor h(x) multiplying p. Moreover, for (ϕ, ψ) any test functions in (1),

∫

Ω

p∇ · (ϕ, ψ) dΩ =

∫

S

ps ∂x〈ϕ〉 dx.

Then, we choose ϕ = ζ/
√
h with ζ ∈ C1

0([0, T ];C∞

0 (S)) as a test function (in particular,

this space is dense in L2(0, T ;H1
0(S))). Concretely, we have to give sense to the term

∫ T

0

∫

S

ps(t; x)∂x(
√
h ζ)(t; x)dx dt.

To this aim, we prove that the others terms from the mixed variational formulation

are well-defined and bounded in function of the L2(0, T ;H1
0(S))-norm of ζ. Additional

regularity required for the data, hypothesis |h′|/h ≤ c/dist(x, ∂S) jointly with Hardy

inequalities and the fact that ∂t〈v〉 = 0 let finish the proof.

6 Identification of ψ + φ v + e with νv∂zv.

Using a Galerkin method, the additional regularity for p let us obtain weak regular-

ity for ψ, so ψ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)). To get ∂zv ∈ L2(0, T ;H1(Ω)) ∩
L∞(0, T ;L2(Ω)), we prove that ψ + φ v + e = νv∂zv.

The first idea to get this result was to use the uniqueness of weak solution for problem

(P ), but the problem was that we could not assure the weak regularity for ∂zv (only

∂zv ∈ L2(0, T ;L2(Ω))). Consequently, we looked for a new method to our purpose: We

call a = ψ+φ v+ e and define ṽ ∈ L2(0, T ;H1
0(Ω))∩L∞(0, T ;L2(Ω)) such that νv∂z ṽ = a

in Ω and 〈ṽ〉 = 0 on S. In fact, we can choose:

ṽ(x, z) = − 1

νv

∫ 0

z

a(x, s)ds+
1

νv

1

h(x)

(∫ 0

−h(x)

(∫ 0

z

a(x, s)ds

)
dz

)
.

The idea is to obtain uniqueness for both velocities v and ṽ, and then ∂zv = ∂z ṽ ∈
L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)).

Starting from the variational formulation for ψ, taking χ =

∫ 0

z

η(x, s)ds as test func-

tions, where η ∈ D(Ω) with 〈η〉 = 0 and taking into account that

νv∂z ṽ = α|vair|(vair − v) on Γs and νv∂z ṽ = βv on Γb,

140



we can easily deduce that ṽ verifies the following variational formulation (F̃ V ): ∀η ∈
C1([0, T ];V),





∫ t

0

〈∂tṽ, η〉Ω +

∫ t

0

∫

Ω

(v ∂xṽ + w ∂z ṽ) η

+

∫ t

0

∫

Ω

(νh∂xṽ ∂xη + νv∂z ṽ ∂zη) +

∫ t

0

∫

S

α|vair| (v|Γs − vair) η|Γs

+

∫ t

0

∫

S

δ(x)v|Γb
η|Γb

=

∫ t

0

∫

Ω

f η

+

∫ t

0

∫

Ω

{
v ∂xṽ +

∫ 0

z

∂x(v∂z ṽ)(x, s)ds

}
η + νv

∫ t

0

∫

S

v|Γb
∂x [η|Γb

h′(x)] .

On the other hand, we know that v satisfies the following variational formulation

(FV ): ∀ϕ ∈ C1([0, T ];V),





〈v(t), ϕ(t)〉Ω −
∫ t

0

∫

Ω

(∂tϕ+ v∂xϕ+ w∂zϕ) v

+

∫ t

0

∫

Ω

(νh∂xv∂xϕ+ νv∂zv∂zϕ)

+

∫ t

0

∫

S

α|vair| (v|Γs − vair)ϕ|Γs +

∫ t

0

∫

S

δ(x)v|Γb
ϕ|Γb

=

∫

Ω

v0ϕ(0) + νh

∫ t

0

∫

S

v|Γb
∂x[ϕ|Γb

h′(x)] +

∫ t

0

∫

Ω

fϕ,

Taking into account the weak regularity for ṽ and ∂z ṽ and arguing by density, we can

take ṽ as a test function in (FV ) and v as a test function in (F̃ V ). Subtracting both

expressions to the energy equality of ṽ and the energy inequality of v, we arrive at ([3]):

a. e. t ∈ (0, T ),

1

2
‖v(t) − ṽ(t)‖2

L2(Ω) +

∫ t

0

(
νh‖∂x (v − ṽ) (s)‖2

L2(Ω) + νv‖∂z (v − ṽ) (s)‖2
L2(Ω)

)
ds

≤
∫ t

0

∫

Ω

{
v ∂xṽ +

∫ 0

z

∂x (v ∂z ṽ) (x, s)ds

}
(ṽ − v)dΩds

+
νh

2

∫ t

0

∫

S

|ṽ|Γb
− v|Γb

|2h′′(x)dxds ≡ I + J.

(2)

Notice that if ṽ = v, then I = 0 and J = 0. Integrating by parts respect to z, we
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rewrite I as:

I =

∫ t

0

∫

Ω

{∂z ṽ ∂x(v − ṽ) − ∂xṽ ∂z(v − ṽ)}
(∫ 0

z

(v − ṽ)(x, s)ds

)
dΩds

≤ min{νh, νv}
4

∫ t

0

‖v − ṽ‖2
H1(Ω)ds

+C(νh, νv)

∫ t

0

(
‖∂xṽ‖2

L2(Ω) + ‖∂x(∂z ṽ)‖4/3

L2(Ω)

)
‖v − ṽ‖2

L2(Ω)ds.

We bound J using the Trace and Interpolation Theory in Hs(Ω)-spaces with s ∈ R:

J ≤ C

∫ t

0

‖h′′‖L2(S)‖(v − ṽ)|Γb
‖2

L4(S)ds

≤ C

∫ t

0

‖h′′‖L2(S)‖v − ṽ‖2
H3/4(Ω)ds

≤ C

∫ t

0

‖h′′‖L2(S)‖v − ṽ‖1/2
L2(Ω)‖v − ṽ‖3/2

H1(Ω)ds

≤ min{νh, νv}
4

∫ t

0

‖v − ṽ‖2
H1(Ω)ds+ C(νh, νv)

∫ t

0

‖h′′‖4
L2(S)‖v − ṽ‖2

L2(Ω)ds

Then, (2) becomes:

‖v(t) − ṽ(t)‖2
L2(Ω) +

∫ t

0

(
νh‖∂x (v − ṽ) (s)‖2

L2(Ω) + νv‖∂z (v − ṽ) (s)‖2
L2(Ω)

)
ds

≤ C(νh, νv)

∫ t

0

(
‖∂z ṽ‖L2(Ω)‖∂z ṽ‖H1(Ω) + ‖∂xṽ‖2

L2(Ω)

+‖∂x (∂z ṽ) ‖4/3

L2(Ω) + ‖h′′‖4
L2(S)

)
‖v − ṽ‖2

L2(Ω)ds.

Since ∂z ṽ has weak regularity, we can use the Gronwall Lemma and deduce that ṽ = v.
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