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Abstract

In this paper we deal with time-harmonic Maxwell’s equations in Lipschitz and

multiply connected bounded regions of IR3. We prove the wellposedness of the

current source problem by means of an appropriate compact operator.
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1 Preliminaries.

The harmonic magnetic field H in a cavity Ω of IR3 is described by curl-curl system

curl (ε−1curlu) − ω2µu = curl (ε−1j),

div (µu) = 0.
(1)

where j is the imposed source of electric current density. The parameters ε and µ refer to

the premittivity and the permeability of the medium. For a perfect conducting boundary

∂Ω, the magnetic field satisfies the boundary condition

µu.n|∂Ω = 0. (2)

Note that the electric field is given by E = (iωε)−1(curlu − j). When the domain is

smooth, the analysis of the time harmonic Maxwell’s equations has been carried through

successfully by means of the Maxwell operator (see, e. g., [7], [3]). However, when the
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domain is non-smooth, namely if Ω contains inward edges and corners, the treatment

of time-harmonic Maxwell’s equations involves some serious complications. This is due

mainly to the appearance of singularities near these corners and edges (see [2]).

The purpose of this paper is to treat the current source problem (1)+(2) in a non-smooth

and multiply connected domains of IR3. The approach we use for solving (1) is based on

a formulation of this problem in terms of an adequate compact vector potential operator.

Let Ω be a bounded open set of IR3 and denote by ∂Ω its boundary. We assume that

Ω is Lipschitz-continuous and that its boundary ∂Ω is the union of p + 1 connected com-

ponents Γ0,...,Γp where Γ0 is the boundary of the only unbounded connected component

of IR3/Ω. Note that p = 0 when ∂Ω is connected. We assume also that Ω is connected

but not necessarily simply-connected. If Ω is multiply-connected, we suppose that there

exists m smooth surfaces Σ1, ..., Σm (“cuts”) such that

1. For any i ∈ {1, ..., m}, Σi is an open part of a smooth manifold Mi.

2. For any i ∈ {1, ..., m}, the boundary of Σi is contained in ∂Ω.

3. The intersection Σ̄i ∩ Σ̄j is empty if i 6= j.

4. The open set
◦

Ω = Ω/
m⋃

i=1

Σi is simply connected and pseudo-Lipschitz1.

By convention, we set m = 0 when Ω is simply-connected. In the sequel we denote by

(., .) the scalar product in L2(Ω). For any i ≤ m, H1/2(Σi) is the space of restrictions to

Σi of the distributions belonging to H
1

2 (Mi) and H1/2(Σi)
′ is its dual space.

Now, consider the spaces

H(div; Ω) = {v ∈ L2(Ω)3 | div v ∈ L2(Ω)},
H(curl; Ω) = {v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3},

equipped with the usual norms ‖v‖
H(div; Ω)

and ‖v‖
H(curl; Ω)

. We recall the following

properties of these spaces

1. Let v ∈ H(div; Ω). Then, v has a normal component v.n in H−1/2(∂Ω) and the

following Green’s formula holds

∀ϕ ∈ H1(Ω), (v,∇ϕ) = −(div v, ϕ) + 〈v.n, ϕ〉∂Ω. (3)

Moreover, for any i ∈ {1, ..., m}, v has also a normal component v.n in H1/2(Σi)
′

and (see [1], Lemma 3.10):

∀θ ∈ H1(
◦

Ω),

∫
◦

Ω

v.∇θdx +

∫
◦

Ω

(div v) θdx =

m∑
i=1

〈v.n, [θ]i〉Σi
, (4)

where [θ]i denotes the jump of θ through Σi.

1see [1] for the definition.
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2. Similarly, if v ∈ H(curl; Ω), then v has a tangential component v×n in H−1/2(∂Ω)3

and the following Green’s formula holds

∀w ∈ H1(Ω)3, (curl v,w) = (v, curlw) + 〈v× n,w〉∂Ω. (5)

Observe that this formula remains valid if w ∈ H(curl; Ω) and v ∈ H0(curl; Ω).

Consider also the following subspaces of H(div; Ω) and H(curl; Ω):

H0(div; Ω) = {v ∈ H(div; Ω) | v.n = 0 on Γ},
H0(curl; Ω) = {v ∈ H(curl; Ω) | v× n = 0 on Γ}.

We introduce now the spaces

YT (Ω) = H0(div; Ω) ∩ H(curl; Ω),

YN(Ω) = H(div; Ω) ∩ H0(curl; Ω),

equipped with the norm ‖v‖Y = (‖v‖2
0,Ω + ‖div v‖2

0,Ω + ‖curl v‖2
0,Ω)1/2, and we set

GT = {v ∈ YT (Ω)| div v = 0, curl v = 0},
GN = {v ∈ YN(Ω) | div v = 0, curl v = 0}.

Lemma 1 ([4], [1]). The spaces GT and GN are finite dimensional and dim GT =

m, dim GN = p. Moreover, there exists a basis (qi)i=1,...,m (resp. (fi)i=1,...,p) of GT (resp.

of GN) such that:

∀i, j ∈ {1, ..., m} 〈qi.n, 1〉Σj
= δi,j, ∀i, j ∈ {1, ..., p} 〈fi.n, 1〉Γj

= δi,j. (6)

We shall denote by PT (resp. PN ) the orthogonal projection from YT (Ω) (resp. from

YN(Ω)) on GT (resp. on GN ) with respect to inner product associated with the norm

‖.‖Y . It is worth noting that

PNv =
m∑

i=1

〈v.n, 1〉Σi
qi

for any v ∈ L2(Ω)3 such that div v = 0 (see [4], [1]).

Lemma 2 ([4], [1]). The mapping

v −→ |v|YT (Ω) = (‖div v‖2
0,Ω + ‖curl v‖2

0,Ω +

m∑
i=1

|〈v.n, 1〉Σi
|2)1/2,

is a norm on the space YT (Ω) equivalent to the norm ‖.‖Y . Similarly, the mapping

v −→ |v|YN (Ω) = (‖div v‖2
0,Ω + ‖curl v‖2

0,Ω +

p∑
i=1

|〈v.n, 1〉Γi
|2)1/2, is a norm on the space

YN(Ω) equivalent to the norm ‖.‖Y .

In the sequel, we set

α0 = inf
v∈YT (Ω), v 6=0

|v|YT (Ω)

‖v‖0,Ω
. (7)

Then, according to Lemma 2, we have α0 > 0.
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1.1 Statement of the problem. The main result.

Let us consider the system: given j ∈ L2(Ω)3, we look for u ∈ YT (Ω)

curl curlu− k2u = curl j, (8)

div u = 0, (9)

curlu× n|∂Ω = j × n, (10)

where k is the wave number given by k =
√

εµ ω with ε and µ supposed non-negative and

constants. Observe that the boundary condition (10) is meaningfull if j ∈ H(curl , Ω)

(thus curlu ∈ H(curl , Ω)). If j belongs only to L2(Ω)3, we interpret the problem (8)-(10)

in a weaker form; a vector field u in YT (Ω) is called a generalized or a weak solution of

(8)-(10) if it satisfies

(curlu, curl v)+γ(div u, div v)+δ(PTu,PTv)−k2(u, v) = (j, curl v), ∀v ∈ YT (Ω), (11)

where γ and δ are two nonnegative real constants. The following proposition state the

relationship between the weak problem (11) and the continuous problem (8):

Proposition 1. Let j ∈ L2(Ω)3 and suppose that k > 0 and that γ and δ are such that:

γ > 0, δ > 0 and
k2

γ
6∈ EV (∆neu),

k2

δ
6= 1, (12)

where EV (∆neu) is the set of eigenvalues of the Laplace operator with an homogenous

Neumann condition. Then, any solution of (11) satisfies (8) and (9) in the sense of

distributions. Moreover, if j belongs to H(curl ; Ω), then the problems (11) and (8)-(10)

are equivalent.

When the wave number k is smaller than the parameter α0 defined by (7), the existence

and the uniqueness of solutions of (11) stem immediately from Lax-Milgram theorem.

Here, we treat the problem (11) when k is not necessarily small. We state the following

Theorem 1. Assume that j ∈ L2(Ω)3 and that (12) is fullfilled. Then, there exists a

countable sequence of real values {αi, i ∈ IN}, tending to +∞ such that

1. If k 6∈ {αi, i ∈ IN} then (11) admits one and only one solution u ∈ YT (Ω).

2. If k = αm for some m ∈ IN, then the homogeneous problem (when j = 0) admits a

finite dimensional space Em of solutions, and (11) is solvable in YT (Ω) iff

(j, curlϕ) = 0, ∀ϕ ∈ Em. (13)

If this condition is fulfilled, the solution of (11) is unique up to elements of Em.
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We state also the following regularity results when the domain has a smooth boundary

and when it is a parallelepiped (as involved by pseudo-spectral and spectral methods).

Note that the general case of a polygonal domain contains some technical complications,

due to the appearance of the singularities, and which are beyond the scope of this paper

(see, e. g., [2]) (observe that the inclusion YT (Ω) ⊂ H1(Ω)3 does not hold in general).

Corollary 1. Assume that Ω is of class Cm,1 with m ≥ 2 and let j ∈ L2(Ω)3 such that

curl j ∈ Hm−2(Ω)3, j× n ∈ Hm−3/2(∂Ω)3.

Then, the solution u of (11) belongs to Hm(Ω)3.

Corollary 2. Assume that Ω is a rectangular parallelepiped of IR3. Suppose that j ∈
H(curl ; Ω) and satifies j×n = 0 on ∂Ω. Then, the solution of the problem (11) belongs

to H2(Ω)3.

Proof of Theorem 1.

The proof of Theorem 1 is composed of four steps. In step 1 we introduce and study a

new operator. Step 2 deals with its adjoint operator. In the third step we rewrite the

problem in a Fredholm form. The Fredholm’s alternative is finally applied in step 4.

Step 1. An operator.

Consider the closed subspace of H(div ; Ω)

X = {v ∈ L2(Ω)3 | div v = 0 and 〈v.n, 1〉Γi
= 0, 1 ≤ i ≤ p}. (14)

For any vector function w in X consider the problem: Find z ∈ YT (Ω) such that

curl z = w, div z = 0, ∀i ∈ {1, ..., m} 〈z.n, 1〉Σi
= 0. (15)

Lemma 3 ([1]). The problem (15) has a unique solution z ∈ YT (Ω) and there exists a

constant C, depending only on Ω such that

‖z‖YT (Ω) ≤ C(Ω)‖w‖0,Ω. (16)

In the sequel, we shall denote by K the linear and continuous operator from X into

X defined by

K : w ∈ X 7→ z ∈ X solution of (15),

Lemma 4. K is a compact operator.

Proof of Lemma 4 – For proving the compactness of K, the following lemma turns

to be useful. The reader can consult [5] (Theorem 3.1) for the proof.
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Lemma 5. A function w in L2(Ω)3 belongs to X if and only if there exists a vector func-

tion ϕ in H1(Ω)3 satisfying w = curlϕ. Moreover, there exists a constant C depending

only on Ω such that for any ϕ ∈ X, the corresponding vector function v can be chosen

such that

‖ϕ‖H1(Ω)3 ≤ C‖w‖0,Ω.

Now, let wn be a sequence in X such that ‖wn‖0,Ω ≤ C1, where C1 is a constant not

depending on n. Then, by virtue of Lemma 5, there exists a sequence ϕn in H1(Ω)3 such

that: ∀n, curlϕn = wn, ‖ϕn‖1,Ω ≤ C. Thus, there exists a subsequence still denoted by

ϕn which converges strongly in L2(Ω)3.

Now, for any n, let sn be the unique solution in H1(Ω)/IR of the Neumann problem

∀Ψ ∈ H1(Ω)/IR,

∫
Ω

∇sn.∇Ψdx =

∫
Ω

ϕn.∇Ψdx

and set ϕ∗
n = ϕ̃n − PT ϕ̃n, where ϕ̃n = ϕn − ∇sn. The sequence ϕ̃n belongs to YT (Ω).

Moreover, it is quite obvious that (sn)n converges in H1(Ω)3/IR. Thus, ϕ̃n converges in

L2(Ω)3 to an element ϕ̃ of YT (Ω). Moreover, PT ϕ̃n converges also to PT ϕ̃ since

‖PT ϕ̃n‖0,Ω ≤ ‖ϕ̃n‖0,Ω.

We conclude by observing that ϕ̃∗
n = Kwn. �

Step 2. The adjoint operator.

We need the following lemma

Lemma 6 ([1], [4]). A field v in H(div ; Ω) satisfies

div v = 0, v.n = 0 on ∂Ω, 〈v.n, 1〉Σi
= 0, i = 1, ..., m,

if and only if there exists a unique vector potential Φ ∈ YN(Ω) such that

curlΦ = v, div Φ = 0, 〈Φ.n, 1〉Γi
= 0, i = 1, ..., p. (17)

In particular, this lemma implies that any vector field w in L2(Ω)3 admits a unique

decomposition into the form

w =
◦

∇q + curlΦ, (18)

where Φ belongs to YN(Ω) and verifies div Φ = 0, 〈Φ.n, 1〉Γi
= 0, 0 ≤ i ≤ p, while q be-

longs to the space Θ = {s ∈ H1(
◦

Ω) | [s]Σi
= constant, 1 ≤ i ≤ m}, and is the unique so-

lution in Θ/IR of the quasi-Neumann problem

∀p ∈ Θ,

∫
◦

Ω

∇s.∇p dx =

∫
Ω

w.
◦

∇pdx,
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where
◦

∇p denotes the extension in L2(Ω)3 of the gradient ∇p considered in the sense of

distributions in D′(
◦

Ω). Moreover, the decomposition (18) is unique in (Θ/IR) × YN(Ω).

The operator K
∗ is defined as follows

K
∗ : w ∈ L2(Ω)3 7→ Φ ∈ X,

where Φ is the unique fonction in the decomposition (18). K
∗ is a continuous operator

from L2(Ω) into X. The following lemma gives the relationship between K and K
∗:

Lemma 7. The restriction of K
∗ to X is the adjoint operator of K.

Step 3. A new formulation of the problem

Let us now rewrite the problem (11) in terms of the operator K.

Proposition 2. Let j ∈ L2(Ω)3 and let θ ∈ H1
0 (Ω) be solution of the Dirichlet problem

∆θ = div j ∈ H−1(Ω), θ = 0 on Γ.

We set j1 = j −∇θ ∈ H(div ; Ω), j∗ = j1 − PN j1. Then, u is solution of (11) iff û = u−
Kj∗ belongs to X and is solution of the problem

û − k2
KK

∗û = k2
KK

∗
Kj∗. (19)

Proof of Proposition 2– Firstly, observe that if we set ` = j− j∗ = ∇θ +PT j1, then

` ∈ H(curl ; Ω) and curl ` = 0, ` × n = 0 on ∂Ω.

1. Let u solution of (11). Then, it stems from Proposition 1 that u satisfies (8) and

(9) and PTu = 0. We set û = u − Kj∗. It follows immediately that û belongs to

X ∩ YT (Ω) and

curl curl û − k2û = k2
Kj∗, PT û = 0. (20)

Thus, curl û belongs to H(curl ; Ω). Furthermore, (11) yields

(curl û, curl v) − k2(û, v) = k2(Kj∗, v) + (`, curl v), ∀v ∈ YT (Ω).

Choosing v ∈ H1(Ω)3 gives 〈curl û × n, v〉∂Ω = 0. Thus curl û × n = 0 on ∂Ω. It

follows that curl û = K
∗(k2û + k2

Kj∗). Moreover, û = k2
KK

∗(û + Kj∗).

2. Conversly, let û be solution of (19). Then,

curl û = k2curl (KK
∗(û + Kj∗)) = k2

K
∗(û + Kj∗).

Thus,

(curl û, curl v) = k2(K∗(û + Kj∗), curl v) = k2(curl (K∗(û + Kj∗)), v)

= k2(û + Kj∗, v) = k2(u, v),

since curl (K∗(û+Kj∗)) = û+Kj∗. Hence, u = û+Kj∗ ∈ YT (Ω) satisfies div u = 0,

PTu = 0, and (curlu, curl v) − k2(u, v) = (j∗, curl v) = (j, curl v). Thus, u is

solution of (11) which is the desired result. �

133



Step 4. Fredholm alternative.

Consider the operator T = KK
∗. Then, T is obviously self-adjoint and is compact by

virtue of Lemma 4. Let s2
1 ≥ s2

2 ≥ ... ≥ s2
n ≥ ... be the real countable sequence of its

eigenvalues. The numbers s1, s2, ..., sn, ... are indeed the s-values (or singular values) of the

operator K (namely, the eigenvalues of (KK
∗)

1

2 ). These numbers are in general different

from the eigenvalues of K since it is not a normal operator. The reader can consult [6]

for more details about that question.

Now, applying the Fredholm alternative to the inhomogeneous problem (19) yields

• If
1

k
6∈ {s1, s2, ...}, then the (19) admits one and only one solution.

• If
1

k
= sm for some m ∈ {1, 2, ..}, then (19) is solvable iff the right hand side verifies

(KK
∗
Kj∗, ϕ) = 0, (21)

for any ϕ satisfying KK
∗ϕ = s2

kϕ. If this solvability condition is fulfilled, then (19)

has a unique solution up to eigenfunctions of T corresponding to the eigenvalue s2
m.

Let us rewrite this solvability condition (21) differently. We have

0 = (KK
∗
Kj∗, ϕ) = (j∗, K∗

KK
∗ϕ) = s2

m(j∗, ϕ) = s2
m(j− `, K∗ϕ)

= s4
m(j − `, curlϕ) = s4

m(j, curlϕ).

since s2
mcurlϕ = curl (KK

∗ϕ) = K
∗ϕ and curl ` = 0. This ends the proof of

Theorem 1. �
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