Study of the scalar Oseen equation

C. Amrouche and U. Razafison
Laboratoire de Mathématiques Appliquées, Université de Pau et des Pays de l'Adour, BP 1155, 64013 Pau Cedex, France.

Abstract

This paper is devoted to the scalar Oseen equation, a linearized form of the NavierStokes equations. Because of the various decay properties in various directions of \mathbb{R}^{N}, the problem is set in Sobolev spaces with anisotropic weights. In a first step, some weighted Hardy-type inequalities are obtained, which yield some norm equivalences. In a second step, we establish existence results.

Keywords: Oseen equations, anisotropic weights, Hardy inequality, Sobolev spaces, Exterior domains

AMS Classification: 76D05, 26D15, 46D35

1 Introduction.

Let Ω be an exterior domain of $\mathbb{R}^{N}, N \geq 2$. We consider the following system:

$$
\left\{\begin{array}{l}
-\nu \Delta u+\rho u_{0} \cdot \nabla u+\nabla P=f \text { in } \Omega \tag{1}\\
\operatorname{div} u=0 \text { in } \Omega \\
u=u_{*} \text { on } \partial \Omega \\
\lim _{|x| \rightarrow \infty} u(x)=u_{\infty} .
\end{array}\right.
$$

C. W. Oseen [7] obtained (1) by linearising the Navier-stokes equations, describing the flow of a viscous and incompressible fluid past several obstacles, around a nonzero constant solution u_{0}. Thus, the result offers a better approximation than that of Stokes. The viscosity ν, the density ρ, the external force f, and the boundary values u_{*} on $\partial \Omega$ are given. The unknown velocity field u is assumed to converge to a constant vector u_{∞}, and the scalar P denotes the unknown pressure. Among the works devoted to the system (1), which is called the Oseen equations, we can cite Finn [5], and more recently Farwig [4],

Galdi [6]. The purpose of this paper is to study a simplified case of (1), the scalar Oseen equation:

$$
\begin{equation*}
-\nu \Delta u+k \frac{\partial u}{\partial x_{1}}=f \text { in } \mathbb{R}^{N}, k>0 \tag{2}
\end{equation*}
$$

To prescribe the growth or the decay properties of functions at infinity, the problem is set in weighted Sobolev spaces. Since the fundamental solution $E(x)$ of (2),

$$
\begin{equation*}
E(x)=\frac{1}{4 \pi \nu r} e^{-k s / 2 \nu}, \quad r=|x|, \quad s=r-x_{1}, \tag{3}
\end{equation*}
$$

has anisotropic decay properties, we will deal with the anisotropic weights introduced by Farwig [3, 4]. The case $k=0$ yields the Laplace's equation studied by Amrouche-GiraultGiroire [1] in weighted Sobolev spaces. In a first step, we establish anisotropically weighted Poincaré-type inequalities and,in a second part, we present some existence results.

2 Notations

In this paper, we will use the following notations:

$$
\begin{gathered}
r=r(x)=|x|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{N}^{2}\right)^{1 / 2}, \quad x \in \mathbb{R}^{N} \\
s=s(x)=r-x_{1}, \quad \rho=\rho(x)=\left(1+r^{2}\right)^{1 / 2} .
\end{gathered}
$$

For the anisotropic weights, we set

$$
\eta_{\beta}^{\alpha}=(1+r)^{\alpha / 2}(1+s)^{\beta / 2} .
$$

We will use the following spaces, $\alpha \in \mathbb{R}, 1<p<+\infty$,

$$
W_{\alpha}^{1, p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega), \rho^{\alpha-1} v \in L^{p}(\Omega), \rho^{\alpha} \nabla v \in \mathbf{L}^{p}(\Omega)\right\} \text { if } n / p+\alpha \neq 1,
$$

with its natural norm

$$
\|v\|_{W_{\alpha}^{1, p}(\Omega)}=\left(\left\|\rho^{\alpha-1} v\right\|_{L^{p}(\Omega)}^{p}+\left\|\rho^{\alpha} \nabla v\right\|_{\mathbf{L}^{p}(\Omega)}^{p}\right)^{1 / p},
$$

and semi-norm

$$
|v|_{W_{\alpha}^{1, p}(\Omega)}=\left\|\rho^{\alpha} \nabla v\right\|_{\mathbf{L}^{p}(\Omega)} .
$$

For the anisotropically weighted Sobolev spaces, we set

$$
\begin{gathered}
H_{\alpha, \beta}^{1, p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega), \eta_{\beta-1}^{\alpha-1} v \in L^{p}(\Omega), \eta_{\beta}^{\alpha} \nabla v \in \mathbf{L}^{p}(\Omega)\right\}, \\
X_{\alpha, \beta}^{1, p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega), \eta_{\beta}^{\alpha-2} v \in L^{p}(\Omega), \eta_{\beta}^{\alpha} \nabla v \in \mathbf{L}^{p}(\Omega)\right\}, \\
W_{\alpha, \beta}^{1, p}(\Omega)=\left\{v \in \mathcal{D}^{\prime}(\Omega), \eta_{\beta}^{\alpha-1} v \in L^{p}(\Omega), \eta_{\beta}^{\alpha} \nabla v \in \mathbf{L}^{p}(\Omega)\right\}, \\
\stackrel{o}{W}_{\alpha, \beta}^{1, p}(\Omega)=\left\{v \in W_{\alpha, \beta}^{1, p}(\Omega), v=0 \text { on } \partial \Omega\right\},
\end{gathered}
$$

equipped with their natural norms.
The dual of ${ }_{o}^{o 1, p}{ }_{\alpha, \beta}(\Omega)$ is noted $W_{-\alpha,-\beta}^{-1, p^{\prime}}(\Omega)$, with $1 / p+1 / p^{\prime}=1$. If $\Omega=\mathbb{R}^{N}$, we have $\stackrel{o}{W_{\alpha, \beta}^{1, p}}(\Omega)=W_{\alpha, \beta}^{1, p}\left(\mathbb{R}^{N}\right)$.
Let $j=\min \{[-1 / 2-N / p-\alpha / 2],[-1-N / p-(\alpha+\beta) / 2]\}$, we have $\mathcal{P}_{j} \subset H_{\alpha, \beta}^{1, p}(\Omega)$. \mathcal{P}_{j} stands for the space of polynomials of degree lower than j and $[a]$ for the integer part of a. We set $B_{R}=B(0, R)$ and $B_{R}^{\prime}=\mathbb{R}^{N} \backslash \overline{B_{R}}$. Finally, in what follows, by $f \sim g$ in U, we mean the following: there exists $C_{1}, C_{2}>0$, such that

$$
\forall x \in U, \quad C_{1} f(x) \leq g(x) \leq C_{2} f(x)
$$

3 Weighted Hardy-type inequalities.

A fundamental property of the weighted Sobolev spaces $W_{\alpha}^{1, p}(\Omega)$ is that their elements satisfy Hardy-type inequalities. Amrouche-Girault-Giroire [2] proved that, for $\alpha \in \mathbb{R}$,
(i) the semi-norm $|\cdot|_{W_{\alpha}^{1, p}(\Omega)}$ defines on $W_{\alpha}^{1,2}(\Omega) / \mathcal{P}_{j^{\prime}}$ a norm which is equivalent to the quotient norm, where $j^{\prime}=\inf (j, 0)$.
(ii) The semi-norm $|\cdot|_{W_{\alpha}^{1, p}(\Omega)}$ defines on ${\stackrel{o}{W_{\alpha}}}^{1, p}(\Omega)$ a norm which is equivalent to the full norm $\|\cdot\|_{W_{\alpha}^{1, p}(\Omega)}$.
We shall establish similar results in the case of anisotropically weighted Sobolev spaces.
We choose to consider the particular case $N=3, p=2$, but the results can be generalised to $N \geq 2$ and $p \geq 2$.
We consider the sector

$$
\begin{equation*}
S=S_{R, \lambda}=\left\{x \in \mathbb{R}^{3} ; r \geq R, 0 \leq s \leq \lambda r\right\}, \quad R>0,0<\lambda<1 . \tag{4}
\end{equation*}
$$

In $\mathbb{R}^{3} \backslash S$, we have $r \sim s$. Therefore, the spaces $H_{\alpha, \beta}^{1,2}\left(\mathbb{R}^{3} \backslash S\right)$ and $W_{(\alpha+\beta) / 2}^{1,2}\left(\mathbb{R}^{3} \backslash S\right)$ coincide algebraically and topologically. It follows that, in $\mathbb{R}^{3} \backslash S$, the previous results hold. Thus, it is enough to prove anisotropically weighted Hardy-type inequalities in S.
We first deal with the case $\beta>0$.

Lemma 1 Let $\alpha, \beta \in \mathbb{R}$ satisfy $\beta>0$. Then there exists a constant $C>0$, such that

$$
\begin{equation*}
\forall u \in \stackrel{o}{H_{\alpha, \beta}^{1,2}}(S), \quad\|u\|_{H_{\alpha, \beta}^{1,2}(S)} \leq C|u|_{H_{\alpha, \beta}^{1,2}(S)} \tag{5}
\end{equation*}
$$

Idea of the proof. We first prove the inequality for $u \in \mathcal{D}(S)$, then by density, we prove it for all u in $\stackrel{o}{H}{ }_{\alpha, \beta}^{1,2}(S)$. Since $\beta>0$, it is enough to prove

$$
\begin{equation*}
I=\int_{S}(1+r)^{\alpha-1} s^{\beta-1}|u|^{2} d x \leq C \int_{S}(1+r)^{\alpha} s^{\beta}|\nabla u|^{2} d x \tag{6}
\end{equation*}
$$

Using polar coordinates with $u(x)=v(r, \theta, \varphi),(6)$ is equivalent to the following inequality

$$
\begin{align*}
I= & \int_{0}^{2 \pi} \int_{R}^{+\infty} \int_{0}^{\theta_{0}}(1+r)^{\alpha-1}(r-r \cos \theta)^{\beta-1} r^{2} \sin \theta|v|^{2} d \theta d r d \varphi \\
& \leq C \int_{0}^{2 \pi} \int_{R}^{+\infty} \int_{0}^{\theta_{0}}(1+r)^{\alpha}(r-r \cos \theta)^{\beta} \sin \theta\left|\frac{\partial v}{\partial \theta}\right|^{2} d \theta d r d \varphi \tag{7}
\end{align*}
$$

with

$$
\theta_{0} \text { such that } \cos \theta_{0}=1-\lambda, \quad 0<\lambda<1
$$

We set

$$
J=\int_{0}^{\theta_{0}}(1-\cos \theta)^{\beta-1} \sin \theta|v|^{2} d \theta
$$

An integration by parts yields

$$
J=\frac{1}{\beta}\left[(1-\cos \theta)^{\beta}|v|^{2}\right]_{0}^{\theta_{0}}-\frac{2}{\beta} \int_{0}^{\theta_{0}}(1-\cos \theta)^{\beta} \frac{\partial v}{\partial \theta} v d \theta
$$

Since $\beta>0$ and $v \in \mathcal{D}(S)$, we have

$$
J \leq \frac{2}{\beta} \int_{0}^{\theta_{0}}(1-\cos \theta)^{\beta}\left|\frac{\partial v}{\partial \theta} \| v\right| d \theta
$$

Using the Cauchy-Schwarz inequality, we get

$$
J \leq \frac{4}{\beta^{2}} \int_{0}^{\theta_{0}}(1-\cos \theta)^{\beta+1}\left|\frac{1}{\sin \theta} \frac{\partial v}{\partial \theta}\right|^{2} d \theta
$$

This last inequality allows to have (7)
Remark 2 Inequality (5) is not valid for $\beta \leq 0$. For $\beta=0$, Farwig [3] gave a counterexample with the case $\alpha=0$. For $\beta<0$, taking as counter-example $v(r, \theta, \varphi)=v(r)$, we can show that the inequality (7) does not hold.

Nevertheless, for $\beta \leq 0$, we have the analogue of Lemma 1 in the anisotropically weighted Sobolev space $X_{\alpha, \beta}^{1,2}(S)$.

Lemma 3 Let $\alpha, \beta \in \mathbb{R}$ satisfy $\beta \leq 0$ and $\alpha+\beta+2>0$. Then there exists $C>0$, such that

$$
\forall u \in \stackrel{o}{X}_{\alpha, \beta}^{1,2}(S), \quad\|u\|_{X_{\alpha, \beta}^{1,2}(S)} \leq C|u|_{X_{\alpha, \beta}^{1,2}(S)}
$$

Idea of the proof. Let $u \in \mathcal{D}(S)$ and $u(x)=v(r, \theta, \varphi)$. For $R>0$ sufficiently large, it is enough to prove

$$
\begin{align*}
& I=\int_{0}^{2 \pi} \int_{R}^{+\infty} \int_{0}^{\theta_{0}} r^{\alpha+1}(1+r-r \cos \theta)^{\beta} \sin \theta|v|^{2} d \theta d r d \varphi \tag{8}\\
\leq & C \int_{0}^{2 \pi} \int_{R}^{+\infty} \int_{0}^{\theta_{0}} r^{\alpha+3}(1+r-r \cos \theta)^{\beta} \sin \theta|\nabla u|^{2} d \theta d r d \varphi
\end{align*}
$$

We set

$$
J=\int_{R}^{+\infty} r^{\alpha+1}(1+r-r \cos \theta)^{\beta}|v|^{2} d r .
$$

Since $\beta \leq 0$ and $\alpha+\beta+2>0$, we have

$$
J \leq \frac{1}{\alpha+\beta+2} \int_{R}^{+\infty} \frac{\partial}{\partial r}\left[r^{\alpha+2}(1+r-r \cos \theta)^{\beta}\right]|v|^{2} d r
$$

An integration by parts and the Cauchy-Schwarz inequality yields

$$
J \leq \frac{4}{(\alpha+\beta+2)^{2}} \int_{R}^{+\infty} r^{\alpha+3}(1+r-r \cos \theta)^{\beta}\left|\frac{\partial v}{\partial r}\right|^{2} d r,
$$

which allows to obtain (8).
By Lemma 1, we have the two following results.
Lemma 4 Let $\alpha, \beta, R \in \mathbb{R}$ satisfy $\beta>0, \alpha+\beta+1 \neq 0$ and $R>0$. Then, there exists a constant $C_{R}>0$ such that

$$
\begin{equation*}
\forall u \in \stackrel{o}{H_{\alpha, \beta}^{1,2}}\left(B_{R}^{\prime}\right), \quad\|u\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} \leq C_{R}|u|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} . \tag{9}
\end{equation*}
$$

In other words, the semi-norm $|\cdot|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)}$ is a norm on $\stackrel{o}{H_{\alpha, \beta}^{1,2}}\left(B_{R}^{\prime}\right)$ equivalent to the norm of $H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)$.

Idea of the proof. It is enough to consider $u \in \mathcal{D}\left(B_{R}^{\prime}\right)$. We use the following partition of unity

$$
\varphi_{1}, \varphi_{2} \in \mathcal{C}^{\infty}\left(B_{R}^{\prime}\right), \quad 0 \leq \varphi_{1}, \varphi_{2} \leq 1, \varphi_{1}+\varphi_{2}=1 \text { in } B_{R}^{\prime}
$$

with

$$
\varphi_{1}=1 \text { in } S_{R, \lambda / 2}, \quad \operatorname{supp} \varphi_{1} \subset S_{R, \lambda}
$$

We have

$$
\|u\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)}=\left\|\varphi_{1} u+\varphi_{2} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} \leq\left\|\varphi_{1} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)}+\left\|\varphi_{2} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} .
$$

Since $\beta>0$, Lemma 1 yields

$$
\left\|\varphi_{1} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)}=\left\|\varphi_{1} u\right\|_{H_{\alpha, \beta}^{1,2}\left(S_{R, \lambda}\right)} \leq C\left|\varphi_{1} u\right|_{H_{\alpha, \beta}^{1,2}\left(S_{R, \lambda}\right)}=C\left|\varphi_{1} u\right|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)}
$$

Since $\alpha+\beta+1 \neq 0$, using the following Hardy-type inequality

$$
\forall v \in \mathcal{D}(] R,+\infty[), \quad \int_{R}^{+\infty}(1+t)^{\gamma} t^{\xi}|v(t)|^{p} d t \leq\left(\frac{p|\gamma+\xi+1|}{c}\right)^{p} \int_{R}^{+\infty}(1+t)^{\gamma+p} t^{\xi}\left|v^{\prime}(t)\right|^{p} d t
$$

with $\gamma, \xi, R \in \mathbb{R}$ such that $\xi>0, \gamma+\xi+1 \neq 0$ and $(\gamma+\xi+1)^{2} R+\xi(\gamma+\xi+1)>0$, we get

$$
\left|\varphi_{1} u\right|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} \leq C|u|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} .
$$

Thus, we have

$$
\left\|\varphi_{1} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} \leq C|u|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)},
$$

and by the same method, we get

$$
\left\|\varphi_{2} u\right\|_{H_{\alpha, \beta}^{1,2}\left(B_{R}^{\prime}\right)} \leq C|u|_{H_{\alpha, \beta}^{1,\left(B_{R}^{\prime}\right)}},
$$

which conclude the proof.

Theorem 5 Let $\alpha, \beta \in \mathbb{R}$ satisfy $\beta>0$ and $\alpha+\beta+1 \neq 0$. Let $j^{\prime}=\inf (j, 0)$, where j is the highest degree of the polynomials contained in $H_{\alpha, \beta}^{1,2}(\Omega)$. Then the semi-norm $|\cdot|_{H_{\alpha, \beta}^{1,2}(\Omega)}$ defines on $H_{\alpha, \beta}^{1,2}(\Omega) / \mathcal{P}_{j^{\prime}}$ a norm which is equivalent to the quotient norm.

4 Weak solutions of the scalar Oseen equation.

In this section, we propose to solve the scalar Oseen equation with $\nu=k=1, N=3$:

$$
\begin{equation*}
-\Delta u+\frac{\partial u}{\partial x_{1}}=f \text { in } \mathbb{R}^{3} \tag{10}
\end{equation*}
$$

We introduce the concept of weak solution.

Definition 6 A function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called a weak solution to (10) if (i) $u \in H_{l o c}^{1}\left(\mathbb{R}^{3}\right)$,
(ii) u satisfies

$$
\begin{equation*}
\forall \varphi \in \mathcal{D}\left(\mathbb{R}^{3}\right), \quad \int_{\mathbb{R}^{3}} \nabla u \cdot \nabla \varphi d x-\int_{\mathbb{R}^{3}} u \frac{\partial \varphi}{\partial x_{1}}=[f, \varphi] . \tag{11}
\end{equation*}
$$

We are, first, interested in existence of weak solutions when the data $f \in W_{0}^{-1,2}\left(\mathbb{R}^{3}\right)$, which is the dual of $W_{0}^{1,2}\left(\mathbb{R}^{3}\right)$.

Theorem 7 Given a function $f \in W_{0}^{-1,2}\left(\mathbb{R}^{3}\right)$, the problem (10) has a weak solution $u \in W_{0}^{1,2}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\|\nabla u\|_{\mathbf{L}^{2}\left(\mathbb{R}^{3}\right)} \leq\|f\|_{W_{0}^{-1,2}\left(\mathbb{R}^{3}\right)} \tag{12}
\end{equation*}
$$

More over

$$
\begin{equation*}
\frac{\partial u}{\partial x_{1}} \in W_{0}^{-1,2}\left(\mathbb{R}^{3}\right) \tag{13}
\end{equation*}
$$

Idea of the proof. For $R>0$, we consider the following equations

$$
\left\{\begin{align*}
-\Delta u+\frac{\partial u}{\partial x_{1}} & =f \text { in } B_{R} \tag{14}\\
u & =0 \text { on } \partial B_{R},
\end{align*}\right.
$$

Since $f \in W_{0}^{-1,2}\left(\mathbb{R}^{3}\right)$, we have $f \in H^{-1}\left(B_{R}\right)$, thus, by Lax-Milgram theorem, we prove the existence of a unique weak solution $u_{R} \in H_{0}^{1}\left(B_{R}\right)$ to problem (14) such that

$$
\begin{equation*}
\left\|\nabla u_{R}\right\|_{\mathbf{L}^{2}\left(B_{R}\right)} \leq\|f\|_{W_{0}^{-1,2}\left(\mathbb{R}^{3}\right)}, \tag{15}
\end{equation*}
$$

then, it suffices consider a sequence of problems analogous to (14) and to choose a weakly convergent subsequence.
We now look for weak solutions when the data $f \in W_{\alpha, \beta}^{-1,2}\left(\mathbb{R}^{3}\right)$.
Theorem 8 Let $\alpha, \beta \in \mathbb{R}$ satisfy $\beta>0$ and $\beta>|\alpha|$. Then for a function $f \in W_{\alpha, \beta}^{-1,2}\left(\mathbb{R}^{3}\right)$, there exists a weak solution $u \in W_{\alpha, \beta}^{1,2}\left(\mathbb{R}^{3}\right)$ to (10) such that

$$
\begin{equation*}
\|u\|_{W_{\alpha, \beta}^{1,2}\left(\mathbb{R}^{3}\right)} \leq C\|f\|_{W_{\alpha, \beta}^{-1,2}\left(\mathbb{R}^{3}\right)} . \tag{16}
\end{equation*}
$$

Idea of the proof. Let $R>0$ be given and let $u_{R} \in H_{0}^{1}\left(B_{R}\right)$ be the unique weak solution of (14). We need to prove the uniform estimate

$$
\begin{equation*}
\left\|u_{R}\right\|_{W_{\alpha, \beta}^{1,2}\left(B_{R}\right)} \leq C\|f\|_{W_{\alpha, \beta}^{-1,2}\left(\mathbb{R}^{3}\right)}, \tag{17}
\end{equation*}
$$

which allows to end the proof as in the previous Theorem. In the variationnal equation

$$
\forall \varphi \in H_{0}^{1}\left(B_{R}\right), \quad \int_{B_{R}} \nabla u_{R} \cdot \nabla \varphi d x+\int_{B_{R}} \frac{\partial u_{R}}{\partial x_{1}} \varphi d x=[f, \varphi],
$$

we use the test function $\varphi=\eta_{2 \beta}^{2 \alpha} u_{R}$, thus, by an integration by parts, we get

$$
\int_{B_{R}} \eta_{2 \beta}^{2 \alpha}\left|\nabla u_{R}\right|^{2} d x+\int_{B_{R}} u_{R} \nabla u_{R} \cdot \nabla \eta_{2 \beta}^{2 \alpha}-\frac{1}{2} \int_{B_{R}}\left|u_{R}\right|^{2} \frac{\partial \eta_{2 \beta}^{2 \alpha}}{\partial x_{1}} d x=\left[f, \eta_{2 \beta}^{2 \alpha} u_{R}\right] .
$$

The Young inequality implies that

$$
\int_{B_{R}} \eta_{2 \beta}^{2 \alpha}\left|\nabla u_{R}\right|^{2} d x+\frac{1}{2} \int_{B_{R}}\left(-\frac{\partial \eta_{2 \beta}^{2 \alpha}}{\partial x_{1}}-\frac{\left|\nabla \eta_{2 \beta}^{2 \alpha}\right|^{2}}{\eta_{2 \beta}^{2 \alpha}}\right)\left|u_{R}\right|^{2} d x \leq\left[f, \eta_{2 \beta}^{2 \alpha} u_{R}\right] .
$$

Introducing the equivalent anisotropic weight functions

$$
\begin{equation*}
\eta_{\beta}^{\alpha}=(1+\delta r)^{\alpha / 2}(1+\varepsilon s)^{\beta / 2} \tag{18}
\end{equation*}
$$

with sufficiently small positive constants δ and ε, Farwig [3] proved that if $\alpha, \beta \in \mathbb{R}$ satisfy $\beta>0$ and $|\alpha|<\beta$, then there are positive numbers $c_{1}(\delta, \varepsilon)=O(\delta)+O(\varepsilon), c_{2}(\delta)=O(\delta)$, such that

$$
\begin{equation*}
-\frac{\partial \eta_{2 \beta}^{2 \alpha}}{\partial x_{1}}-\frac{\left|\nabla \eta_{2 \beta}^{2 \alpha}\right|^{2}}{\eta_{2 \beta}^{2 \alpha}} \geq\left(\left((\beta-|\alpha|)-c_{1}(\delta, \varepsilon)\right) \delta \varepsilon s(x)-c_{2}(\delta)\right) \eta_{2 \beta-2}^{2 \alpha-2}(x), \quad x \in \mathbb{R}^{3} \tag{19}
\end{equation*}
$$

This result with Theorem 5 yield (17).

References

[1] C. Amrouche, V.Girault, J. Giroire . Weighted Sobolev spaces for Laplace's equation in \mathbb{R}^{n}, J. Math. Pures et Appl., 73, 1994, pp. 579-606.
[2] C. Amrouche, V.Girault, J. Giroire. Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures et Appl., 76, 1997, pp. 55-81.
[3] R. FARWIG . A variational approach in weighted Sobolev Spaces to the operator $-\Delta+$ $\partial / \partial x_{1}$ in exteriors domains of \mathbb{R}^{3}, Math. Z., 210, 1992, pp. 449-464.
[4] R. Farwig . The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z., 211, 1992, pp. 409-447.
[5] R. Finn . On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal., 19, 1965, pp. 363-406.
[6] G. P. Galdi . An introduction to the mathematical study of Navier-Stokes equations, vol I, Springer-Verlag, 1994.
[7] C. W. Oseen . Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademishe Verlagsgesellschaft, 1927.

