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Abstract

Some remarks on the numerical evaluation of recurrence relations are presented.

Results concerning to rounding error bounds of the numerical scheme are given and

the results are illustrated with some numerical examples. In particular, it is analyzed

the case of perturbed Gegenbauer polynomials and the limit case of Jacobi-Sobolev

polynomials. In these examples the theoretical bounds give sharp relative rounding

error estimations.
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1 Introduction

Linear recurrences play a significant role in different areas of science. For example, they

appear on the evaluation of classical orthogonal polynomials, some families of Sobolev

type orthogonal polynomials, on the evaluation of special functions, on numerous nu-

merical algorithms, and so on. Therefore, it is not strange that linear recurrences have

been extensively studied and theoretical analysis and studies of the asymptotics appear

frequently in the literature (see [11] and references herein).

When we want to evaluate numerically a linear recurrence we have several alterna-

tives. For example, we can use directly the recurrence or try to obtain explicit solutions

of the recurrence as it is done in [7]. This alternative is very useful in theoretical studies,

but, as the solution involves the evaluation of products and sums with variable number of

indexes, it is very difficult to program and very expensive computationally. So, numerical
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evaluation of linear recurrence relations are usually done just by direct substitution on

the recurrence. In [1] it was studied the numerical stability of the evaluation of the three-

term recurrence relations that permit to evaluate finite linear combinations of classical

orthogonal polynomials. In this paper we focus our attention to the numerical stability

of the evaluation of general order linear recurrences by using the direct substitution algo-

rithm. We present forward error bounds that give us sharp estimates of the behaviour of

the linear recurrence. These bounds are illustrated in two examples that are taken from

recent topics: perturbed Gegenbauer polynomials, Sobolev orthogonal polynomials.

2 Preliminaries

Let be a (m + 1)-order linear recurrence relation

l0 = c0, ls =
s∑

i=1

as,i ls−i + cs, s = 1 . . . , m − 1

lr =
m∑

i=1

ar,i lr−i + cr, r ≥ m.

(1)

It is interesting to remark that any polynomial series
∑

ci pi(x) where the polynomials

{pi(x)} verify an homogeneous recurrence relation can be evaluated by means of another

recurrence relation [3].

As one of the goals of the present paper is to study the numerical stability of the

evaluation of linear recurrences, we introduce some basics of rounding error analysis. In

the paper we assume that the computations are carried out in a floating–point arithmetic

that obeys the models [5]

fl(x op y) = (x op y) (1 + ρ), fl(x op y) =
(x op y)

1 + α
, |ρ| , |α| ≤ u, (2)

where op ∈ {+,−,×,÷} and u is the unit roundoff. Also, we denote γn := n u/(1−n u) =

n u + O(u2) and we assume the notation â and fl(a) for the computed value of a.

Let R ∈ IR(n+1)×(n+1) be the upper triangular matrix:

R =




1 −an,1
. . . −an,m

1 −an−1,1
. . . −an−1,m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −am,m
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1 −a1,1
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then the algorithm is equivalent to solve the (m + 1) diagonal upper triangular linear

system R l = c where l, c ∈ IRn+1 are the vectors l
T = (ln, ln−1, . . . , l0) and c

T =

(cn, cn−1, . . . , c0). This matrix formulation of the recurrence relation (1) permits us to use

classical rounding error bounds for linear systems.

A backward error bound can be easily obtained [5]:

Lemma The computed value l̂n of the nth-term of the (m + 1)-order linear recurrence

relation (1) satisfies

l̂r =
m∑

i=1

(ar,i + δar,i) l̂r−i + cr, r ≥ m

where |δar,i| ≤ u · m |ar,i|.

By using a matrix formulation the above result gives:

(R + ∆R) l̂ = c, |∆R| ≤ u · m |R|

Following the matrix approach it is possible to use the backward error bound in order

to obtain forward error bounds for banded triangular linear systems [5], that is,

‖l − l̂‖∞
‖l‖∞

≤ γm κ(R), (3)

where κ(R) = ‖R−1 ‖ ‖R ‖ is the matrix condition number. This bound will give, in

general, greater error bounds that the forthcoming analysis.

3 Forward error bound

By using a direct approach [1, 8] that considers the recurrence and not the matrix formu-

lation it is possible to obtain sharper rounding error bounds:

Theorem The error in the evaluation of the nth-term (ln) of a (m + 1)-order linear

recurrence verifies

|l̂n − ln| ≤ u ·
n∑

s=0

ρs |cs| + O(u2), (4)

where




ρ0 =
n∑

j=1

∆j,0 |Ln−j|

ρs = (m + 2) |Ln−s| +
n∑

j=s+1

∆j,s |Ln−j|, for s = 1, . . . , n − 1

ρn = (m + 2) |L0| = (m + 2)

(5)

and, for j = s + 1, . . . , n,

∆j,s = 2 |r−1
n−j+1,n−s+1| +

min{m−1,j−1}∑

t=1

(m + 2 − t) |aj,t| |r
−1
n−j+t+1,n−s+1|, (6)
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where {Li} are given by the “reverse” homogeneous linear recurrence

L0 = 1, Ls =
s∑

i=1

an+i−s,i Ls−i, s = 1, . . . , m − 1

Lr =
m∑

i=1

an+i−r,i Lr−i, r = m, . . . , n.

(7)

and r−1
j,s are the elements of R−1:

R−1 = (r−1
ij ), r−1

ij =





0, j < i,

1, j = i,

min{m,n−i+1}∑

t=1

an−i+1,t · r
−1
i+t,j , j > i.

(8)

PROOF See [2].

4 Numerical tests

4.1 Perturbed Gegenbauer polynomials

As a first trial problem we consider the 5th-order linear recurrence:

pλ
0(x) = 1, pλ

−j(x) = 0, j = 1, 2, 3, 4

pλ
i (x) = ai,1(x) pλ

i−1(x) − ai,2 pλ
i−2(x) + ai,3 pλ

i−3(x) − ai,4 pλ
i−4(x),

where

ai,1(x) = 2x
i + λ − 1

i
, ai,2 =

i + 2λ − 2

i
, ai,3 =

2

i2
, ai,4 =

2

i3
,

that, as limi→∞ ai,3 = 0 and limi→∞ ai,4 = 0, we call perturbed Gegenbauer polynomials (in

the case of ai,3 = 0 and ai,4 = 0 we obtain the three-term recurrence of the Gegenbauer

orthogonal polynomials [6]). Taking into account such a recurrence we analyze the errors

in the evaluation of the polynomial of degree n written as the linear combination of

{pλ
i (x)} given by pn =

∑n
i=0 1/(i+1)2 pλ

i (x). For the evaluation we use an extension [3] of

the Clenshaw’s algorithm for the evaluation of linear combination of functions that follow

a (m + 1)-order recurrence.

First, just as an indicative of the behavior of the recurrence, we formulate the recur-

rence as the solution of the linear system

Rλ,x
n l = c

where l = (ln, . . . , l0)
T and c(1, . . . , 1/(i + 1)2, . . . , 1/(n + 1)2)T ∈ IR(n+1) and Rλ,x

n ∈

IR(n+1)×(n+1) and we plot in Figure 1 the condition numbers κ(Rλ,x
n ) for several values of
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Figure 1: Condition numbers depending on x for some perturbed Gegenbauer recurrence

matrices (n = 100).

the parameter λ along the interval of definition [−1, 1]. Besides, we show in Figure 2 the

pseudospectra Λε [10] of the recurrence matrices Rλ,x
n with n = 100 for several values of

the parameter λ of the polynomials, where

Λε(R
λ,x
n ) = {z ∈ C : ‖(z II − Rλ,x

n )−1‖ ≥ ε−1}.

In Figure 2, we observe that when λ grows the level curves also increase in size, giving

instability problems.
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Figure 2: Pseudospectra of the recurrence matrices Rλ,x
100 for x = 1 depending on the value

of the parameter λ.

In Table 1 we present the comparison among the bound given by the Theorem divided

by |pn| and u ·m ·κ(Rλ,x
n ). Although the condition numbers are quite large when λ grows

and x is near ±1, the results obtained from the new bound state that the relative errors

are accurate enough. This result is not strange, in the non-perturbed case we have already

obtained a similar behavior [1].
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Table 1: Relative errors and relative error bounds in the evaluation of finite series of

perturbed Gegenbauer polynomials. (Erel = relative error, new = new bound, bcond =

bound based on the condition number κ(Rλ,x
100))

n = 100 x = −1 0 0.3 0.6 0.8 1

Erel 5.6 · 10−17 1.5 · 10−17 3.8 · 10−17 9.4 · 10−17 2.9 · 10−16 8.5 · 10−16

λ = 1 new 9.1 · 10−13 3.2 · 10−15 4.7 · 10−15 6.1 · 10−15 8.7 · 10−15 8.9 · 10−13

bcond 1.7 · 10−11 8.7 · 10−14 1.4 · 10−13 2.2 · 10−13 3.3 · 10−13 1.8 · 10−11

Erel 4.2 · 10−15 1.2 · 10−16 2.8 · 10−16 8.0 · 10−16 3.3 · 10−13 8.1 · 10−15

λ = 5 new 2.9 · 10−11 1.4 · 10−12 5.8 · 10−12 3.3 · 10−12 1.0 · 10−10 1.1 · 10−12

bcond 2.5 · 10+00 5.5 · 10−09 1.7 · 10−08 8.2 · 10−08 5.8 · 10−07 2.6 · 10+00

4.2 Jacobi-Sobolev orthogonal polynomials

During the last few years, there have been several papers written about polynomials

orthogonal with respect to Sobolev inner products [4, 9]. Some of these inner products

are of the form

(p, q) :=
∫

I
p(x) q(x)dµ +

r1∑

r=1

αrp(cr) q(cr) +
r2∑

r=1

βrp
′(dr) q′(dr)

where I is some interval on the real line, αr ≥ 0, βr ≥ 0 and cr, dr are fixed points

(not necessarily in I). It is known that these families of polynomials follow (2s + 1)-order

recurrence relations. On our own, we only study the case of adding to the classical inner

product the first derivative at x = 1, that is (p, q) =
∫ 1
−1 p(x) q(x)dµ + p′(1) q′(1), and

only the case of Jacobi-Sobolev orthogonal polynomials (for more details see [9]). These

polynomials are given by the 5-order recurrence:

p0(x) = 1, p−j(x) = 0, j = 1, 2, 3, 4

pi(x) = ai,1 pi−1(x) − ai,2(x) pi−2(x) + ai,3 pi−3(x) − ai,4 pi−4(x),

where limi→∞ ai,1 = 2, limi→∞ ai,2(x) = (x−1)2−3/2, limi→∞ ai,3 = 1/2, and limi→∞ ai,4 =

−1/16. As we are just interested on one test problem we have only considered the limit

case (see [3] for more cases), that is:

ai,1 = 2, ai,2(x) = (x − 1)2 −
3

2
, ai,3 =

1

2
, ai,4 = −

1

16
.

In Table 2 we present the numerical tests comparing the current relative errors and

the relative error bounds. The behavior of this limit case is quite extremal, giving very

large values near x = −1 and low values near x = 1. These behavior is reproduced by the

condition numbers, but the relative errors are acceptable. In the Figure 3 are represented

these condition numbers.
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Table 2: Limit Jacobi-Sobolev polynomials.

n = 100 x = −1 x = 0 x = 0.3 x = 0.6 x = 0.8 x = 1

Erel 1.9 · 10−16 8.7 · 10−16 2.9 · 10−16 1.6 · 10−14 9.2 · 10−17 2.1 · 10−16

new 3.9 · 10−14 9.8 · 10−14 1.9 · 10−13 4.7 · 10−13 1.5 · 10−14 9.5 · 10−15

cond 5.9 · 10+31 5.1 · 10+12 4.4 · 10+4 1.5 · 10−6 2.0 · 10−13 7.2 · 10−14
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Figure 3: Condition number of recurrence matrices Rx
100 depending on the point of eval-

uation x ∈ [−1, 1].
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