
Study and improvement of the condition number of the Electric

Field Integral Equation

X. Antoine1, A. Bendali2 and M. Darbas3

1MIP, Toulouse, France, antoine@mip.ups-tlse.fr

2INSA, Toulouse, France, bendali@gmm.insa-tlse.fr

3MIP, Toulouse, France, darbas@mip.ups-tlse.fr
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Abstract

The discretization of the Electric Field Integral Equation (EFIE) leads to the

solution of a dense complex non-hermitian linear system. It is well-known that

the related linear system becomes ill-conditioned particularly when the frequency

increases. As a consequence, its solution by a subspace Krylov iterative algorithm

has a very slow convergence. In this work, we examine the possibility to speed up

the convergence by constructing a Calderón-type implicit preconditioner.
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1 Introduction

A typical difficulty arising in the numerical solution of electromagnetic scattering prob-

lems is related to the unbounded character of the domain. Among the most widely used

approaches, a possible solution consists in equivalently rewritting the initial problem as an

integral equation set on the surface of the scatterer. It is well-known that this technique

yields schemes being both robust and accurate. However, the operator defining such an

equation is a non-local pseudodifferential operator. From a discrete point of view, it gen-

erates a dense complex non-hermitian linear system of size N ×N , where N stands for the

number of degrees of freedom arising in the considered problem. As a consequence, the

application of a direct solver to compute the solution is both time and memory consuming

and requires approximately O(N 3) operations. This is still more problematic at the high

frequency regime since N is in the order of λ/10, where λ denotes the wavelength.

An alternative to this approach consists in applying a Krylov subspace iterative solver

(CGS, GMRES, QMR,...) [4] to the equation for computing an approximate solution.
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This results in a computational cost in the order of O(niterN2), where niter designates the

number of iterations needed for obtaining a satisfactory approximate solution. The com-

plexity O(N 2) coming from the evaluation of Matrix/Vector products can be efficiently

reduced by using for instance the Rokhlin’s Multilevel Fast Multipole Method (FMM) [3].

Another way to reduce the CPU time is to prospect how to speed up the algorithm by di-

minishing niter. Integral equations become ill-conditioned specially at the high-frequency

regime hence breaking down the convergence of the iterative solver. However, a significant

improvement can be gained by efficiently preconditioning the linear system. Here, we fo-

cus on Calderón-type preconditioners. They are based on the construction of a continuous

approximate inverse of the exact operator. to use Calderón’s integral relations recently

extended to the three-dimensional Here we choose to design an implicit inverse operator

based on the construction of an approximate boundary-value problem by truncating the

exterior domain by a local On-Surface Radiation Condition (OSRC) [1]. The main tool

involved in the use of a Calderón-type preconditioner is the numerical approximation of

the Dirichlet-Neumann operator. Here, this approximation is handled by a finite element

solution of a boundary-value problem set on a shell around the scatterer surface. This

first study is only prospective and hence is limited to the two-dimensional case.

The paper is organized as follows. In Section 2, we briefly recall how to derive the

Electric Field Integral Equation (EFIE) for the scattering problem of a transverse po-

larized electromagnetic wave by a perfectly conducting body. In Section 3, we review

some recent results of Chew and Warnick [2] giving a sharp estimate for the condition

number of the EFIE for a strip in terms of the wavelength and the mesh size. In Section

4, we introduce the implicit sparse preconditioner. Then, we give some numerical results

illustrating its robustness and efficiency.

2 The EFIE for a TM-polarized incident field

Let Ω− ⊂ R
2 be a bounded domain with a C∞ boundary Γ = ∂Ω. Let us denote by

Ω+ = R
2 \Ω− the associated exterior domain of propagation. Consider uinc as an incident

(usually plane) wave defined by a wavenumber k. We denote by λ = 2π/k the wavelength.

We now assume that the incident field uinc generates a scattered wave u in the domain

Ω+ solution to the boundary-value problem for the Helmholtz equation



































Find u ∈ C∞(Ω+) such that

4u + k2u = 0, in Ω+,

u = g, on Γ,

lim
|x|→+∞

|x|1/2(∇u · x

|x| − iku) = 0.

(1)
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where the Dirichlet datum is g = −uinc and the Sommerfeld radiation condition at infinity

is imposed to select the physical outgoing wave. This problem models the scattering of a

TM time-harmonic wave by a perfect conductor infinite cylinder. System (1) has first to

be reduced to an equivalent integral equation set on Γ. Several approaches can be used

for such a reduction when Γ is a closed curved. Usually, the Combined Field Integral

Equation (CFIE), being well-conditioned, is the most used formulation. However, when

Γ is an open curve, only the Electric Field Integral Equation (EFIE) can be applied

V p(x) = g(x), x ∈ Γ, (2)

where V is the single-layer potential defined by

V p(x) =

∫

Γ

G(x, y)p(y)dΓ(y), x ∈ Γ.

Here, G is the free-space Green’s function in R
2 given by

G(x, y) =
i

4
H

(1)
0 (k|x − y|), x 6= y,

where H
(1)
0 is the Hankel function of the first kind of order zero. The unknown density p is

related to the field u by the jump relation p := [∂
n
u]Γ, with [∂

n
u]Γ = ∂

n
u−
|Γ − ∂

n
u+
|Γ, ∂

n
u±
|Γ

denoting the boundary-value of ∂
n
u on Γ from its value within Ω±. Vector n = (n1, n2)

is the outwardly directed unit normal to Ω−. To numerically solve (2), we make use of a

P1 boundary element method. The density of mesh nodes must be sufficient (generally in

the order of λ/10) to correctly reproduce the oscillations of the field and the singularities

of the scatterer.

3 Asymptotic study of the conditioning of the EFIE

The discretization of the EFIE leads to the computation of the solution to a linear system

defined by a dense non-hermitian complex-valued matrix [V ]. Since the aim is to use a

Krylov iterative solver for high-frequency problems, we have to investigate which param-

eters damage the condition number K of [V ]. To this end, we recall some recent results

of Chew and Warnick [2] related to the particular case of the strip in the limit of small

wavelengths.

We consider here a screen Γ = [−d/2, d/2]. We designate by h the uniform mesh size

of Γ arising in the discretization of the EFIE by a boundary element method. Let us

respectively denote by D = d/λ and nλ = λ/h the dimensionless length of the strip in

wavelengths and the number of nodes by wavelength. The pseudodifferential operator

V has the property of being both non-hermitian and non-normal. Rather than splitting

V into a static part and a compact perturbation like in the derivation of usual error
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estimates, Chew and Warnick [2] choose the following decomposition: V = H+R, where

H is the normal part of V and R = V − H. Next, based on this decomposition and

using an asymptotic analysis relatively to D → ∞, they prove that H gives a correct

representation of the behaviour of the spectrum of V and that R remains bounded with

respect to D.

It is well-known that, for an infinite plane, modes of the form eiβx are the eigenfunctions

of V for a frequency β in the spectral decomposition. It results that, according to [2], the

high spectral frequencies (|β| > 1) give rise to eigenvalues which behave like λ(4π)−1(β2−
1)−1/2 and lie on the real positive axis. They physically correspond to evanescent rays. For

low spectral frequencies (|β| < 1), the eigenvalues are in the order of iλ(4π)−1(1−β2)−1/2

and are located on the axis of the purely imaginary numbers. They are linked to the

propagative rays. Finally, the interaction between the two endpoints of the finite domain

Γ generates a strong coupling between the evanescent and propagative modes through the

surface waves. They are described by eigenvalues in the form
√

2λ(1 + i)D1/2/(6π), with

|β| ' 1. the discrete version all the aspects of the spectrum

From this analysis, we can see that the largest eigenvalue Λmax of [V ] corresponds to

the surface modes

Λmax '
√

2λ

6π
(1 + i)D1/2.

For a fixed λ and D → ∞, it behaves like the square root of the size of the scatterer

expressed in wavelengths units. Hence, it constitutes a specific parameter of the problem

itself independent of the discretization scheme, and therefore cannot be reduced without

the use of an appropriate preconditioner. Moreover, the smallest eigenvalue of [V ] is

related to the evanescent modes being truncated by the approximation scheme

Λmin ' 2λ

π3nλ
.

A direct consequence is that the condition number K of [V ] can be approximated by

K =
(π

2

)2 2

3
nλD

1/2.

increasing with nλ. As a conclusion, the condition number mainly depends on two essential

terms

• the number of nodes by wavelength nλ directly related to the discretization pro-

cess and linked to the highest evanescent rays being correctly approximated by the

numerical scheme,

• ratio D = (size of the scatterer)/(wavelength) which represents the global length of

the path covered by the creeping rays.

behaviour of the condition number K(V ) with respect to Γ = [−1, 1]).
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4 A preconditioned algorithm for the EFIE

4.1 Construction of a preconditioner for the EFIE

As mentioned in Section 2, the problem to be solved is the following







Find the densityp such that

V p(x) = g(x), x ∈ Γ.
(3)

Following the discussion in the previous section, this system has to be suitably precon-

ditioned before it can be solved by a Krylov iterative procedure. Of course, a perfect

candidate to this objective is the inverse of operator V given by

p = Bg.

In a more realistic way, it is enough to construct an approximation of this inverse much

more less expensive. Moreover, from the previous analysis developed in Section 3, its

effectiveness is closely related to its capability to reproduce the characteristics of the

problem incorporating both the infinite plane approximation and the creeping rays.

To fix the notations, we consider the case of the strip Γ = [−1, 1]. Let us define the

thin layer Ωl by

Ωl = [−(1 + hl), (1 + hl)] × [−hl, hl], l ∈ N
∗.

The integer l allows a control of the size of Ωl. In the sequel, we use the notation nl for

the outwardly directed unit normal vector to Ωl at the fictive boundary Σl.

If the Dirichlet-Neumann operator Λ+ is set on the exterior boundary Σl of Ωl, the

boundary-value problem































Find w such that

4w + k2w = 0, in Ωl,

w|Γ = g, on Γ,

∂
nl

w + Λ+w = 0, on Σl,

(4)

has a unique solution w exactly giving the solution u in the domain Ωl. In some meaning,

it is the exact inverse of V . To simplify the solution of problem (4), we rather use a

microlocalization of Λ+ in the high-frequency regime. Following [1], this leads to local

non-reflecting boundary operators Pm(s, ∂s) of order m (m ∈ N
∗/2) on Γ, variable s

denoting the anticlockwise directed curvilinear abscissa along Γ. The boundary condition

on Σl is called an On-Surface Radiation Condition (OSRC) of order m

∂
nl

w + Pm(s, ∂s)w = 0, on Σl,
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and w is sought as the solution to






























Find w such that

4w + k2w = 0, in Ωl,

w|Γ = g, on Γ,

∂
nl

w + Pm(s, ∂s)w = 0, on Σl.

(5)

This gives rise to an approximation of u|Ωl
. Here we consider as OSRCs [1]

• the Sommerfeld OSRC of order 1/2, that is, the usual radiation condition,

∂
nl

w − ikw = 0, on Σl,

• and the second-order symetric Bayliss-Turkel-like OSRC
(

∂−ik +
κ

2
− κ2

8(κ − ik)

)

w − ∂s

(

1

2(κ − ik)
∂s

)

w = 0, on Σl.

Here function κ(s) stands for the curvature at point s ∈ Σl.

Considering the boundary-value problem (5), we can now describe how to construct a

sparse preconditioner B̃ by using two successive variational formulations.

Step 1: Computation of w on Ωl.

Let us begin by computing the approximate solution w on Ωl. To this end, we consider a

smooth enough test-function ϕ such that ϕ|Γ ≡ 0. Using the Green’s formula, we obtain

−
∫

Ωl

(4w + k2w)ϕdΩl = −
∫

∂Ωl

∂
n
wϕd∂Ωl +

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl.

Since we have ∂Ωl = Σl ∪ Γ and ϕ|Γ ≡ 0, this last relation yields

−
∫

Ωl

(4w + k2w)ϕdΩl = −
∫

Σl

∂
nl

wϕdΣl +

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl

=

∫

Σl

Pm(s, ∂s)wϕdΣl +

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl = 0.

The term involving the OSRC can be symetrized from the form itself of an OSRC. This

direct computation allows us to determine the unknown field w not only on the whole

computational domain Ωl but also on the fictive boundary Σl. From a discrete point of

view, the approximate solution w is computed by the use of a P1 Galerkin finite element

method. This implies that we have to solve a linear system defined by a sparse symetric

and complex-valued matrix.

Step 2: Computation of the density [∂
n
w]Γ .

To determine the density [∂
n
w]Γ, we now choose a test-function ϕ such that ϕ|Γ 6= 0. The

Green’s formula gives the weak formulation

−
∫

Ωl

(4w + k2w)ϕdΩl = −
∫

Γ

∂
n
wϕdΓ −

∫

Σl

∂
nl

wϕdΣl +

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl.
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A more explicit version of this last equation is given by
∫

Γ

∂
n
wϕdΓ =

∫

Σl

Pm(s, ∂s)wϕdΣl +

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl.

However, we have the following equalities
∫

Γ

∂
n
wϕdΓ =

∫

Γ

(∂
n
w)−ϕdΓ −

∫

Γ

(∂
n
w)+ϕdΓ =

∫

Γ

[∂
n
w]ΓϕdΓ.

As a consequence, a possible construction of a preconditioner B̃ is given by using the

approximate solution w computed in the first step
∫

Γ

B̃gϕdΓ =

∫

Ωl

(∇w · ∇ϕ − k2wϕ)dΩl +

∫

Σl

Pm(s, ∂s)wϕdΣl.

Since the construction of B̃ requires the solution of a linear system, then this precondi-

tioner is implicit.

4.2 Numerical results

To test the efficiency of B̃ used as a preconditioner, we consider the Conjuguate Gradient

Squared (CGS) algorithm [4] as Krylov iterative solver. The implementation of the pre-

conditioner is simply made by replacing each Matrix/Vector product y = V x involving

in the initial algorithm by the two successive steps

{

x̃ = B̃x,

y = V x̃.

We choose a stopping criterion on the relative error

||V xj − g||2
||g||2

≤ ε,

where g is the vectorial representation of the boundary element approximation of g in-

volving in the EFIE formulation, vector xj is the approximation of p at the j-th iteration

of the CGS algorithm and ε is an a priori fixed tolerance. The two plots in Fig. 2 depict

the number of Matrix/Vector products versus the relative norm of the residue for the

preconditioned and not preconditioned CGS algorithms, ε being fixed to 10−6. We report

the results of two tests corresponding to k = 20 and k = 40. Only one layer of finite

elements has been used to surround Γ.

Note that the number of iterations has been approximately divided by a factor 5.

OSRCs of orders 1/2 and 2 have been tested and have yielded the same rate of convergence.

Here, the choice of the layer does not take into account the curvature effect. We think

that a high order OSRC would be more effective for surfaces where the curvature has more

significant effect on the scattering. Moreover, we have observed that it is independent of
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Figure 1: Evolution of the norm of the relative residual as a function of the number of

Matrix/Vector products for the preconditioned and not preconditioned CGS algorithms.

the angle of incidence. Therefore, this preconditioner is robust relatively to the frequency

and the angle of incidence.

As a conclusion, we have constructed and tested a new robust implicit preconditioner

for the EFIE which is based on the resolution of an approximate local boundary-value

problem. It applies to open surfaces as e.g. for the case of the strip. Its efficiency is

linked to the fact that it takes into account the computation of the creeping waves and

the evanescent rays, modifying hence suitably the spectrum of the EFIE. Our perspectives

are now to make some more intensive calculations for other curved open scatterers and

to extend it to the TE-polarization case. Moreover, it has to be incorporated in a FMM

to really prove its efficiency.
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