On time-harmonic Maxwell's equations in Lipschitz and Multiply-connected domains of $\boldsymbol{I R}^{3}$.

T. Z. Boulmezaoud ${ }^{1}$ and M. El Rhabi ${ }^{2}$
${ }^{1}$ Laboratoire de Mathématiques Appliquées. Université de Pau email: Tahar.Boulmezaoud@univ-pau.fr
${ }^{2}$ Laboratoire d'Analyse Numérique. Université Pierre et Marie Curie e-mail : Mohammed.Elrhabi@math.jussieu.fr

Abstract

In this paper we deal with time-harmonic Maxwell's equations in Lipschitz and multiply connected bounded regions of \boldsymbol{R}^{3}. We prove the wellposedness of the current source problem by means of an appropriate compact operator.

Keywords: time-harmonic Maxwell's equations, curl-curl systems, vector potentials, resonance, non-smooth domains.
AMS Classification:

1 Preliminaries.

The harmonic magnetic field \boldsymbol{H} in a cavity Ω of \boldsymbol{R}^{3} is described by curl-curl system

$$
\begin{align*}
\operatorname{curl}\left(\epsilon^{-1} \operatorname{curl} \boldsymbol{u}\right)-\omega^{2} \mu \boldsymbol{u} & =\operatorname{curl}\left(\epsilon^{-1} \boldsymbol{j}\right) \tag{1}\\
\operatorname{div}(\mu \boldsymbol{u}) & =0
\end{align*}
$$

where \boldsymbol{j} is the imposed source of electric current density. The parameters ϵ and μ refer to the premittivity and the permeability of the medium. For a perfect conducting boundary $\partial \Omega$, the magnetic field satisfies the boundary condition

$$
\begin{equation*}
\mu \boldsymbol{u} .\left.\boldsymbol{n}\right|_{\partial \Omega}=0 . \tag{2}
\end{equation*}
$$

Note that the electric field is given by $\boldsymbol{E}=(i \omega \epsilon)^{-1}(\operatorname{curl} \boldsymbol{u}-\boldsymbol{j})$. When the domain is smooth, the analysis of the time harmonic Maxwell's equations has been carried through successfully by means of the Maxwell operator (see, e. g., [7], [3]). However, when the
domain is non-smooth, namely if Ω contains inward edges and corners, the treatment of time-harmonic Maxwell's equations involves some serious complications. This is due mainly to the appearance of singularities near these corners and edges (see [2]).
The purpose of this paper is to treat the current source problem (1)+(2) in a non-smooth and multiply connected domains of \boldsymbol{R}^{3}. The approach we use for solving (1) is based on a formulation of this problem in terms of an adequate compact vector potential operator.

Let Ω be a bounded open set of $\boldsymbol{I} R^{3}$ and denote by $\partial \Omega$ its boundary. We assume that Ω is Lipschitz-continuous and that its boundary $\partial \Omega$ is the union of $p+1$ connected components $\Gamma_{0}, \ldots, \Gamma_{p}$ where Γ_{0} is the boundary of the only unbounded connected component of $\boldsymbol{R}^{3} / \Omega$. Note that $p=0$ when $\partial \Omega$ is connected. We assume also that Ω is connected but not necessarily simply-connected. If Ω is multiply-connected, we suppose that there exists m smooth surfaces $\Sigma_{1}, \ldots, \Sigma_{m}$ ("cuts") such that

1. For any $i \in\{1, \ldots, m\}, \Sigma_{i}$ is an open part of a smooth manifold \mathcal{M}_{i}.
2. For any $i \in\{1, \ldots, m\}$, the boundary of Σ_{i} is contained in $\partial \Omega$.
3. The intersection $\bar{\Sigma}_{i} \cap \bar{\Sigma}_{j}$ is empty if $i \neq j$.
4. The open set $\stackrel{\circ}{\Omega}=\Omega / \bigcup_{i=1}^{m} \Sigma_{i}$ is simply connected and pseudo-Lipschitz ${ }^{1}$.

By convention, we set $m=0$ when Ω is simply-connected. In the sequel we denote by (.,.) the scalar product in $L^{2}(\Omega)$. For any $i \leq m, H^{1 / 2}\left(\Sigma_{i}\right)$ is the space of restrictions to Σ_{i} of the distributions belonging to $H^{\frac{1}{2}}\left(\mathcal{M}_{i}\right)$ and $H^{1 / 2}\left(\Sigma_{i}\right)^{\prime}$ is its dual space.
Now, consider the spaces

$$
\begin{aligned}
H(\operatorname{div} ; \Omega) & =\left\{\boldsymbol{v} \in L^{2}(\Omega)^{3} \mid \operatorname{div} \boldsymbol{v} \in L^{2}(\Omega)\right\} \\
H(\operatorname{curl} ; \Omega) & =\left\{\boldsymbol{v} \in L^{2}(\Omega)^{3} \mid \operatorname{curl} \boldsymbol{v} \in L^{2}(\Omega)^{3}\right\}
\end{aligned}
$$

equipped with the usual norms $\|\boldsymbol{v}\|_{H(\operatorname{div} ; \Omega)}$ and $\|\boldsymbol{v}\|_{H(\operatorname{curl} ; \Omega)}$. We recall the following properties of these spaces

1. Let $\boldsymbol{v} \in H(\operatorname{div} ; \Omega)$. Then, \boldsymbol{v} has a normal component $\boldsymbol{v} . \boldsymbol{n}$ in $H^{-1 / 2}(\partial \Omega)$ and the following Green's formula holds

$$
\begin{equation*}
\forall \varphi \in H^{1}(\Omega), \quad(\boldsymbol{v}, \nabla \varphi)=-(\operatorname{div} \boldsymbol{v}, \varphi)+\langle\boldsymbol{v} \cdot \boldsymbol{n}, \varphi\rangle_{\partial \Omega} . \tag{3}
\end{equation*}
$$

Moreover, for any $i \in\{1, \ldots, m\}, \boldsymbol{v}$ has also a normal component $\boldsymbol{v} . \boldsymbol{n}$ in $H^{1 / 2}\left(\Sigma_{i}\right)^{\prime}$ and (see [1], Lemma 3.10):

$$
\begin{equation*}
\forall \theta \in H^{1}(\stackrel{\circ}{\Omega}), \quad \int_{\grave{\Omega}} \boldsymbol{v} \cdot \nabla \theta d \boldsymbol{x}+\int_{\Omega}(\operatorname{div} \boldsymbol{v}) \theta d \boldsymbol{x}=\sum_{i=1}^{m}\left\langle\boldsymbol{v} . \boldsymbol{n},[\theta]_{i}\right\rangle_{\Sigma_{i}}, \tag{4}
\end{equation*}
$$

where $[\theta]_{i}$ denotes the jump of θ through Σ_{i}.

[^0]2. Similarly, if $\boldsymbol{v} \in H(\operatorname{curl} ; \Omega)$, then \boldsymbol{v} has a tangential component $\boldsymbol{v} \times \boldsymbol{n}$ in $H^{-1 / 2}(\partial \Omega)^{3}$ and the following Green's formula holds
\[

$$
\begin{equation*}
\forall \boldsymbol{w} \in H^{1}(\Omega)^{3}, \quad(\operatorname{curl} \boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{v}, \operatorname{curl} \boldsymbol{w})+\langle\boldsymbol{v} \times \boldsymbol{n}, \boldsymbol{w}\rangle_{\partial \Omega} . \tag{5}
\end{equation*}
$$

\]

Observe that this formula remains valid if $\boldsymbol{w} \in H(\operatorname{curl} ; \Omega)$ and $\boldsymbol{v} \in H_{0}(\operatorname{curl} ; \Omega)$.
Consider also the following subspaces of $H(\operatorname{div} ; \Omega)$ and $H(\operatorname{curl} ; \Omega)$:

$$
\begin{aligned}
H_{0}(\operatorname{div} ; \Omega) & =\{\boldsymbol{v} \in H(\operatorname{div} ; \Omega) \mid \boldsymbol{v} . \boldsymbol{n}=0 \text { on } \Gamma\}, \\
H_{0}(\operatorname{curl} ; \Omega) & =\{\boldsymbol{v} \in H(\operatorname{curl} ; \Omega) \mid \boldsymbol{v} \times \boldsymbol{n}=0 \text { on } \Gamma\} .
\end{aligned}
$$

We introduce now the spaces

$$
\begin{aligned}
Y_{T}(\Omega) & =H_{0}(\operatorname{div} ; \Omega) \cap H(\operatorname{curl} ; \Omega), \\
Y_{N}(\Omega) & =H(\operatorname{div} ; \Omega) \cap H_{0}(\operatorname{curl} ; \Omega),
\end{aligned}
$$

equipped with the norm $\|\boldsymbol{v}\|_{Y}=\left(\|\boldsymbol{v}\|_{0, \Omega}^{2}+\|\operatorname{div} \boldsymbol{v}\|_{0, \Omega}^{2}+\|\operatorname{curl} \boldsymbol{v}\|_{0, \Omega}^{2}\right)^{1 / 2}$, and we set

$$
\begin{aligned}
G_{T} & =\left\{\boldsymbol{v} \in Y_{T}(\Omega) \mid \operatorname{div} \boldsymbol{v}=0, \operatorname{curl} \boldsymbol{v}=\mathbf{0}\right\}, \\
G_{N} & =\left\{\boldsymbol{v} \in Y_{N}(\Omega) \mid \operatorname{div} \boldsymbol{v}=0, \operatorname{curl} \boldsymbol{v}=\mathbf{0}\right\} .
\end{aligned}
$$

Lemma 1 ([4], [1]). The spaces G_{T} and G_{N} are finite dimensional and $\operatorname{dim} G_{T}=$ $m, \operatorname{dim} G_{N}=p$. Moreover, there exists a basis $\left(\boldsymbol{q}_{i}\right)_{i=1, \ldots, m}\left(\right.$ resp. $\left.\left(\boldsymbol{f}_{i}\right)_{i=1, \ldots, p}\right)$ of G_{T} (resp. of G_{N}) such that:

$$
\begin{equation*}
\forall i, j \in\{1, \ldots, m\} \quad\left\langle\boldsymbol{q}_{i} \cdot \boldsymbol{n}, 1\right\rangle_{\Sigma_{j}}=\delta_{i, j}, \quad \forall i, j \in\{1, \ldots, p\} \quad\left\langle\boldsymbol{f}_{i} \cdot \boldsymbol{n}, 1\right\rangle_{\Gamma_{j}}=\delta_{i, j} . \tag{6}
\end{equation*}
$$

We shall denote by \mathcal{P}_{T} (resp. \mathcal{P}_{N}) the orthogonal projection from $Y_{T}(\Omega)$ (resp. from $\left.Y_{N}(\Omega)\right)$ on G_{T} (resp. on G_{N}) with respect to inner product associated with the norm $\|\cdot\|_{Y}$. It is worth noting that

$$
\mathcal{P}_{N} \boldsymbol{v}=\sum_{i=1}^{m}\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{i}} \boldsymbol{q}_{i}
$$

for any $\boldsymbol{v} \in L^{2}(\Omega)^{3}$ such that $\operatorname{div} \boldsymbol{v}=0$ (see [4], [1]).
Lemma 2 ([4], [1]). The mapping

$$
\boldsymbol{v} \longrightarrow|\boldsymbol{v}|_{Y_{T}(\Omega)}=\left(\|\operatorname{div} \boldsymbol{v}\|_{0, \Omega}^{2}+\|\operatorname{curl} \boldsymbol{v}\|_{0, \Omega}^{2}+\sum_{i=1}^{m}\left|\langle\boldsymbol{v} . \boldsymbol{n}, 1\rangle_{\Sigma_{i}}\right|^{2}\right)^{1 / 2},
$$

is a norm on the space $Y_{T}(\Omega)$ equivalent to the norm $\|\cdot\|_{Y}$. Similarly, the mapping $\boldsymbol{v} \longrightarrow|\boldsymbol{v}|_{Y_{N}(\Omega)}=\left(\|\operatorname{div} \boldsymbol{v}\|_{0, \Omega}^{2}+\|\operatorname{curl} \boldsymbol{v}\|_{0, \Omega}^{2}+\sum_{i=1}^{p}\left|\langle\boldsymbol{v} . \boldsymbol{n}, 1\rangle_{\Gamma_{i}}\right|^{2}\right)^{1 / 2}$, is a norm on the space $Y_{N}(\Omega)$ equivalent to the norm $\|\cdot\|_{Y}$.

In the sequel, we set

$$
\begin{equation*}
\alpha_{0}=\inf _{\boldsymbol{v} \in Y_{T}(\Omega), \boldsymbol{v} \neq \mathbf{0}} \frac{|\boldsymbol{v}|_{Y_{T}(\Omega)}}{\|\boldsymbol{v}\|_{0, \Omega}} . \tag{7}
\end{equation*}
$$

Then, according to Lemma 2, we have $\alpha_{0}>0$.

1.1 Statement of the problem. The main result.

Let us consider the system: given $\boldsymbol{j} \in L^{2}(\Omega)^{3}$, we look for $\boldsymbol{u} \in Y_{T}(\Omega)$

$$
\begin{align*}
\operatorname{curl} \operatorname{curl} \boldsymbol{u}-k^{2} \boldsymbol{u} & =\operatorname{curl} \boldsymbol{j}, \tag{8}\\
\operatorname{div} \boldsymbol{u} & =0, \tag{9}\\
\operatorname{curl} \boldsymbol{u} \times\left.\boldsymbol{n}\right|_{\partial \Omega} & =\boldsymbol{j} \times \boldsymbol{n}, \tag{10}
\end{align*}
$$

where k is the wave number given by $k=\sqrt{\epsilon \mu} \omega$ with ϵ and μ supposed non-negative and constants. Observe that the boundary condition (10) is meaningfull if $\boldsymbol{j} \in H(\operatorname{curl}, \Omega)$ (thus curl $\boldsymbol{u} \in H(\operatorname{curl}, \Omega)$). If \boldsymbol{j} belongs only to $L^{2}(\Omega)^{3}$, we interpret the problem (8)-(10) in a weaker form; a vector field \boldsymbol{u} in $Y_{T}(\Omega)$ is called a generalized or a weak solution of (8)-(10) if it satisfies

$$
\begin{equation*}
(\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{v})+\gamma(\operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{v})+\delta\left(\mathcal{P}_{T} \boldsymbol{u}, \mathcal{P}_{T} \boldsymbol{v}\right)-k^{2}(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{j}, \operatorname{curl} \boldsymbol{v}), \forall \boldsymbol{v} \in Y_{T}(\Omega), \tag{11}
\end{equation*}
$$

where γ and δ are two nonnegative real constants. The following proposition state the relationship between the weak problem (11) and the continuous problem (8):

Proposition 1. Let $\boldsymbol{j} \in L^{2}(\Omega)^{3}$ and suppose that $k>0$ and that γ and δ are such that: $\gamma>0, \delta>0$ and

$$
\begin{equation*}
\frac{k^{2}}{\gamma} \notin E V\left(\Delta^{\text {neu }}\right), \frac{k^{2}}{\delta} \neq 1 \tag{12}
\end{equation*}
$$

where $E V\left(\Delta^{n e u}\right)$ is the set of eigenvalues of the Laplace operator with an homogenous Neumann condition. Then, any solution of (11) satisfies (8) and (9) in the sense of distributions. Moreover, if \boldsymbol{j} belongs to $H(\mathbf{c u r l} ; \Omega)$, then the problems (11) and (8)-(10) are equivalent.

When the wave number k is smaller than the parameter α_{0} defined by (7), the existence and the uniqueness of solutions of (11) stem immediately from Lax-Milgram theorem. Here, we treat the problem (11) when k is not necessarily small. We state the following

Theorem 1. Assume that $\boldsymbol{j} \in L^{2}(\Omega)^{3}$ and that (12) is fullfilled. Then, there exists a countable sequence of real values $\left\{\alpha_{i}, i \in \mathbb{N}\right\}$, tending to $+\infty$ such that

1. If $k \notin\left\{\alpha_{i}, i \in \mathbb{N}\right\}$ then (11) admits one and only one solution $\boldsymbol{u} \in Y_{T}(\Omega)$.
2. If $k=\alpha_{m}$ for some $m \in \mathbb{N}$, then the homogeneous problem (when $\boldsymbol{j}=\mathbf{0}$) admits a finite dimensional space E_{m} of solutions, and (11) is solvable in $Y_{T}(\Omega)$ iff

$$
\begin{equation*}
(\boldsymbol{j}, \operatorname{curl} \boldsymbol{\varphi})=0, \quad \forall \boldsymbol{\varphi} \in E_{m} . \tag{13}
\end{equation*}
$$

If this condition is fulfilled, the solution of (11) is unique up to elements of E_{m}.

We state also the following regularity results when the domain has a smooth boundary and when it is a parallelepiped (as involved by pseudo-spectral and spectral methods). Note that the general case of a polygonal domain contains some technical complications, due to the appearance of the singularities, and which are beyond the scope of this paper (see, e. g., [2]) (observe that the inclusion $Y_{T}(\Omega) \subset H^{1}(\Omega)^{3}$ does not hold in general).

Corollary 1. Assume that Ω is of class $\mathcal{C}^{m, 1}$ with $m \geq 2$ and let $\boldsymbol{j} \in L^{2}(\Omega)^{3}$ such that

$$
\operatorname{curl} \boldsymbol{j} \in H^{m-2}(\Omega)^{3}, \boldsymbol{j} \times \boldsymbol{n} \in H^{m-3 / 2}(\partial \Omega)^{3} .
$$

Then, the solution \boldsymbol{u} of (11) belongs to $H^{m}(\Omega)^{3}$.
Corollary 2. Assume that Ω is a rectangular parallelepiped of \boldsymbol{R}^{3}. Suppose that $\boldsymbol{j} \in$ $H(\operatorname{curl} ; \Omega)$ and satifies $\boldsymbol{j} \times \boldsymbol{n}=\mathbf{0}$ on $\partial \Omega$. Then, the solution of the problem (11) belongs to $H^{2}(\Omega)^{3}$.

Proof of Theorem 1.

The proof of Theorem 1 is composed of four steps. In step 1 we introduce and study a new operator. Step 2 deals with its adjoint operator. In the third step we rewrite the problem in a Fredholm form. The Fredholm's alternative is finally applied in step 4.

Step 1. An operator.

Consider the closed subspace of $H(\operatorname{div} ; \Omega)$

$$
\begin{equation*}
X=\left\{\boldsymbol{v} \in L^{2}(\Omega)^{3} \mid \quad \operatorname{div} \boldsymbol{v}=0 \text { and }\langle\boldsymbol{v} . \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 1 \leq i \leq p\right\} . \tag{14}
\end{equation*}
$$

For any vector function \boldsymbol{w} in X consider the problem: Find $\boldsymbol{z} \in Y_{T}(\Omega)$ such that

$$
\begin{equation*}
\operatorname{curl} \boldsymbol{z}=\boldsymbol{w}, \quad \operatorname{div} \boldsymbol{z}=0, \quad \forall i \in\{1, \ldots, m\} \quad\langle\boldsymbol{z} . \boldsymbol{n}, 1\rangle_{\Sigma_{i}}=0 . \tag{15}
\end{equation*}
$$

Lemma 3 ([1]). The problem (15) has a unique solution $\boldsymbol{z} \in Y_{T}(\Omega)$ and there exists a constant C, depending only on Ω such that

$$
\begin{equation*}
\|z\|_{Y_{T}(\Omega)} \leq C(\Omega)\|\boldsymbol{w}\|_{0, \Omega} . \tag{16}
\end{equation*}
$$

In the sequel, we shall denote by \mathcal{K} the linear and continuous operator from X into X defined by

$$
\mathcal{K}: \boldsymbol{w} \in X \mapsto \boldsymbol{z} \in X \text { solution of (15), }
$$

Lemma 4. \mathcal{K} is a compact operator.
Proof of Lemma 4 - For proving the compactness of \mathcal{K}, the following lemma turns to be useful. The reader can consult [5] (Theorem 3.1) for the proof.

Lemma 5. A function \boldsymbol{w} in $L^{2}(\Omega)^{3}$ belongs to X if and only if there exists a vector function $\boldsymbol{\varphi}$ in $H^{1}(\Omega)^{3}$ satisfying $\boldsymbol{w}=\operatorname{curl} \boldsymbol{\varphi}$. Moreover, there exists a constant C depending only on Ω such that for any $\varphi \in X$, the corresponding vector function \boldsymbol{v} can be chosen such that

$$
\|\boldsymbol{\varphi}\|_{H^{1}(\Omega)^{3}} \leq C\|\boldsymbol{w}\|_{0, \Omega} .
$$

Now, let \boldsymbol{w}_{n} be a sequence in X such that $\left\|\boldsymbol{w}_{n}\right\|_{0, \Omega} \leq C_{1}$, where C_{1} is a constant not depending on n. Then, by virtue of Lemma 5 , there exists a sequence $\boldsymbol{\varphi}_{n}$ in $H^{1}(\Omega)^{3}$ such that: $\forall n, \operatorname{curl} \boldsymbol{\varphi}_{n}=\boldsymbol{w}_{n},\left\|\boldsymbol{\varphi}_{n}\right\|_{1, \Omega} \leq C$. Thus, there exists a subsequence still denoted by φ_{n} which converges strongly in $L^{2}(\Omega)^{3}$.
Now, for any n, let s_{n} be the unique solution in $H^{1}(\Omega) / \mathbb{R}$ of the Neumann problem

$$
\forall \Psi \in H^{1}(\Omega) / \mathbb{I} R, \quad \int_{\Omega} \nabla s_{n} \cdot \nabla \Psi d \boldsymbol{x}=\int_{\Omega} \boldsymbol{\varphi}_{n} \cdot \nabla \Psi d \boldsymbol{x}
$$

and set $\boldsymbol{\varphi}_{n}^{*}=\tilde{\boldsymbol{\varphi}}_{n}-\mathcal{P}_{T} \tilde{\boldsymbol{\varphi}}_{n}$, where $\tilde{\boldsymbol{\varphi}}_{n}=\boldsymbol{\varphi}_{n}-\nabla \mathbf{s}_{n}$. The sequence $\tilde{\boldsymbol{\varphi}}_{n}$ belongs to $Y_{T}(\Omega)$. Moreover, it is quite obvious that $\left(s_{n}\right)_{n}$ converges in $H^{1}(\Omega)^{3} / \boldsymbol{R}$. Thus, $\tilde{\boldsymbol{\varphi}}_{n}$ converges in $L^{2}(\Omega)^{3}$ to an element $\tilde{\boldsymbol{\varphi}}$ of $Y_{T}(\Omega)$. Moreover, $\mathcal{P}_{T} \tilde{\boldsymbol{\varphi}}_{n}$ converges also to $\mathcal{P}_{T} \tilde{\boldsymbol{\varphi}}$ since

$$
\left\|\mathcal{P}_{T} \tilde{\varphi}_{n}\right\|_{0, \Omega} \leq\left\|\tilde{\boldsymbol{\varphi}}_{n}\right\|_{0, \Omega} .
$$

We conclude by observing that $\tilde{\boldsymbol{\varphi}}_{n}^{*}=\mathcal{K} \boldsymbol{w}_{n} . \diamond$

Step 2. The adjoint operator.

We need the following lemma
Lemma 6 ([1], [4]). A field \boldsymbol{v} in $H(\operatorname{div} ; \Omega)$ satisfies

$$
\operatorname{div} \boldsymbol{v}=0, \boldsymbol{v} \cdot \boldsymbol{n}=0 \text { on } \partial \Omega,\langle\boldsymbol{v} \cdot \boldsymbol{n}, 1\rangle_{\Sigma_{i}}=0, i=1, \ldots, m,
$$

if and only if there exists a unique vector potential $\mathbf{\Phi} \in Y_{N}(\Omega)$ such that

$$
\begin{equation*}
\operatorname{curl} \Phi=\boldsymbol{v}, \operatorname{div} \boldsymbol{\Phi}=0,\langle\boldsymbol{\Phi} . \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, i=1, \ldots, p . \tag{17}
\end{equation*}
$$

In particular, this lemma implies that any vector field \boldsymbol{w} in $L^{2}(\Omega)^{3}$ admits a unique decomposition into the form

$$
\begin{equation*}
\boldsymbol{w}=\stackrel{\circ}{\nabla} q+\operatorname{curl} \boldsymbol{\Phi}, \tag{18}
\end{equation*}
$$

where $\boldsymbol{\Phi}$ belongs to $Y_{N}(\Omega)$ and verifies $\operatorname{div} \boldsymbol{\Phi}=0,\langle\boldsymbol{\Phi} \cdot \boldsymbol{n}, 1\rangle_{\Gamma_{i}}=0, \quad 0 \leq i \leq p$, while q belongs to the space $\Theta=\left\{s \in H^{1}(\stackrel{\circ}{\Omega}) \mid[s]_{\Sigma_{i}}=\right.$ constant, $\left.1 \leq i \leq m\right\}$, and is the unique solution in Θ / \mathbb{R} of the quasi-Neumann problem

$$
\forall p \in \Theta, \int_{\Omega} \nabla s \cdot \nabla p d \boldsymbol{x}=\int_{\Omega} \boldsymbol{w} \cdot \stackrel{\circ}{\nabla} p d \boldsymbol{x},
$$

where $\stackrel{\circ}{\nabla} p$ denotes the extension in $L^{2}(\Omega)^{3}$ of the gradient ∇p considered in the sense of distributions in $\mathcal{D}^{\prime}(\stackrel{\circ}{\Omega})$. Moreover, the decomposition (18) is unique in $(\Theta / \boldsymbol{I R}) \times Y_{N}(\Omega)$. The operator \mathcal{K}^{*} is defined as follows

$$
\mathcal{K}^{*}: \boldsymbol{w} \in L^{2}(\Omega)^{3} \mapsto \boldsymbol{\Phi} \in X
$$

where $\boldsymbol{\Phi}$ is the unique fonction in the decomposition (18). \mathcal{K}^{*} is a continuous operator from $L^{2}(\Omega)$ into X. The following lemma gives the relationship between \mathcal{K} and \mathcal{K}^{*} :

Lemma 7. The restriction of \mathcal{K}^{*} to X is the adjoint operator of \mathcal{K}.

Step 3. A new formulation of the problem

Let us now rewrite the problem (11) in terms of the operator \mathcal{K}.
Proposition 2. Let $\boldsymbol{j} \in L^{2}(\Omega)^{3}$ and let $\theta \in H_{0}^{1}(\Omega)$ be solution of the Dirichlet problem

$$
\Delta \theta=\operatorname{div} \boldsymbol{j} \in H^{-1}(\Omega), \theta=0 \text { on } \Gamma .
$$

We set $\boldsymbol{j}_{1}=\boldsymbol{j}-\nabla \theta \in H(\operatorname{div} ; \Omega), \boldsymbol{j}^{*}=\boldsymbol{j}_{1}-\mathcal{P}_{N} \boldsymbol{j}_{1}$. Then, \boldsymbol{u} is solution of (11) iff $\hat{\mathbf{u}}=\boldsymbol{u}-$ $\mathcal{K} \boldsymbol{j}^{*}$ belongs to X and is solution of the problem

$$
\begin{equation*}
\hat{\mathbf{u}}-k^{2} \mathcal{\mathcal { K }} \mathcal{K}^{*} \hat{\mathbf{u}}=k^{2} \mathcal{K} \mathcal{K}^{*} \mathcal{K} \boldsymbol{J}^{*} \tag{19}
\end{equation*}
$$

Proof of Proposition 2- Firstly, observe that if we set $\boldsymbol{\ell}=\boldsymbol{j}-\boldsymbol{j}^{*}=\nabla \theta+\mathcal{P}_{T} \boldsymbol{j}_{\mathbf{1}}$, then $\boldsymbol{\ell} \in H(\operatorname{curl} ; \Omega)$ and $\operatorname{curl} \boldsymbol{\ell}=\mathbf{0}, \boldsymbol{\ell} \times \boldsymbol{n}=\mathbf{0}$ on $\partial \Omega$.

1. Let \boldsymbol{u} solution of (11). Then, it stems from Proposition 1 that \boldsymbol{u} satisfies (8) and (9) and $\mathcal{P}_{T} \boldsymbol{u}=\mathbf{0}$. We set $\hat{\mathbf{u}}=\boldsymbol{u}-\boldsymbol{\mathcal { K }} \boldsymbol{j}^{*}$. It follows immediately that $\hat{\mathbf{u}}$ belongs to $X \cap Y_{T}(\Omega)$ and

$$
\begin{equation*}
\operatorname{curl} \operatorname{curl} \hat{\mathbf{u}}-k^{2} \hat{\mathbf{u}}=k^{2} \mathcal{K} \boldsymbol{j}^{*}, \quad \mathcal{P}_{T} \hat{\mathbf{u}}=\mathbf{0} \tag{20}
\end{equation*}
$$

Thus, curl $\hat{\mathbf{u}}$ belongs to $H(\mathbf{c u r l} ; \Omega)$. Furthermore, (11) yields

$$
(\operatorname{curl} \hat{\mathbf{u}}, \operatorname{curl} \boldsymbol{v})-k^{2}(\hat{\mathbf{u}}, \boldsymbol{v})=k^{2}\left(\mathcal{K} \boldsymbol{j}^{*}, \boldsymbol{v}\right)+(\boldsymbol{\ell}, \operatorname{curl} \boldsymbol{v}), \forall \boldsymbol{v} \in Y_{T}(\Omega) .
$$

Choosing $\boldsymbol{v} \in H^{1}(\Omega)^{3}$ gives $\langle\boldsymbol{c u r l} \hat{\mathbf{u}} \times \boldsymbol{n}, \boldsymbol{v}\rangle_{\partial \Omega}=0$. Thus curl $\hat{\mathbf{u}} \times \boldsymbol{n}=\mathbf{0}$ on $\partial \Omega$. It follows that $\mathbf{c u r l} \hat{\mathbf{u}}=\mathcal{K}^{*}\left(k^{2} \hat{\mathbf{u}}+k^{2} \mathcal{K} \boldsymbol{j}^{*}\right)$. Moreover, $\hat{\mathbf{u}}=k^{2} \mathcal{\mathcal { K }} \mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} j^{*}\right)$.
2. Conversly, let $\hat{\mathbf{u}}$ be solution of (19). Then,

$$
\operatorname{curl} \hat{\mathbf{u}}=k^{2} \operatorname{curl}\left(\mathcal{K} \mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{J}^{*}\right)\right)=k^{2} \mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{j}^{*}\right)
$$

Thus,

$$
\begin{aligned}
(\operatorname{curl} \hat{\mathbf{u}}, \operatorname{curl} \boldsymbol{v}) & =k^{2}\left(\mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{j}^{*}\right), \operatorname{curl} \boldsymbol{v}\right)=k^{2}\left(\operatorname{curl}\left(\mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{j}^{*}\right)\right), \boldsymbol{v}\right) \\
& =k^{2}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{J}^{*}, \boldsymbol{v}\right)=k^{2}(\boldsymbol{u}, \boldsymbol{v}),
\end{aligned}
$$

since $\boldsymbol{\operatorname { c u r l }}\left(\mathcal{K}^{*}\left(\hat{\mathbf{u}}+\mathcal{K} \boldsymbol{j}^{*}\right)\right)=\hat{\mathbf{u}}+\boldsymbol{\mathcal { K }} \boldsymbol{j}^{*}$. Hence, $\boldsymbol{u}=\hat{\mathbf{u}}+\boldsymbol{\mathcal { K }} \boldsymbol{j}^{*} \in Y_{T}(\Omega)$ satisfies div $\boldsymbol{u}=0$, $\mathcal{P}_{T} \boldsymbol{u}=\mathbf{0}$, and $(\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{v})-k^{2}(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{j}^{*}, \operatorname{curl} \boldsymbol{v}\right)=(\boldsymbol{j}, \operatorname{curl} \boldsymbol{v})$. Thus, \boldsymbol{u} is solution of (11) which is the desired result.

Step 4. Fredholm alternative.

Consider the operator $T=\mathcal{K} \mathcal{K}^{*}$. Then, T is obviously self-adjoint and is compact by virtue of Lemma 4. Let $s_{1}^{2} \geq s_{2}^{2} \geq \ldots \geq s_{n}^{2} \geq \ldots$ be the real countable sequence of its eigenvalues. The numbers $s_{1}, s_{2}, \ldots, s_{n}, \ldots$ are indeed the s-values (or singular values) of the operator \mathcal{K} (namely, the eigenvalues of $\left.\left(\mathcal{K} \mathcal{K}^{*}\right)^{\frac{1}{2}}\right)$. These numbers are in general different from the eigenvalues of \mathcal{K} since it is not a normal operator. The reader can consult [6] for more details about that question.
Now, applying the Fredholm alternative to the inhomogeneous problem (19) yields

- If $\frac{1}{k} \notin\left\{s_{1}, s_{2}, \ldots\right\}$, then the (19) admits one and only one solution.
- If $\frac{1}{k}=s_{m}$ for some $m \in\{1,2, .$.$\} , then (19) is solvable iff the right hand side verifies$

$$
\begin{equation*}
\left(\mathcal{K} \mathcal{K}^{*} \mathcal{K} \boldsymbol{\jmath}^{*}, \boldsymbol{\varphi}\right)=0, \tag{21}
\end{equation*}
$$

for any $\boldsymbol{\varphi}$ satisfying $\mathcal{K} \mathcal{K}^{*} \boldsymbol{\varphi}=s_{k}^{2} \boldsymbol{\varphi}$. If this solvability condition is fulfilled, then (19) has a unique solution up to eigenfunctions of T corresponding to the eigenvalue s_{m}^{2}. Let us rewrite this solvability condition (21) differently. We have

$$
\begin{aligned}
0 & =\left(\mathcal{K} \mathcal{K}^{*} \mathcal{K} \boldsymbol{j}^{*}, \boldsymbol{\varphi}\right)=\left(\boldsymbol{j}^{*}, \mathcal{K}^{*} \mathcal{K} \mathcal{K}^{*} \boldsymbol{\varphi}\right)=s_{m}^{2}\left(\boldsymbol{j}^{*}, \boldsymbol{\varphi}\right)=s_{m}^{2}\left(\boldsymbol{j}-\boldsymbol{\ell}, \mathcal{K}^{*} \boldsymbol{\varphi}\right) \\
& =s_{m}^{4}(\boldsymbol{j}-\boldsymbol{\ell}, \operatorname{curl} \boldsymbol{\varphi})=s_{m}^{4}(\boldsymbol{j}, \operatorname{curl} \boldsymbol{\varphi}) .
\end{aligned}
$$

since $s_{m}^{2} \operatorname{curl} \boldsymbol{\varphi}=\operatorname{curl}\left(\mathcal{K} \mathcal{K}^{*} \boldsymbol{\varphi}\right)=\mathcal{K}^{*} \boldsymbol{\varphi}$ and $\operatorname{curl} \boldsymbol{\ell}=\mathbf{0}$. This ends the proof of Theorem 1. \diamond

References

[1] C. Amrouche, C. Bernardi, M Dauge and V. Girault, Math. Meth. Appl. Sci., 21 (1998), p. 823-864.
[2] M. Costabel and M. Dauge, Arch. Rat. Mech. Anal. 151 (2000), p. 221 - 276.
[3] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Tome 5, Masson, Paris (1988).
[4] J.-M. Dominguez, Thèse de Doctorat, Univ. Pierre et Marie Curie (1982), Paris.
[5] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations, Springer-Verlag (1986).
[6] I. C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, AMS (1969).
[7] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Wiley (1986).

[^0]: ${ }^{1}$ see [1] for the definition.

