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Abstract

Chaotic dynamical systems are defined and illustrated with the ”doubling func-

tion”. After less than 60 iterations the orbits become 0. This is due to the binary

coding of real numbers in a computer. The simulation dramatically shows that com-

puters may give deceptive (false) results when calculations are done a large number

of times. The convergence to 0 does not occur with the ”tripling function” but re-

sults are equally inaccurate if not visibly so. The presentation illustrates the use

of Matlab’s ”Notebook” in the classroom. Those can be used to present computer

simulations ”embedded” within a Word 97 document that contains the body of the

lecture.
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1 The ”doubling function”

The ”doubling function” is defined on (0,1) by Q(x)=2x for 0≤x≤0.5 andQ(x)=2x-1 for

0.5≤x≤1. The Matlab program that graphs this function is given below. This program

is ”embedded” in, and runs from a Word 97 document. The Matlab function ”Jacax2n”

found in the program is the actual Matlab routine (not given explicitly here) that gives the

doubling function. The graphical output follows below (the first diagonal is also plotted).
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[x=0:0.001:1;

n=1; % order of iteration

Y=[0 1];

subplot(1,1,1);

hold on;

xlabel(’x’,’FontSize’,14,’FontWeight’,’b’);

ylabel(’Q(x)’,’FontSize’,14,’FontWeight’,’b’);

plot(Jacax2n(n),Y,’b’);

plot(x,x,’--k’)

hold off ]

fig. 1 : Doubling function (and first diagonal)

2 Discrete dynamical systems

A discrete dynamical system is defined by a function Q(x), an initial point x(0), and

the iterates generated by applying Q to X(0), then Q again to the result Q(X(0)), etc:

x(1)=Q(x(0)), x(2)=Q(x(1)) and more generally x(n) = Q(x(n-1))=Q(n)(x(0)) , n=1, 2,

...(”Q(n)” denotes the n-th iterate of Q). Again the program and the output are given

below.

[x=0:0.001:1;n=1;
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np=80;

npp=2*np-1;Td=zeros(1,np);Qd=zeros(1,np);

Xid=zeros(1,npp);Yid=zeros(1,npp);

% xid below: 0.95 periodic ; 0.1246 chaotic.....

xid=0.1246; yid=Jacadf(xid,1);Xid(1)=xid; Yid(1)=yid;Td(1)=1;Qd(1)=yid;

for k=1:np-1;

Td(k+1)=k+1;Xid(2*k)=yid;Yid(2*k)=yid;ypid=Jacadf(yid,1);Qd(k+1)=ypid;

Xid(2*k+1)=yid; Yid(2*k+1)=ypid; xid=yid;yid=ypid;

end

%

subplot(1,2,1);hold on;

xlabel(’x’,’FontSize’,14,’FontWeight’,’b’);

ylabel(’Q(x) + iterations’,’FontSize’,14,’FontWeight’,’b’);

plot(Jacax2n(1),Y,’b’);plot(x,x,’--k’,Xid,Yid,’r’);

hold off;

subplot(1,2,2);hold on;

xlabel(’n’,’FontSize’,14,’FontWeight’,’b’);

ylabel(’Q^{(n)}(x)’,’FontSize’,14,’FontWeight’,’b’);

plot(Td,Qd)]

The program given above is run interactively in the classroom and different behaviors

can be illustrated by simply changing the initial point xid, e.g. with xid=0.95 the dynam-

ics appear to rapidly go into a cycle; with xid=0.1246 the dynamics (seen in the graph

below) appear to be ”chaotic” - in a sense of course to be defined - until the 55th iteration

roughly, whern the orbit goes suddenly to 0. We next define ”chaos” and investigate the

apparent ”convergence to zero” of the orbit.
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Fig. 2 : Phase space and time series representation

3 Chaotic dynamical systems

In the graph below we plot the third iterate Q(3)(x) :

[clear;Y=[0 1];

x=0:0.001:1;

n1=3; % order of iteration

%df=Jacadf(x,n);

Y=[0 1];

subplot(1,1,1);

hold on;

xlabel(’x’,’FontSize’,14,’FontWeight’,’b’);

ylabel(’Q^{(n)}(x)’,’FontSize’,14,’FontWeight’,’b’);

plot(Jacax2n(n1),Y,’b’);

plot(x,x,’--k’)

hold off; ]

Fig. 3 : Third iterate Q(3)(x) of doubling function (and first diagonal)

Periodic points x of period three are the eight points for which Q(3)(x)=x, i.e. where

the graph of Q(3)(x) intersects the first diagonal. The reader is easily convinced that for
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n going to infinity the function Q(n)(x) consists of an increasing number of increasingly

steep parallel segments. Periodic points are evenly distributed on the (0,1) interval and

their number grows without bound when n → ∞. The doubling function has the two

defining properties of a chaotic dynamical systerm:

1. Periodic points are dense on the domain of the function.

2. For any two intervals I1, I2, there is x ∈ I1 and n such that Q(n)(x) ∈ I2.

4 Apparent convergence to 0 of the orbit

Regardless of x(0) the computed orbit Q(n)(x(0)) becomes 0 for n reaching approximately

55. This is due to the ”finite binary coding” of a number x between 0 and 1. Indeed, an

initial value x(0) between 0 and 1 is approximated as

x(0)c =
a1

2
+

a2

22
+ ... +

ak

2k
(1)

where ap = 0 or 1 for all p, k is say 50, and here and elsewhere a subscript ”c” means

”the ”coded” value of”. The ”code” for x(0) is thus the finite binary sequence (a1, a2,

...,ak). If x(0)≤0.5 then a1 = 0 and

Q(x(0)c) = 2x(0)c = 2
(

a1

2
+

a2

22
+ ... +

ak

2k

)

= (2)

a2

2
+

a3

22
+ ... +

ak

2k−1
+

0

2k

so that the ”code” for the first iterate Q(x(0)c) is (a2, a3, ..., ak, 0). The reader can eas-

ily verifiy that the same holds true for x¿0.5. If ”
c
= means ”has the coded representation”

we then have

x(0)c
c
= (a1, a2, ..., ak) (3)

Q(x(0)c)
c
= (a2, a3, ..., ak, 0) (4)

Q(2)(x(0)c)
c
= (a3, a4, ..., ak, 0, 0) (5)

and finally

Q(k−1)(x(0)c)
c
= (ak, 0, 0, ..., 0); Q(k)(x(0)c)

c
= (0, 0, 0, ..., 0); (6)

This shows that as n increases, the ”coding” by the computer of the iterates becomes

increasingly inaccurate. The ”coded” value of the k-th iterate is 0 and remains 0 for

iterates of higher order.
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An obvious question is whether there is an analytical expression for Q(n)(x), which

would make it possible to calculate Q(n)(x) exactly and compare the result with the

computed value. The doubling function is simple and an expression for Q(n)(x) can be

written down - however that expression does not help much. Indeed, when trying to

evaluate that function, numerical problems arise, similar to the ones encountered in the

iteration. It thus seems very difficult to compute a 60th iterate of the doubling function

- except of course with a more powerful computer - or one that does exact ”rational

arithmetic”. However, any computer has a finite precision and in the case of the doubling

function it may be the 500th or the 5,000th iterate that becomes 0, but eventually the

orbit does reach 0.

5 The tripling function

The tripling function R(x) is defined as R(x)=3x, or 3x-1, or 3x-2 depending on whether

0≤ x ≤ 1/3, 1/3< x ≤ 2/3; 2/3< x ≤ 1.

[x=0; x=0:0.001:1; n=1;

np=70;npp=2*np-1; T=zeros(1,np);

Qit=zeros(1,np); Xi=zeros(1,npp); Yi=zeros(1,npp);

xi=0.64; yi=Jacatf(xi,1); Xi(1)=xi; Yi(1)=yi;

T(1)=1;Qiter(1)=yi;%

for k=1:np-1;

T(k+1)=k+1;

Xi(2*k)=yi;Yi(2*k)=yi;

ypi=Jacatf(yi,1);

Qiter(k+1)=ypi;

Xi(2*k+1)=yi; Yi(2*k+1)=ypi;

xi=yi;yi=ypi;

end

%

subplot(1,2,1); plot(Jacax3n(1),Y,’b’);

hold on;plot(x,x,’--k’,Xi,Yi,’r’);hold off;

subplot(1,2,2); plot(T,Qiter); ]

With the tripling function, there is no convergence of the orbit to 0, but results are

equally inaccurate after 55 iterations - but no visibly so as with the doubling function

since there is no convergence to 0 of the ”coded iterates”.
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Fig 4. : Phase space and time series representation (tripling function)

6 Conclusion

In this paper we have briefly outlined an example from chaotic dynamical systems of

the use of Matlab ”Notebooks” in the classroom. This system has the advantage that

a computer program can be embedded directly into a lecture prepared with Word 97.

Simulations are done live, in real time, and concepts graphically illustrated. Ideally, the

file would be made available to students who could then experiment further themselves

with the programs contained in the lecture.
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