Convex Extensions of Convex Functions by Sequential Processes

Luc Barbet

Laboratoire de Mathématiques Appliquées, Université de Pau et des Pays de l'Adour, BP 1155, 64013 Pau cedex, France. email: luc.barbet@univ-pau.fr

Abstract

The aim of this paper is to extend a real-valued convex function f into a realvalued convex function \hat{f} , defined on a convex subset of the closure of the domain of f. When f is sequentially lower semi-continuous we study whether \hat{f} is sequentially lower semi-continuous. The extended function \hat{f} is constructed by a sequential process.

Keywords: convex function, extension, lower semi-continuity. **AMS Classification**: 26A51, 26A15, 54C20.

1 Extensions by sequential processes

In this section we consider a topological space X, a nonempty subset $C \subset X$ and a function $f: C \to \mathbb{R}$. Our first objective is to construct an extension of f by a sequential process whenever f satisfies some lower semi-continuity properties.

In the sequel we consider a subset $S \subset X^{\mathbb{N}}$ which contains all constant sequences; some of the notions introduced in this paper depend on the choice of S. We define the subset

$$\widehat{C} := \widehat{C}(\mathcal{S}, f) = \left\{ x \in X : \exists (x_n) \in \mathcal{S} \cap C^{\mathbb{N}}, \ x_n \to x, \ \liminf f(x_n) < +\infty \right\}.$$

For each point $x \in X$ we define the subset

 $S(x, C, \mathcal{S}) = \left\{ (x_n) \in X^{\mathbb{N}} : (x_n) \in \mathcal{S} \cap C^{\mathbb{N}}, \ x_n \to x \right\}$

and we set $\check{C} := \check{C}(\mathcal{S}) = \{x \in X : S(x, C, \mathcal{S}) \neq \emptyset\}.$

Obviously $C \subset \widehat{C} \subset \check{C}$; for each x in \widehat{C} we define

$$\widehat{f}(x) = \inf_{(x_n)\in S(x,C,\mathcal{S})} \liminf f(x_n).$$

We first state some elementary properties of f.

Proposition 1 \widehat{f} is a function from \widehat{C} to $[-\infty, +\infty[$ such that $\widehat{f}_{|C} \leq f$. Moreover $\inf_{C} f = \inf_{C} \widehat{f} = \inf_{\widehat{C}} \widehat{f}$; in particular, \widehat{f} is a function from \widehat{C} to \mathbb{R} provided that f is lower bounded.

PROOF. By construction of \widehat{C} and \widehat{f} it is obvious that \widehat{f} never takes the value $+\infty$ on \widehat{C} . By considering the constant sequences of C we get $\widehat{f}_{|C} \leq f$. In particular we get $\inf_{C} \widehat{f} \leq \inf_{C} f$. By the definition of \widehat{f} we can conclude that $\widehat{f}(x) \geq \inf_{C} f$ for each $x \in \widehat{C}$. Thus $\inf_{C} f \leq \inf_{C} \widehat{f} \leq \inf_{C} \widehat{f}$ which finishes the proof. \Box

We say that f is S-lower semi-continuous (S-l.s.c.) at x if for each $(x_n) \in S(x, C, S)$ we have $\liminf f(x_n) \ge f(x)$; f is said to be S-lower semi-continuous on C when f is S-l.s.c. at each point of C. When S is the set of all sequences in X, S-lower semicontinuity coincides with sequential lower semi-continuity (s.l.s.c.).

We conclude directly that f is S-l.s.c. at $x \in C$ iff $f(x) \leq \widehat{f}(x)$; f is S-l.s.c. on C iff $f \leq \widehat{f}_{|C}$. We can assert:

Proposition 2 If f is S-l.s.c. on C then \hat{f} is a function from \hat{C} to $[-\infty, +\infty[$ such that $\hat{f}_{|C} = f$.

We say that a function g from D to $[-\infty, +\infty[$ is S-l.s.c. on D relatively to C if (i) $C \subset D \subset \check{C}$, (ii) for each $x \in D$ and $(x_n) \in S(x, C, S)$ we have $\liminf g(x_n) \ge g(x)$.

Proposition 3 Assume that f is S-l.s.c. on C. Then \hat{f} is S-l.s.c. on \hat{C} relatively to C. Moreover, if $g: D \supset C \rightarrow [-\infty, +\infty[$ is an extension of f which is S-l.s.c. on D relatively to C then $g_{|D\cap \hat{C}} \leq \hat{f}_{|D\cap \hat{C}}$.

PROOF. For each $x \in \widehat{C}$ and each $(x_n) \in S(x, C, \mathcal{S})$ we have $\liminf \widehat{f}(x_n) = \liminf f(x_n)$ since $\widehat{f}_{|C} = f$. By the definition of $\widehat{f}(x)$ we also get $\liminf f(x_n) \ge \widehat{f}(x)$. Let $g: D \supset C \rightarrow$ $[-\infty, +\infty[$ be an extension of f which is \mathcal{S} -l.s.c. on D relatively to C and let $x \in D \cap \widehat{C}$. For each $(x_n) \in S(x, C, \mathcal{S})$, we have $g(x) \le \liminf g(x_n) = \liminf f(x_n)$. By definition of $\widehat{f}(x)$ we conclude that $g(x) \le \widehat{f}(x)$.

Corollary 4 If f is S-l.s.c. on C then \hat{f} is the greatest extension of f on \hat{C} with values in $[-\infty, +\infty]$ which is S-l.s.c. on \hat{C} relatively to C.

In particular, if f is s.l.s.c. on C then \hat{f} is s.l.s.c. on \hat{C} relatively to C. In some particular cases, for instance when X is a metric space, we can show that \hat{f} is s.l.s.c. on \hat{C} provided that f is s.l.s.c. on C. More generally:

Proposition 5 If f is s.l.s.c. on C and if each point of \widehat{C} admits a countable base of neighbourhoods for the induced topology on \widehat{C} then \widehat{f} is s.l.s.c. on \widehat{C} .

PROOF. Let $x \in \widehat{C}$ such that $\widehat{f}(x) > -\infty$ and let (z_n) be a sequence of points of \widehat{C} which converges to x; we can consider a subsequence (x_n) s.t. $\liminf \widehat{f}(z_n) = \lim \widehat{f}(x_n)$. Let $\epsilon > 0$ be given. For each integer n, we can consider a sequence $(x_{n,p})_p$ of points of C which converges to x_n such that $(f(x_{n,p}))_p$ converges to a real number between $\widehat{f}(x_n)$ and $\widehat{f}(x_n) + \epsilon/2$; without loss of generality we can assume that $f(x_{n,p}) \leq \widehat{f}(x_n) + \epsilon$ for all p. Consider now a decreasing countable base (V_n) of open neighborhoods of x (for the induced topology on \widehat{C}). We set s(0) = r(0) = 0; for each integer $n \geq 1$ there exists s(n) s.t. s(n) > s(n-1) and $x_m \in V_n$ whenever $m \geq s(n)$. Since $x_{s(n)}$ belongs to the open set V_n and $(x_{s(n),p})_p$ converges to $x_{s(n)}$ there exists r(n) s.t. r(n) > r(n-1) and $x_{s(n),p} \in V_n$ for all $p \geq r(n)$. In particular, $y_n := x_{s(n),r(n)} \in V_n$ for each integer n and thus (y_n) is a sequence of points of C which converges to x and therefore $\widehat{f}(x) \leq \liminf f(x_{s(n)}) + \epsilon$. We conclude that $\widehat{f}(x) \leq \liminf \widehat{f}(x_{s(n)}) + \epsilon$. We

We note that in the previous proposition we can conclude that \hat{f} is in fact l.s.c. on \hat{C} . Using a classical result of functional analysis we get:

Corollary 6 Let X be a normed linear space with a separable dual space and C be a nonempty bounded subset of X. If f is weakly l.s.c. on C then \hat{f} is weakly l.s.c. on \hat{C} .

A subset D of X is sequentially compact (resp., relatively sequentially compact) if each sequence of points of D has a subsequence which converges to a point of D (resp., of X). It is well known that a s.l.s.c. function has at least one minimizer on every nonempty sequentially compact subset. In particular, under the assumptions of the previous proposition, \hat{f} has at least a minimizer on \hat{C} whenever this set is sequentially compact. It is rather surprising that \hat{f} admits a minimizer on \hat{C} when this set is sequentially compact without knowing whether \hat{f} is s.l.s.c. on \hat{C} or not.

Proposition 7 If f is s.l.s.c. on C and if C is relatively sequentially compact then \hat{f} is a function from \hat{C} to $[-\infty, +\infty[$ and $\inf_C f = \min_{\hat{C}} \hat{f} = \hat{f}(\hat{c})$ for some \hat{c} in \hat{C} .

PROOF. Consider a sequence $(x_n) \in C$ such that $(f(x_n))$ converges to $\inf_C f$. There exists a subsequence (c_n) which converges to a point \hat{c} of X. Let us show that $\hat{c} \in \hat{C} : \hat{c}$ is

limit of $(c_n) \subset C$ and $(f(c_n))$ is upper-bounded since it converges to $\inf_C f \in [-\infty, +\infty[$. Moreover $\liminf_C f(c_n) \geq \widehat{f}(\widehat{c})$ since \widehat{f} is s.l.s.c. on \widehat{C} relatively to C and $\widehat{f}_{|C} = f$. We get $\widehat{f}(\widehat{c}) \leq \inf_C f$. Since we also have $\inf_C f \leq \inf_{\widehat{C}} \widehat{f}$, the result follows.

2 Convex extensions

Our objective is to construct a finite convex extension of a finite convex function f defined on C; we will show under weak assumptions that the function \hat{f} defined on \hat{C} is a solution of this problem.

In the sequel we assume that X is a topological vector space. We also assume that S is a subset of the set of sequences of X such that:

(A1) S contains the subset S_0 of all sequences of X whose image is contained in some line segment,

(A2) if $(a_n) \in \mathcal{S}$ then each of its subsequences belongs to \mathcal{S} ,

(A3) if $(a_n) \in \mathcal{S}$ and $b \in X$ then $(\theta a_n + (1 - \theta)b) \in \mathcal{S}$ for each $\theta \in [0, 1]$.

We say that \mathcal{S} is stable by convex combinations when

(A4) if $(a_n) \in \mathcal{S}$ and $(b_n) \in \mathcal{S}$ then $(\theta a_n + (1 - \theta)b_n) \in \mathcal{S}$ for each $\theta \in [0, 1]$.

We first note that S_0 satisfies assumptions (A1)-(A3) but not (A4). The set of all sequences of X satisfies (A1)-(A4). We keep in mind that the construction of \hat{f} and \hat{C} depends on the choice of S.

Recall that $f : C \subset X \to \mathbb{R}$ is a quasi-convex function iff C is a convex subset and for each $(x, y, \theta) \in C \times C \times [0, 1]$ we have $f(\theta x + (1 - \theta)y) \leq \max(f(x), f(y))$.

We first give a sufficient condition for \widehat{C} to be a convex subset. We say that $D \subset X$ is convex relatively to $C \subset X$ if $C \subset D$ and for each $(x, y, \theta) \in D \times C \times [0, 1]$ we have $\theta x + (1 - \theta)y \in D$.

Proposition 8 If C is a convex subset and f is a quasi-convex function then the subset \hat{C} is convex relatively to C. If moreover S is stable by convex combinations then \hat{C} is a convex subset.

PROOF. Given $(x, y, \theta) \in \widehat{C} \times \widehat{C} \times [0, 1]$ we can consider sequences (x_n) and (y_n) of C belonging to S and converging respectively to x and y in such a way that (by (A2)) $(f(x_n))$ and $(f(y_n))$ are upper bounded. If assumption (A4) is not satisfied we will assume that in fact $y \in C$ and we will take $y_n = y$. By convexity of C the points $z_n := \theta x_n + (1 - \theta)y_n$ are in C and by quasi-convexity of f we have $f(z_n) \leq \max(f(x_n), f(y_n))$. The point $z := \theta x + (1 - \theta)y$ is limit of the sequence (z_n) of points of C which belongs to S (by (A3) or (A4)) and $(f(z_n))$ is upper bounded: $\theta x + (1 - \theta)y$ belongs to \widehat{C} .

We will show the convexity of f is preserved by \hat{f} when (A4) holds. We say that a function $f: D \subset X \to \mathbb{R}$ is *convex relatively to* $C \subset X$ if D is convex relatively to C and if for each $(x, y, \theta) \in D \times C \times [0, 1]$ we have $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$.

Proposition 9 Let f be a convex function from C to \mathbb{R} . If f is a S-l.s.c. convex function then \hat{f} is convex relatively to C. If S is stable by convex combinations then \hat{f} is a convex function.

PROOF. Let $(x,\theta) \in \widehat{C} \times [0,1]$ and let $y \in C$ or, when (A4) holds, $y \in \widehat{C}$; the point $z := \theta x + (1-\theta)y$ is then in \widehat{C} . By definition of \widehat{f} (and possible extraction), for any $L \in \left] \widehat{f}(x), +\infty \right[$ and $M \in \left] \widehat{f}(y), +\infty \right[$, there exist two sequences (x_n) and (y_n) of C belonging to S which converge respectively to x and y and such that $(f(x_n))$ and $(f(y_n))$ converge respectively to some points of $[-\infty, +\infty[$ denoted by λ and μ which satisfy $\widehat{f}(x) \leq \lambda \leq L$ and $\widehat{f}(y) \leq \mu \leq M$. We will take $y_n = y \in C$ and $\mu = f(y)$ when (A4) does not hold; indeed, $f(y) = \widehat{f}(y)$ by Proposition 2. Each point $z_n := \theta x_n + (1-\theta)y_n$ is in C and satisfies $f(z_n) \leq \theta f(x_n) + (1-\theta)f(y_n)$ by convexity of f; obviously (z_n) belongs to S and converges to z and $(f(z_n))$ is upper bounded. We get $\widehat{f}(z) \leq \liminf f(z) \leq \lim \inf f(z_n) \leq \theta \lambda + (1-\theta)\mu \leq \theta L + (1-\theta)M$. We conclude that $\widehat{f}(z) \leq \theta \widehat{f}(x) + (1-\theta)\widehat{f}(y)$.

In fact, convexity of f also implies that \hat{f} has real values whenever \hat{f} is an extension of f and C satisfies a regularity property defined below.

The subset of *linearly accessible points from* C is defined by $lina(C) := \{x \in X : \exists c \in C, c \neq x,]x, c[\subset C \}$; we set $lin(C) := C \cup lina(C)$.

We introduce $\widetilde{C} = \widetilde{C}(\mathcal{S}) := \{x \in X : \exists (x_n) \in \mathcal{S} \cap C^{\mathbb{N}}, x_n \to x\}$. We say that the convex subset C is \mathcal{S} -semi-regular if $\widetilde{C} = lin(C)$. Let us note that we always have $\widetilde{C} \subset cl(C)$ (the closure of C) and, by (A1), $lin(C) \subset \widetilde{C}$.

Proposition 10 If f is a S-l.s.c. convex function from C to \mathbb{R} and if C is S-semiregular then \hat{f} is a function from \hat{C} to \mathbb{R} .

PROOF. We have to show that \widehat{f} takes finite values on \widehat{C} . We can assume that C is not reduced to a point. Let $x \in C$; since $x \in lin(C)$ we can consider a point $a_x \in C \setminus \{x\}$ such that $]a_x, x[\subset C$. Then $b_x := 2^{-1}x + 2^{-1}a_x \in C$ and, by Proposition 9, $\widehat{f}(b_x) \leq 2^{-1}\widehat{f}(x) + 2^{-1}\widehat{f}(a_x)$. By Proposition 2 we get $\widehat{f}(x) \geq 2f(b_x) - f(a_x) > -\infty$. \Box

In many classical cases, the property of \mathcal{S} -semi-regularity is satisfied.

Proposition 11 Let C be a nonempty convex subset of X.

(i) C is S_0 -semi-regular.

- (ii) If X is a finite dimensional space then C is S-semi-regular.
- (iii) If int(C) is nonempty then C is S-semi-regular and $\tilde{C} = cl(C)$.
- (iv) If lin(C) is closed then C is S-semi-regular and $\tilde{C} = cl(C)$.

PROOF. (i) Let $x \in \widetilde{C} \setminus C$ (if nonempty); x is limit of a sequence of points of C given by $x_n = (1 - t_n)x + t_n a$ where $a \in X$ and $t_n \downarrow 0$ in [0, 1]. We remark that $[x, x_0] = \bigcup_n [x_{n+1}, x_n]$; by convexity $[x_{n+1}, x_n] \subset C$ and thus $[x, x_0] \subset C$: $x \in lina(C)$. We have shown that $\widetilde{C} \subset lin(C)$ which finishes the proof.

(ii) Without loss of generality we can assume that the affine hull of C is X; the result follows from (iii).

- (iii) It is well known that lin(C) = cl(C) (see [2, p. 59]); we use (iv).
- (iv) Since $C \subset lin(C) \subset \widetilde{C} \subset cl(C) \subset cl(lin(C))$ the conclusion is obvious.

In infinite dimensions, C can be a S-semi-regular convex subset with an empty interior. Consider the space $X = L^2(]0, 1[)$ and $C := \{f \in X : f(x) > 0 \text{ a.e. } x \in]0, 1[\};$ we have $lin(C) = \widetilde{C} = D$ where $D := \{f \in X : f(x) \ge 0 \text{ a.e. } x \in]0, 1[\}$ and we have $int(C) = int(D) = \emptyset$.

We now introduce a stronger form of the S-semi-regularity condition in order to transmit some properties of f to \hat{f} . We will say that a point c of the convex subset Cis a regular point of C if $\theta c + (1 - \theta)x \in C$ for any $(\theta, x) \in]0, 1[\times lin(C);$ we denote reg(C) the possibly empty subset of regular points of C. We say that the convex subset C is S-regular if C is S-semi-regular (i.e. $\tilde{C} = lin(C)$) and if there exists a point $c \in C$ such that $\theta c + (1 - \theta)x \in C$ for any $(\theta, x) \in]0, 1[\times lin(C)$ (i.e. $reg(C) \neq \emptyset$).

Let us give an important case for which $reg(C) \neq \emptyset$.

Proposition 12 Let C be a convex subset of X. If icor(C) is nonempty then C has regular points; moreover $icor(C) \subset reg(C)$.

PROOF. We can assume that $0 \in C$ and icor(C) is the core of C considered as a subset of span(C). We have $\theta icor(C) + (1 - \theta)lin(C) \subset icor(C)$ for each $\theta \in [0, 1[$ by [2, p. 10] and thus $icor(C) \subset reg(C)$.

In general, a convex subset may have regular points but an empty intrinsic core. For example let $C := \{f \in L^2(]0, 1[) : f(x) > 0 \text{ a.e. } x \in]0, 1[\}$. Then reg(C) = C, C is S-regular but $icor(C) = \emptyset$ (see Proposition 13 (iv)).

The property of \mathcal{S} -regularity is satisfied in many classical situations.

Proposition 13 Let C be a nonempty convex subset of X.

- (i) If icor(C) is nonempty then C is \mathcal{S}_0 -regular.
- (ii) If X is a finite dimensional space then C is S-regular.
- (iii) If int(C) is nonempty then C is S-regular.
- (iv) If lin(C) is closed and icor(C) is nonempty then C is S-regular.

PROOF. It follows by Propositions 11 and 12 (for (ii) see [2, p. 9]).

In many cases, the function \hat{f} can be determined via an elementary calculus.

Proposition 14 If f is a S-l.s.c. convex function from C to \mathbb{R} and if C is S-regular then for each $(a, x) \in reg(C) \times \widehat{C}$ and (t_n) converging in]0, 1[to 0 then

$$\widehat{f}(x) = \lim_{n} f((1-t_n)x + t_n a).$$

PROOF. The sequence (z_n) defined by $z_n = (1 - t_n)x + t_n a$ where $(a, x, t_n) \in reg(C) \times \widehat{C} \times]0,1[$ is in \mathcal{S} by (A1). Moreover (z_n) is a sequence of points of C; indeed, $(a, x, t_n) \in reg(C) \times lin(C) \times]0,1[$ since $x \in \widehat{C} \subset \widetilde{C}$ and $\widetilde{C} = lin(C)$. The function \widehat{f} is convex on \widehat{C} relatively to C (Proposition 9) and is an extension of f (Proposition 2); it follows that $f(z_n) = \widehat{f}(z_n) \leq (1 - t_n)\widehat{f}(x) + t_n\widehat{f}(a)$ and finally $\limsup f(z_n) \leq \widehat{f}(x)$. We also have $\liminf f(z_n) \geq \widehat{f}(x)$ since $(z_n) \in S(x, C, \mathcal{S})$ and \widehat{f} is \mathcal{S} -l.s.c. on \widehat{C} relatively to C (Proposition 3).

Proposition 15 If f is a S-l.s.c. convex function from C to \mathbb{R} and if C is S-regular then \hat{f} is a S-l.s.c. convex function from \hat{C} to \mathbb{R} .

PROOF. Let $(x, y, \theta) \in \widehat{C} \times \widehat{C} \times [0, 1]$ and a be given in the nonempty subset reg(C); we denote $z(\theta) := \theta x + (1 - \theta)y$. Since C is S-regular, $x_n := (1 - n^{-1})x + n^{-1}a$ and $y_n := (1 - n^{-1})y + n^{-1}a$ belong to C (for $n \ge 1$). We set $z_n(\theta) := (1 - n^{-1})z(\theta) + n^{-1}a$ (for $n \ge 1$); the sequence $(z_n(\theta))$ is in S. We have $z_n(\theta) = \theta x_n + (1 - \theta)y_n$ and thus $(z_n(\theta))$ is a sequence of points of C which converges to $z(\theta)$ ((x_n) and (y_n) converge respectively to x and y). By convexity of f we can write $f(z_n(\theta)) = f(\theta x_n + (1 - \theta)y_n) \le \theta f(x_n) + (1 - \theta)f(y_n)$. By Proposition 14, we have $\widehat{f}(x) = \lim_n f((1 - n^{-1})x + n^{-1}a) = \lim_n f(x_n)$ and $\widehat{f}(y) = \lim_n f(y_n)$. We deduce $\liminf_n f(z_n(\theta)) \le \theta \widehat{f}(x) + (1 - \theta)\widehat{f}(y) < +\infty$; we can assert that $z(\theta)$ belongs to \widehat{C} and finally \widehat{C} is a convex subset. By Proposition 14, $\widehat{f}(z(\theta)) = \lim_n f((1 - n^{-1})z(\theta) + n^{-1}a) = \lim_n f(z_n(\theta))$; thus $\widehat{f}(z(\theta)) \le \theta \widehat{f}(x) + (1 - \theta)\widehat{f}(y)$ and we conclude \widehat{f} is a convex function on \widehat{C} . By Proposition 10, \widehat{f} has real values on \widehat{C} .

To show that \widehat{f} is a S-l.s.c. function on \widehat{C} , consider (x_n) in $S \cap \widehat{C}^{\mathbb{N}}$ which converges to a point $x \in \widehat{C}$ and such that $\liminf \widehat{f}(x_n) < +\infty$. Let a be a regular point of C and $\theta \in]0, 1[$; we define (y_n) by $y_n := (1 - \theta)x_n + \theta a$. We see that (y_n) is in $S \cap C^{\mathbb{N}}$ and converges to the point $y := (1 - \theta)x + \theta a$. We have $y \in C$ and $(y_n) \in S(y, C, S)$; since f is S-l.s.c. we get $\liminf f(y_n) \ge f(y)$. By convexity of \widehat{f} , $f(y_n) = \widehat{f}(y_n) \le (1 - \theta)\widehat{f}(x_n) + \theta\widehat{f}(a)$. We obtain $f((1 - \theta)x + \theta a) \le (1 - \theta)\liminf \widehat{f}(x_n) + \theta f(a)$. We first deduce $\liminf \widehat{f}(x_n) > -\infty$ since f(y) is real. We conclude $\liminf f((1 - n^{-1})x + n^{-1}a) \le \liminf \widehat{f}(x_n)$. By Proposition 14, $\liminf f((1 - n^{-1})x + n^{-1}a) = \widehat{f}(x)$ and thus $\liminf \widehat{f}(x_n) \ge \widehat{f}(x)$. \Box

We first study the convex extensions of a convex function. We say that f is algebraically lower semi-continuous (a.l.s.c.) if f is S_0 -l.s.c. We say that C is algebraically regular if C is S_0 -regular, i.e. $reg(C) \neq \emptyset$. In particular, convex subsets with nonempty intrinsic core (relative algebraic interior) are algebraically regular. **Theorem 16** If f is an a.l.s.c. convex function from C to \mathbb{R} and C is algebraically regular then \widehat{f} is a convex extension from \widehat{C} to \mathbb{R} . Moreover, if g is a function from $D \subset lin(C)$ to \mathbb{R} which is a convex extension of f then $D \subset \widehat{C}$ and $\widehat{f}_{|D} \leq g$.

PROOF. From the previous results \hat{f} is a convex function from \hat{C} to \mathbb{R} and $\hat{f}_{|C} = f$. Let g be a function from $D \subset lin(C)$ to \mathbb{R} which is a convex extension of f. Let $x \in D$; since C is algebraically regular we can choose $a \in reg(C)$. Then $x_n := (1 - n^{-1})x + n^{-1}a \in C$ for each $n \geq 1$. The sequence (x_n) converges to x and is in \mathcal{S}_0 . The sequence $(f(x_n))$ is upper bounded : $f(x_n) = g(x_n) \leq (1 - n^{-1})g(x) + n^{-1}g(a)$. We conclude that $x \in \hat{C}$. We also have $\hat{f}(x) \leq \liminf f(x_n) \leq \liminf [(1 - n^{-1})g(x) + n^{-1}g(a)] \leq g(x)$.

When the convex subset C has a nonempty core (algebraic interior) and f is an a.l.s.c. convex function from C to \mathbb{R} , it is proved in [1] that the smallest convex extension Ef of f exists on the whole space X but takes values in $\mathbb{R} \cup \{+\infty\}$. We easily show $Ef_{|\widehat{C}|} = \widehat{f}$ and $Ef_{|lin(C)\setminus\widehat{C}|} = +\infty$.

We now study the S-l.s.c. convex extensions of a S-l.s.c. convex function.

Theorem 17 If f is a S-l.s.c. convex function from C to \mathbb{R} and C is S-regular then \widehat{f} is a S-l.s.c. convex extension from \widehat{C} to \mathbb{R} . Moreover, if g is a function from $D \subset lin(C)$ to \mathbb{R} which is an a.l.s.c. convex extension of f then $D \subset \widehat{C}$ and $\widehat{f}_{|D} = g$; thus g is S-l.s.c.

PROOF. The first part is consequence of Propositions 2 and 15. Consider $g: D \subset lin(C) \to \mathbb{R}$ an a.l.s.c. convex extension of f. We know from the previous theorem that $D \subset \widehat{C}$ and $\widehat{f}_{|D} \leq g$. From Proposition 3 we have $g \leq \widehat{f}_{|D}$ and we conclude. \Box

We say that C is sequentially regular if C is \mathcal{S}_{∞} -regular where $\mathcal{S}_{\infty} := X^{\mathbb{N}}$. In particular, convex subsets with nonempty interior, convex subsets of finite dimensional spaces are sequentially regular. We note that if $\mathcal{S} = \mathcal{S}_{\infty}$ we have $\widetilde{C} = \{x \in X : \exists (x_n) \in C^{\mathbb{N}}, x_n \to x\}$; the convex subset C is sequentially regular iff each limit of a convergent sequence of points of C is in lin(C) and C has regular points.

Corollary 18 If f is a s.l.s.c. convex function from C to \mathbb{R} and C is sequentially regular then \widehat{f} is a s.l.s.c. convex extension from \widehat{C} to \mathbb{R} . Moreover, if g is a function from $D \subset lin(C)$ to \mathbb{R} which is a s.l.s.c. convex extension of f then $D \subset \widehat{C}$ and $\widehat{f}_{|D} = g$.

References

- M. Dragomirescu, C. Ivan : The Smallest Convex Extension of a Convex Function, Optimization, 1992, Vol. 24, pp. 193-206.
- [2] R. B. Holmes : Geometric Functional Analysis and its Applications. Springer-Verlag, New York, 1975.