Monografías del Seminario Matemático García de Galdeano. 27: 127–134, (2003).

On time-harmonic Maxwell's equations in Lipschitz and Multiply-connected domains of $I\!\!R^3$.

T. Z. Boulmeza
oud 1 and M. El Rhabi 2

¹ Laboratoire de Mathématiques Appliquées. Université de Pau email: Tahar.Boulmezaoud@univ-pau.fr

² Laboratoire d'Analyse Numérique. Université Pierre et Marie Curie e-mail : Mohammed.Elrhabi@math.jussieu.fr

Abstract

In this paper we deal with time-harmonic Maxwell's equations in Lipschitz and multiply connected bounded regions of $\mathbb{I}\!R^3$. We prove the wellposedness of the current source problem by means of an appropriate compact operator.

Keywords: time-harmonic Maxwell's equations, curl-curl systems, vector potentials, resonance, non-smooth domains.

AMS Classification:

1 Preliminaries.

The harmonic magnetic field \boldsymbol{H} in a cavity Ω of $\boldsymbol{I}\!R^3$ is described by curl-curl system

$$\operatorname{curl} \left(\epsilon^{-1} \operatorname{curl} \boldsymbol{u} \right) - \omega^{2} \mu \boldsymbol{u} = \operatorname{curl} \left(\epsilon^{-1} \boldsymbol{j} \right),$$

div $(\mu \boldsymbol{u}) = 0.$ (1)

where \boldsymbol{j} is the imposed source of electric current density. The parameters ϵ and μ refer to the premittivity and the permeability of the medium. For a perfect conducting boundary $\partial\Omega$, the magnetic field satisfies the boundary condition

$$\mu \boldsymbol{u}.\boldsymbol{n}|_{\partial\Omega} = 0. \tag{2}$$

Note that the electric field is given by $\boldsymbol{E} = (i\omega\epsilon)^{-1}(\operatorname{curl}\boldsymbol{u} - \boldsymbol{j})$. When the domain is smooth, the analysis of the time harmonic Maxwell's equations has been carried through successfully by means of the Maxwell operator (see, e. g., [7], [3]). However, when the

domain is non-smooth, namely if Ω contains inward edges and corners, the treatment of time-harmonic Maxwell's equations involves some serious complications. This is due mainly to the appearance of singularities near these corners and edges (see [2]).

The purpose of this paper is to treat the current source problem (1)+(2) in a non-smooth and multiply connected domains of $\mathbb{I}R^3$. The approach we use for solving (1) is based on a formulation of this problem in terms of an adequate compact vector potential operator.

Let Ω be a bounded open set of $\mathbb{I}\!R^3$ and denote by $\partial\Omega$ its boundary. We assume that Ω is Lipschitz-continuous and that its boundary $\partial\Omega$ is the union of p+1 connected components $\Gamma_0,...,\Gamma_p$ where Γ_0 is the boundary of the only unbounded connected component of $\mathbb{I}\!R^3/\Omega$. Note that p = 0 when $\partial\Omega$ is connected. We assume also that Ω is connected but not necessarily simply-connected. If Ω is multiply-connected, we suppose that there exists m smooth surfaces $\Sigma_1, ..., \Sigma_m$ ("cuts") such that

- 1. For any $i \in \{1, ..., m\}$, Σ_i is an open part of a smooth manifold \mathcal{M}_i .
- 2. For any $i \in \{1, ..., m\}$, the boundary of Σ_i is contained in $\partial \Omega$.
- 3. The intersection $\bar{\Sigma}_i \cap \bar{\Sigma}_j$ is empty if $i \neq j$.
- 4. The open set $\overset{\circ}{\Omega} = \Omega / \bigcup_{i=1}^{m} \Sigma_i$ is simply connected and pseudo-Lipschitz¹.

By convention, we set m = 0 when Ω is simply-connected. In the sequel we denote by (.,.) the scalar product in $L^2(\Omega)$. For any $i \leq m$, $H^{1/2}(\Sigma_i)$ is the space of restrictions to Σ_i of the distributions belonging to $H^{\frac{1}{2}}(\mathcal{M}_i)$ and $H^{1/2}(\Sigma_i)'$ is its dual space. Now, consider the spaces

$$\begin{aligned} H(\operatorname{div}; \Omega) &= \{ \boldsymbol{v} \in L^2(\Omega)^3 \mid \operatorname{div} \boldsymbol{v} \in L^2(\Omega) \}, \\ H(\operatorname{curl}; \Omega) &= \{ \boldsymbol{v} \in L^2(\Omega)^3 \mid \operatorname{curl} \boldsymbol{v} \in L^2(\Omega)^3 \}, \end{aligned}$$

equipped with the usual norms $\|\boldsymbol{v}\|_{H(\operatorname{div}; \Omega)}$ and $\|\boldsymbol{v}\|_{H(\operatorname{curl}; \Omega)}$. We recall the following properties of these spaces

1. Let $\boldsymbol{v} \in H(\text{div}; \Omega)$. Then, \boldsymbol{v} has a normal component $\boldsymbol{v}.\boldsymbol{n}$ in $H^{-1/2}(\partial\Omega)$ and the following Green's formula holds

$$\forall \varphi \in H^1(\Omega), \ (\boldsymbol{v}, \nabla \varphi) = -(\operatorname{div} \boldsymbol{v}, \varphi) + \langle \boldsymbol{v}. \boldsymbol{n}, \varphi \rangle_{\partial \Omega}.$$
(3)

Moreover, for any $i \in \{1, ..., m\}$, \boldsymbol{v} has also a normal component $\boldsymbol{v}.\boldsymbol{n}$ in $H^{1/2}(\Sigma_i)'$ and (see [1], Lemma 3.10):

$$\forall \theta \in H^{1}(\overset{\circ}{\Omega}), \quad \int_{\overset{\circ}{\Omega}} \boldsymbol{v}.\nabla \theta d\boldsymbol{x} + \int_{\overset{\circ}{\Omega}} (\operatorname{div} \boldsymbol{v}) \, \theta d\boldsymbol{x} = \sum_{i=1}^{m} \langle \boldsymbol{v}.\boldsymbol{n}, [\theta]_{i} \rangle_{\Sigma_{i}}, \tag{4}$$

where $[\theta]_i$ denotes the jump of θ through Σ_i .

¹see [1] for the definition.

2. Similarly, if $\boldsymbol{v} \in H(\operatorname{curl}; \Omega)$, then \boldsymbol{v} has a tangential component $\boldsymbol{v} \times \boldsymbol{n}$ in $H^{-1/2}(\partial \Omega)^3$ and the following Green's formula holds

$$\forall \boldsymbol{w} \in H^1(\Omega)^3, \ (\operatorname{\mathbf{curl}} \boldsymbol{v}, \boldsymbol{w}) = (\boldsymbol{v}, \operatorname{\mathbf{curl}} \boldsymbol{w}) + \langle \boldsymbol{v} \times \boldsymbol{n}, \boldsymbol{w} \rangle_{\partial \Omega}.$$
(5)

Observe that this formula remains valid if $\boldsymbol{w} \in H(\operatorname{curl}; \Omega)$ and $\boldsymbol{v} \in H_0(\operatorname{curl}; \Omega)$.

Consider also the following subspaces of $H(\text{div}; \Omega)$ and $H(\text{curl}; \Omega)$:

$$\begin{aligned} H_0(\operatorname{div};\,\Omega) &= \{ \boldsymbol{v} \in H(\operatorname{div};\,\Omega) \mid \boldsymbol{v}.\boldsymbol{n} = 0 \text{ on } \Gamma \}, \\ H_0(\operatorname{curl};\,\Omega) &= \{ \boldsymbol{v} \in H(\operatorname{curl};\,\Omega) \mid \boldsymbol{v} \times \boldsymbol{n} = 0 \text{ on } \Gamma \}. \end{aligned}$$

We introduce now the spaces

$$Y_T(\Omega) = H_0(\operatorname{div}; \Omega) \cap H(\operatorname{curl}; \Omega),$$

$$Y_N(\Omega) = H(\operatorname{div}; \Omega) \cap H_0(\operatorname{curl}; \Omega),$$

equipped with the norm $\|\boldsymbol{v}\|_{Y} = (\|\boldsymbol{v}\|_{0,\Omega}^{2} + \|\operatorname{div}\boldsymbol{v}\|_{0,\Omega}^{2} + \|\operatorname{curl}\boldsymbol{v}\|_{0,\Omega}^{2})^{1/2}$, and we set

$$G_T = \{ \boldsymbol{v} \in Y_T(\Omega) | \operatorname{div} \boldsymbol{v} = 0, \operatorname{\mathbf{curl}} \boldsymbol{v} = \mathbf{0} \},$$

$$G_N = \{ \boldsymbol{v} \in Y_N(\Omega) | \operatorname{div} \boldsymbol{v} = 0, \operatorname{\mathbf{curl}} \boldsymbol{v} = \mathbf{0} \}$$

Lemma 1 ([4], [1]). The spaces G_T and G_N are finite dimensional and dim $G_T = m$, dim $G_N = p$. Moreover, there exists a basis $(\mathbf{q}_i)_{i=1,...,m}$ (resp. $(\mathbf{f}_i)_{i=1,...,p}$) of G_T (resp. of G_N) such that:

$$\forall i, j \in \{1, ..., m\} \qquad \langle \boldsymbol{q}_i.\boldsymbol{n}, 1 \rangle_{\Sigma_j} = \delta_{i,j}, \quad \forall i, j \in \{1, ..., p\} \qquad \langle \boldsymbol{f}_i.\boldsymbol{n}, 1 \rangle_{\Gamma_j} = \delta_{i,j}. \tag{6}$$

We shall denote by \mathcal{P}_T (resp. \mathcal{P}_N) the orthogonal projection from $Y_T(\Omega)$ (resp. from $Y_N(\Omega)$) on G_T (resp. on G_N) with respect to inner product associated with the norm $\|.\|_Y$. It is worth noting that

$$\mathcal{P}_N oldsymbol{v} = \sum_{i=1}^m \langle oldsymbol{v}.oldsymbol{n},1
angle_{\Sigma_i}oldsymbol{q}_i$$

for any $\boldsymbol{v} \in L^2(\Omega)^3$ such that div $\boldsymbol{v} = 0$ (see [4], [1]).

Lemma 2 ([4], [1]). The mapping

$$oldsymbol{v} \longrightarrow |oldsymbol{v}|_{Y_T(\Omega)} = (\|\mathrm{div}\,oldsymbol{v}\|_{0,\Omega}^2 + \|\mathbf{curl}\,oldsymbol{v}\|_{0,\Omega}^2 + \sum_{i=1}^m |\langle oldsymbol{v}.oldsymbol{n},1
angle_{\Sigma_i}|^2)^{1/2},$$

is a norm on the space $Y_T(\Omega)$ equivalent to the norm $\|.\|_Y$. Similarly, the mapping $\boldsymbol{v} \longrightarrow |\boldsymbol{v}|_{Y_N(\Omega)} = (\|\operatorname{div} \boldsymbol{v}\|_{0,\Omega}^2 + \|\operatorname{curl} \boldsymbol{v}\|_{0,\Omega}^2 + \sum_{i=1}^p |\langle \boldsymbol{v}.\boldsymbol{n}, 1\rangle_{\Gamma_i}|^2)^{1/2}$, is a norm on the space $Y_N(\Omega)$ equivalent to the norm $\|.\|_Y$.

In the sequel, we set

$$\alpha_0 = \inf_{\boldsymbol{v} \in Y_T(\Omega), \ \boldsymbol{v} \neq \boldsymbol{0}} \frac{|\boldsymbol{v}|_{Y_T(\Omega)}}{\|\boldsymbol{v}\|_{0,\Omega}}.$$
(7)

Then, according to Lemma 2, we have $\alpha_0 > 0$.

1.1 Statement of the problem. The main result.

Let us consider the system: given $\mathbf{j} \in L^2(\Omega)^3$, we look for $\mathbf{u} \in Y_T(\Omega)$

$$\operatorname{curl}\operatorname{curl}\boldsymbol{u} - k^2\boldsymbol{u} = \operatorname{curl}\boldsymbol{j},\tag{8}$$

$$\operatorname{div} \boldsymbol{u} = 0, \tag{9}$$

$$\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}|_{\partial \Omega} = \boldsymbol{j} \times \boldsymbol{n}, \tag{10}$$

where k is the wave number given by $k = \sqrt{\epsilon \mu} \omega$ with ϵ and μ supposed non-negative and constants. Observe that the boundary condition (10) is meaningfull if $\mathbf{j} \in H(\mathbf{curl}, \Omega)$ (thus $\mathbf{curl} \mathbf{u} \in H(\mathbf{curl}, \Omega)$). If \mathbf{j} belongs only to $L^2(\Omega)^3$, we interpret the problem (8)-(10) in a weaker form; a vector field \mathbf{u} in $Y_T(\Omega)$ is called a *generalized* or a *weak* solution of (8)-(10) if it satisfies

$$(\operatorname{\mathbf{curl}} \boldsymbol{u}, \operatorname{\mathbf{curl}} \boldsymbol{v}) + \gamma(\operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{v}) + \delta(\mathcal{P}_T \boldsymbol{u}, \mathcal{P}_T \boldsymbol{v}) - k^2(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{j}, \operatorname{\mathbf{curl}} \boldsymbol{v}), \ \forall \boldsymbol{v} \in Y_T(\Omega), \ (11)$$

where γ and δ are two nonnegative real constants. The following proposition state the relationship between the weak problem (11) and the continuous problem (8):

Proposition 1. Let $\mathbf{j} \in L^2(\Omega)^3$ and suppose that k > 0 and that γ and δ are such that: $\gamma > 0, \ \delta > 0$ and

$$\frac{k^2}{\gamma} \notin EV(\Delta^{neu}), \ \frac{k^2}{\delta} \neq 1,$$
(12)

where $EV(\Delta^{neu})$ is the set of eigenvalues of the Laplace operator with an homogenous Neumann condition. Then, any solution of (11) satisfies (8) and (9) in the sense of distributions. Moreover, if **j** belongs to $H(\mathbf{curl}; \Omega)$, then the problems (11) and (8)-(10) are equivalent.

When the wave number k is smaller than the parameter α_0 defined by (7), the existence and the uniqueness of solutions of (11) stem immediately from Lax-Milgram theorem. Here, we treat the problem (11) when k is not necessarily small. We state the following

Theorem 1. Assume that $\mathbf{j} \in L^2(\Omega)^3$ and that (12) is fullfilled. Then, there exists a countable sequence of real values $\{\alpha_i, i \in \mathbb{N}\}$, tending to $+\infty$ such that

- 1. If $k \notin \{\alpha_i, i \in \mathbb{N}\}$ then (11) admits one and only one solution $\boldsymbol{u} \in Y_T(\Omega)$.
- 2. If $k = \alpha_m$ for some $m \in \mathbb{N}$, then the homogeneous problem (when $\mathbf{j} = \mathbf{0}$) admits a finite dimensional space E_m of solutions, and (11) is solvable in $Y_T(\Omega)$ iff

$$(\mathbf{j}, \operatorname{\mathbf{curl}} \boldsymbol{\varphi}) = 0, \quad \forall \boldsymbol{\varphi} \in E_m.$$
 (13)

If this condition is fulfilled, the solution of (11) is unique up to elements of E_m .

We state also the following regularity results when the domain has a smooth boundary and when it is a parallelepiped (as involved by pseudo-spectral and spectral methods). Note that the general case of a polygonal domain contains some technical complications, due to the appearance of the singularities, and which are beyond the scope of this paper (see, e. g., [2]) (observe that the inclusion $Y_T(\Omega) \subset H^1(\Omega)^3$ does not hold in general).

Corollary 1. Assume that Ω is of class $\mathcal{C}^{m,1}$ with $m \geq 2$ and let $\mathbf{j} \in L^2(\Omega)^3$ such that

$$\operatorname{curl} \boldsymbol{j} \in H^{m-2}(\Omega)^3, \ \boldsymbol{j} \times \boldsymbol{n} \in H^{m-3/2}(\partial \Omega)^3.$$

Then, the solution \boldsymbol{u} of (11) belongs to $H^m(\Omega)^3$.

Corollary 2. Assume that Ω is a rectangular parallelepiped of $\mathbb{I}\mathbb{R}^3$. Suppose that $\mathbf{j} \in H(\mathbf{curl}; \Omega)$ and satisfies $\mathbf{j} \times \mathbf{n} = \mathbf{0}$ on $\partial\Omega$. Then, the solution of the problem (11) belongs to $H^2(\Omega)^3$.

Proof of Theorem 1.

The proof of Theorem 1 is composed of four steps. In step 1 we introduce and study a new operator. Step 2 deals with its adjoint operator. In the third step we rewrite the problem in a Fredholm form. The Fredholm's alternative is finally applied in step 4.

STEP 1. AN OPERATOR.

Consider the closed subspace of $H(\operatorname{div}; \Omega)$

$$X = \{ \boldsymbol{v} \in L^2(\Omega)^3 \mid \text{div } \boldsymbol{v} = 0 \text{ and } \langle \boldsymbol{v}.\boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \ 1 \le i \le p \}.$$

$$(14)$$

For any vector function \boldsymbol{w} in X consider the problem: Find $\boldsymbol{z} \in Y_T(\Omega)$ such that

$$\operatorname{curl} \boldsymbol{z} = \boldsymbol{w}, \quad \operatorname{div} \boldsymbol{z} = 0, \quad \forall i \in \{1, ..., m\} \quad \langle \boldsymbol{z} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_i} = 0.$$
(15)

Lemma 3 ([1]). The problem (15) has a unique solution $z \in Y_T(\Omega)$ and there exists a constant C, depending only on Ω such that

$$\|\boldsymbol{z}\|_{Y_T(\Omega)} \le C(\Omega) \|\boldsymbol{w}\|_{0,\Omega}.$$
(16)

In the sequel, we shall denote by \mathcal{K} the linear and continuous operator from X into X defined by

$$\mathcal{K}: \quad \boldsymbol{w} \in X \mapsto \boldsymbol{z} \in X \text{ solution of } (15),$$

Lemma 4. \mathcal{K} is a compact operator.

Proof of Lemma 4 – For proving the compactness of \mathcal{K} , the following lemma turns to be useful. The reader can consult [5] (Theorem 3.1) for the proof.

Lemma 5. A function \boldsymbol{w} in $L^2(\Omega)^3$ belongs to X if and only if there exists a vector function $\boldsymbol{\varphi}$ in $H^1(\Omega)^3$ satisfying $\boldsymbol{w} = \operatorname{curl} \boldsymbol{\varphi}$. Moreover, there exists a constant C depending only on Ω such that for any $\boldsymbol{\varphi} \in X$, the corresponding vector function \boldsymbol{v} can be chosen such that

$$\|\boldsymbol{\varphi}\|_{H^1(\Omega)^3} \leq C \|\boldsymbol{w}\|_{0,\Omega}.$$

Now, let \boldsymbol{w}_n be a sequence in X such that $\|\boldsymbol{w}_n\|_{0,\Omega} \leq C_1$, where C_1 is a constant not depending on n. Then, by virtue of Lemma 5, there exists a sequence $\boldsymbol{\varphi}_n$ in $H^1(\Omega)^3$ such that: $\forall n$, $\operatorname{curl} \boldsymbol{\varphi}_n = \boldsymbol{w}_n$, $\|\boldsymbol{\varphi}_n\|_{1,\Omega} \leq C$. Thus, there exists a subsequence still denoted by $\boldsymbol{\varphi}_n$ which converges strongly in $L^2(\Omega)^3$.

Now, for any n, let s_n be the unique solution in $H^1(\Omega)/\mathbb{I}$ of the Neumann problem

$$\forall \Psi \in H^1(\Omega) / I\!\!R, \quad \int_{\Omega} \nabla s_n . \nabla \Psi d\boldsymbol{x} = \int_{\Omega} \boldsymbol{\varphi}_n . \nabla \Psi d\boldsymbol{x}$$

and set $\varphi_n^* = \tilde{\varphi}_n - \mathcal{P}_T \tilde{\varphi}_n$, where $\tilde{\varphi}_n = \varphi_n - \nabla \mathbf{s}_n$. The sequence $\tilde{\varphi}_n$ belongs to $Y_T(\Omega)$. Moreover, it is quite obvious that $(s_n)_n$ converges in $H^1(\Omega)^3/I\!\!R$. Thus, $\tilde{\varphi}_n$ converges in $L^2(\Omega)^3$ to an element $\tilde{\varphi}$ of $Y_T(\Omega)$. Moreover, $\mathcal{P}_T \tilde{\varphi}_n$ converges also to $\mathcal{P}_T \tilde{\varphi}$ since

$$\|\mathcal{P}_T ilde{oldsymbol{arphi}}_n\|_{0,\Omega} \leq \| ilde{oldsymbol{arphi}}_n\|_{0,\Omega}.$$

We conclude by observing that $\tilde{\boldsymbol{\varphi}}_n^* = \boldsymbol{\mathcal{K}} \boldsymbol{w}_n$.

STEP 2. THE ADJOINT OPERATOR.

We need the following lemma

Lemma 6 ([1], [4]). A field \boldsymbol{v} in $H(\operatorname{div}; \Omega)$ satisfies

div
$$\boldsymbol{v} = 0$$
, $\boldsymbol{v} \cdot \boldsymbol{n} = 0$ on $\partial \Omega$, $\langle \boldsymbol{v} \cdot \boldsymbol{n}, 1 \rangle_{\Sigma_i} = 0$, $i = 1, ..., m$,

if and only if there exists a unique vector potential $\mathbf{\Phi} \in Y_N(\Omega)$ such that

$$\operatorname{curl} \Phi = \boldsymbol{v}, \ \operatorname{div} \Phi = 0, \ \langle \boldsymbol{\Phi}.\boldsymbol{n}, 1 \rangle_{\Gamma_i} = 0, \ i = 1, ..., p.$$
(17)

In particular, this lemma implies that any vector field \boldsymbol{w} in $L^2(\Omega)^3$ admits a unique decomposition into the form

$$\boldsymbol{w} = \overset{\circ}{\nabla} q + \operatorname{\mathbf{curl}} \boldsymbol{\Phi},\tag{18}$$

where Φ belongs to $Y_N(\Omega)$ and verifies div $\Phi = 0$, $\langle \Phi, \mathbf{n}, 1 \rangle_{\Gamma_i} = 0$, $0 \le i \le p$, while q belongs to the space $\Theta = \{s \in H^1(\overset{\circ}{\Omega}) \mid [s]_{\Sigma_i} = constant, \ 1 \le i \le m\}$, and is the unique solution in Θ/\mathbb{R} of the quasi-Neumann problem

$$\forall p \in \Theta, \ \int_{\Omega}^{\circ} \nabla s. \nabla p \, d\boldsymbol{x} = \int_{\Omega} \boldsymbol{w}. \overset{\circ}{\nabla} p \, d\boldsymbol{x},$$

where $\overset{\circ}{\nabla} p$ denotes the extension in $L^2(\Omega)^3$ of the gradient ∇p considered in the sense of distributions in $\mathcal{D}'(\overset{\circ}{\Omega})$. Moreover, the decomposition (18) is unique in $(\Theta/\mathbb{I}R) \times Y_N(\Omega)$. The operator \mathcal{K}^* is defined as follows

$$\mathcal{K}^*: \boldsymbol{w} \in L^2(\Omega)^3 \mapsto \boldsymbol{\Phi} \in X,$$

where Φ is the unique fonction in the decomposition (18). \mathcal{K}^* is a continuous operator from $L^2(\Omega)$ into X. The following lemma gives the relationship between \mathcal{K} and \mathcal{K}^* :

Lemma 7. The restriction of \mathcal{K}^* to X is the adjoint operator of \mathcal{K} .

STEP 3. A NEW FORMULATION OF THE PROBLEM

Let us now rewrite the problem (11) in terms of the operator \mathcal{K} .

Proposition 2. Let $\mathbf{j} \in L^2(\Omega)^3$ and let $\theta \in H^1_0(\Omega)$ be solution of the Dirichlet problem

$$\Delta \theta = \operatorname{div} \boldsymbol{j} \in H^{-1}(\Omega), \ \theta = 0 \ on \ \Gamma.$$

We set $\mathbf{j}_1 = \mathbf{j} - \nabla \theta \in H(\text{div}; \Omega), \ \mathbf{j}^* = \mathbf{j}_1 - \mathcal{P}_N \mathbf{j}_1$. Then, \mathbf{u} is solution of (11) iff $\hat{\mathbf{u}} = \mathbf{u} - \mathcal{K}\mathbf{j}^*$ belongs to X and is solution of the problem

$$\hat{\mathbf{u}} - k^2 \mathcal{K} \mathcal{K}^* \hat{\mathbf{u}} = k^2 \mathcal{K} \mathcal{K}^* \mathcal{K} \boldsymbol{j}^*.$$
⁽¹⁹⁾

Proof of Proposition 2– Firstly, observe that if we set $\boldsymbol{\ell} = \boldsymbol{j} - \boldsymbol{j}^* = \nabla \theta + \mathcal{P}_T \boldsymbol{j}_1$, then $\boldsymbol{\ell} \in H(\mathbf{curl}; \Omega)$ and $\mathbf{curl} \boldsymbol{\ell} = \mathbf{0}, \ \boldsymbol{\ell} \times \boldsymbol{n} = \mathbf{0}$ on $\partial \Omega$.

1. Let \boldsymbol{u} solution of (11). Then, it stems from Proposition 1 that \boldsymbol{u} satisfies (8) and (9) and $\mathcal{P}_T \boldsymbol{u} = \boldsymbol{0}$. We set $\hat{\boldsymbol{u}} = \boldsymbol{u} - \mathcal{K}\boldsymbol{j}^*$. It follows immediately that $\hat{\boldsymbol{u}}$ belongs to $X \cap Y_T(\Omega)$ and

$$\operatorname{curl}\operatorname{curl}\hat{\mathbf{u}} - k^{2}\hat{\mathbf{u}} = k^{2}\mathcal{K}\boldsymbol{j}^{*}, \quad \mathcal{P}_{T}\hat{\mathbf{u}} = \boldsymbol{0}.$$
(20)

Thus, $\operatorname{curl} \hat{\mathbf{u}}$ belongs to $H(\operatorname{curl}; \Omega)$. Furthermore, (11) yields

$$(\operatorname{\mathbf{curl}} \hat{\mathbf{u}}, \operatorname{\mathbf{curl}} \mathbf{v}) - k^2(\hat{\mathbf{u}}, \mathbf{v}) = k^2(\mathcal{K}\mathbf{j}^*, \mathbf{v}) + (\boldsymbol{\ell}, \operatorname{\mathbf{curl}} \mathbf{v}), \ \forall \mathbf{v} \in Y_T(\Omega).$$

Choosing $\boldsymbol{v} \in H^1(\Omega)^3$ gives $\langle \operatorname{\mathbf{curl}} \hat{\mathbf{u}} \times \boldsymbol{n}, \boldsymbol{v} \rangle_{\partial\Omega} = 0$. Thus $\operatorname{\mathbf{curl}} \hat{\mathbf{u}} \times \boldsymbol{n} = \mathbf{0}$ on $\partial\Omega$. It follows that $\operatorname{\mathbf{curl}} \hat{\mathbf{u}} = \mathcal{K}^*(k^2 \hat{\mathbf{u}} + k^2 \mathcal{K} \boldsymbol{j}^*)$. Moreover, $\hat{\mathbf{u}} = k^2 \mathcal{K} \mathcal{K}^*(\hat{\mathbf{u}} + \mathcal{K} \boldsymbol{j}^*)$.

2. Conversly, let $\hat{\mathbf{u}}$ be solution of (19). Then,

$$\operatorname{curl} \hat{\mathbf{u}} = k^2 \operatorname{curl} \left(\mathcal{K} \mathcal{K}^* (\hat{\mathbf{u}} + \mathcal{K} \boldsymbol{j}^*) \right) = k^2 \mathcal{K}^* (\hat{\mathbf{u}} + \mathcal{K} \boldsymbol{j}^*).$$

Thus,

$$\begin{aligned} (\operatorname{\mathbf{curl}} \hat{\mathbf{u}}, \operatorname{\mathbf{curl}} \mathbf{v}) &= k^2(\mathcal{K}^*(\hat{\mathbf{u}} + \mathcal{K}\mathbf{j}^*), \operatorname{\mathbf{curl}} \mathbf{v}) = k^2(\operatorname{\mathbf{curl}}(\mathcal{K}^*(\hat{\mathbf{u}} + \mathcal{K}\mathbf{j}^*)), \mathbf{v}) \\ &= k^2(\hat{\mathbf{u}} + \mathcal{K}\mathbf{j}^*, \mathbf{v}) = k^2(\mathbf{u}, \mathbf{v}), \end{aligned}$$

since $\operatorname{curl}(\mathcal{K}^*(\hat{\mathbf{u}} + \mathcal{K}\boldsymbol{j}^*)) = \hat{\mathbf{u}} + \mathcal{K}\boldsymbol{j}^*$. Hence, $\boldsymbol{u} = \hat{\mathbf{u}} + \mathcal{K}\boldsymbol{j}^* \in Y_T(\Omega)$ satisfies div $\boldsymbol{u} = 0$, $\mathcal{P}_T \boldsymbol{u} = \boldsymbol{0}$, and $(\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{v}) - k^2(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{j}^*, \operatorname{curl} \boldsymbol{v}) = (\boldsymbol{j}, \operatorname{curl} \boldsymbol{v})$. Thus, \boldsymbol{u} is solution of (11) which is the desired result. \diamond Consider the operator $T = \mathcal{K}\mathcal{K}^*$. Then, T is obviously self-adjoint and is compact by virtue of Lemma 4. Let $s_1^2 \ge s_2^2 \ge ... \ge s_n^2 \ge ...$ be the real countable sequence of its eigenvalues. The numbers $s_1, s_2, ..., s_n, ...$ are indeed the *s*-values (or singular values) of the operator \mathcal{K} (namely, the eigenvalues of $(\mathcal{K}\mathcal{K}^*)^{\frac{1}{2}}$). These numbers are in general different from the eigenvalues of \mathcal{K} since it is not a normal operator. The reader can consult [6] for more details about that question.

Now, applying the Fredholm alternative to the inhomogeneous problem (19) yields

- If $\frac{1}{k} \notin \{s_1, s_2, ...\}$, then the (19) admits one and only one solution.
- If $\frac{1}{k} = s_m$ for some $m \in \{1, 2, ..\}$, then (19) is solvable iff the right hand side verifies $(\mathcal{K}\mathcal{K}^*\mathcal{K}\boldsymbol{j}^*, \boldsymbol{\varphi}) = 0, \qquad (21)$

for any φ satisfying $\mathcal{K}\mathcal{K}^*\varphi = s_k^2\varphi$. If this solvability condition is fulfilled, then (19) has a unique solution up to eigenfunctions of T corresponding to the eigenvalue s_m^2 . Let us rewrite this solvability condition (21) differently. We have

$$\begin{array}{ll} 0 & = & (\mathcal{K}\mathcal{K}^*\mathcal{K}\boldsymbol{j}^*,\boldsymbol{\varphi}) = (\boldsymbol{j}^*,\mathcal{K}^*\mathcal{K}\mathcal{K}^*\boldsymbol{\varphi}) = s_m^2(\boldsymbol{j}^*,\boldsymbol{\varphi}) = s_m^2(\boldsymbol{j}-\boldsymbol{\ell},\mathcal{K}^*\boldsymbol{\varphi}) \\ & = & s_m^4(\boldsymbol{j}-\boldsymbol{\ell},\operatorname{curl}\boldsymbol{\varphi}) = s_m^4(\boldsymbol{j},\operatorname{curl}\boldsymbol{\varphi}). \end{array}$$

since $s_m^2 \operatorname{curl} \varphi = \operatorname{curl} (\mathcal{K}\mathcal{K}^*\varphi) = \mathcal{K}^*\varphi$ and $\operatorname{curl} \ell = 0$. This ends the proof of Theorem 1. \diamond

References

- C. AMROUCHE, C. BERNARDI, M DAUGE AND V. GIRAULT, Math. Meth. Appl. Sci., 21 (1998), p. 823–864.
- [2] M. COSTABEL AND M. DAUGE, Arch. Rat. Mech. Anal. 151 (2000), p. 221 276.
- [3] R. DAUTRAY AND J.-L. LIONS, Analyse mathématique et calcul numérique, Tome 5, Masson, Paris (1988).
- [4] J.-M. DOMINGUEZ, Thèse de Doctorat, Univ. Pierre et Marie Curie (1982), Paris.
- [5] V. GIRAULT AND P.-A. RAVIART, Finite Element Methods for Navier-Stokes equations, Springer-Verlag (1986).
- [6] I. C. GOHBERG, M.G. KREIN, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, AMS (1969).
- [7] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Wiley (1986).