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Abstract

We give homogenization results for an immiscible and incompressible three-phase

flow model in a heterogeneous petroleum reservoir with periodic structure, including

capillary effects. We consider a model which leads to a coupled system of partial dif-

ferential equations which includes an elliptic equation and two nonlinear degenerate

parabolic equations of convection-diffusion types. Using two-scale convergence, we

get an homogenized model which governs the global behavior of the flow. The de-

termination of effective properties require the numerical resolution of local problems

in a standard cell.

Keywords: Homogenization, Two-Scale Convergence, Three-Phase Flow, Porous

Media.

AMS Classification: 35B27, 74Q15, 76M50.

1 Introduction

In problems involving displacement process of multiphase flow through a heterogeneous

porous medium, it is often desirable replace the complicated model with an effective

model, which gives the global behavior and, allow in numerical reservoir simulation, to

disconnect the numerical mesh size from the heterogeneities size in the reservoir itself.

Homogenization techniques allow, under some assumptions, to replace problems involving

two (or more) very different scales by one macroscopic problem describing the global

behavior.

In this paper, we are investigating displacement process of incompressible and immis-

cible three-phase flow in heterogeneous porous media, including capillary effects. The

equations governing these types of flow can be effectively rewritten in a fractional flow

formulation; i.e., in terms of a global pressure and saturations as the primary variables.

This formulation leads to a coupled system of partial differential equations which includes
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two nonlinear degenerate parabolic equations of convection-diffusion types and an ellip-

tic equation. The reservoir is assumed to be made of uniformly periodically repeated

cells. Each cell being made with different types of porous media, where the porosity, the

absolute permeability tensor and the relative permeabilities characterize a porous me-

dia type. Using two-scale convergence, we get an homogenized model which governs the

global behavior of the flow. The resulting equations are of the same type that the points

equations, with effective coefficients. The method allows the determination of these ef-

fective parameters from a knowledge of the geometrical structure of the basic cell and its

heterogeneities. Numerical computations to obtain the homogenized coefficients of the

entire reservoir have been carried out via a finite element method [2]. The extension of

the present approach to a model of three-phase flow in a porous medium made of different

rock types is described in details in [7]. These types of problems have been addressed by

various authors in the field of petroleum engineering (see [6] and the references therein).

The outline of the remainder of the paper is as follows. Section 2 contains a short de-

scription of the mathematical and physical model used in this study. In section 3, the

formulation of a weak solution of the problem is presented. Section 4 is devoted to the

presentation of a homogenization result. Here, we have used only the recently developed

notion of two-scale convergence. Lastly, some concluding remarks are forwarded.

2 Mathematical Model

We consider saturated, three-phase, incompressible, immiscible flow, the phases being

w (water or wetting phase), o (oil or nonwetting phase) and g (gas). We consider the

reservoir Ω ⊂ IRd (1 ≤ d ≤ 3) to be a bounded, connected domain with a periodic

structure. More precisely, we shall scale this periodic structure by a parameter ε which

represents the ratio of the cell size to the size of the whole region Ω and we assume that

0 < ε << 1 in a decreasing sequence tending to zero. For sake of simplicity, without loss

of generality, let Y = ]0, 1[d ⊂ IRd (1 ≤ d ≤ 3) representing the microscopic domain of

the basic cell. The boundary Γ of the domain Ω splits up into three parts such that

Γ = Γe ∪ Γi ∪ Γs, Γl ∩ Γm = ∅, l 6= m.

Γe is the part of the boundary where the water is injected, Γi is the impervious part of the

boundary Γs is the producing part of the boundary. Let ]0, T [ denotes the time period,

Σj = Γj×]0, T [, j = e, s, i.

and
→

n the outward normal to Γ. Assume that in a such geometrical configuration of the

reservoir, porosity and absolute permeability tensor depend on the microscopic variable
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y = x/ε where x is the macroscopic scale. Namely,

Φε(x) := Φ
(

x

ε

)

= Φ(y) and Kε(x) := K
(

x

ε

)

= K(y)

with Φ and K are Y -periodic functions on y.

In the sequel, we will use a formulation obtained after transformation using the concept of

global pressure (see [4]). For sake of simplicity, without loss of generality, we neglect the

effect of gravity. The main unknowns are pε: the global pressure,
→

V ε
t : the total velocity,

pε
cw: the capillary pressure between water and oil, and pε

cg: the capillary pressure between

gas and oil. We consider the following equations and boundary and initial conditions.

Pressure equation:

div
→

V ε
t = 0, (1)

→

V ε
t = −KεM ε∇pε. (2)

Saturation equations:

∂t [Φε(x)sw(pε
c)] + div

[

υε
w

→

V ε
t −Kε(M

ε

g∇pε
cw − M

ε

o(∇pε
cg −∇pε

cw))
]

= 0, (3)

∂t [Φ
ε(x)sg(p

ε
c)] + div

[

υε
g

→

V ε
t −Kε(M

ε

w∇pε
cg − M

ε

o(∇pε
cw −∇pε

cg))
]

= 0. (4)

Boundary and initial conditions:






→

V ε
t .

→

n=
→

V ε
w .

→

n= −qe,
→

V ε
g .

→

n=
→

V ε
o .

→

n= 0 on Σe,

pε
cw = 0 pε

cg = 0 on Σe.
(5)

→

V ε
t .

→

n=
→

V ε
w .

→

n=
→

V ε
g .

→

n=
→

V ε
o .

→

n= 0 on Σi. (6)






































→

V ε
t .

→

n= qs on Σs,

(υε
o + υε

g)υ
ε
w∇pε

cw .
→

n −υε
gυ

ε
w∇pε

cg .
→

n= 0, on Σ,

(υε
o + υε

w)υε
g∇pε

cg .
→

n −υε
gυ

ε
w∇pε

cw .
→

n= 0 on Σ

(7)

∫

Γe

qe dγe −
∫

Γs

qs dγs = 0. (8)



















sε, 0

w (x) = sε
w(x, 0) = sw(pε, 0

cw , pε, 0

cg ), with 0 ≤ sε, 0

w ≤ 1 a.e. in Ω,

sε, 0
g (x) = sε

g(x, 0) = sg(p
ε, 0
cw , pε, 0

cg ), with 0 ≤ sε, 0
g ≤ 1 a.e. in Ω,

sε, 0

w + sε, 0

g ≤ 1.

(9)

where

sη is the saturation of the phase η = w, o, g;
→

V ε
η is the velocity of the phase η = w, o, g,

M ε is the total mobility,

M
ε

η is the mobility of the phase η = w, o, g,

υε
η is the fractional flow of the phase η = w, o, g,

pε
c := (pε

cw, pε
cg).
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3 A Weak Formulation of the Problem

We define certain functions spaces and notations. Let

V = { u ∈ H1(Ω); u = 0 on Γe }, IH0 = {
→

V ∈ (L2(Ω))3; div
→

V = 0},

IH = {
→

V ∈ IH0,
→

V .
→

n| Γe = −qe,
→

V .
→

n| Γi = 0,
→

V .
→

n| Γs = qs },

and

> = {(sw, sg) ∈ L∞(Ω) × L∞(Ω); 0 ≤ sw ≤ 1, 0 ≤ sg ≤ 1 and sw + sg ≤ 1 a.e. in Ω}.

Under some reasonable assumptions, some of which are more general than is needed for

the physical problem (cf. [5], [7]), we associate to (1)-(9), the following (Pε) problem in a

weak formulation:

(sε
w, sε

g) ∈ >, ∂t (Φε(x)sη(p
ε
c)) ∈ L2 (]0, T [; V ′) , η = w, g,

(pε
cw, pε

cg) ∈
(

L∞(]0, T [×Ω)
⋂

L2(]0, T [; V)
)2

,

→

V ε
t ∈ L∞(]0, T [; IH), pε ∈ L∞(]0, T [; H1(Ω)/IR),

such that ∀ (u, v) ∈ (L2(]0, T [; V))
2

:

∫ T

0

〈∂t (Φε (x) sw(pε
c)) , u〉dt −

∫ T

0

∫

Ω

υw(sε)
→

V ε
t .∇udxdt

+
∫ T

0

∫

Ω

Kε (x) M g(s
ε)∇pε

cw.∇udxdt

+
∫ T

0

∫

Ω

Kε (x) M o(s
ε)

(

∇pε
cw −∇pε

cg

)

.∇udxdt = −
∫ T

0

∫

Γs

υw(sε)qsudγsdt, (10)

∫ T

0

〈∂t (Φ
ε (x) sg(p

ε
c)) , v〉dt −

∫ T

0

∫

Ω

υg(s
ε)

→

V ε
t .∇vdxdt

+
∫ T

0

∫

Ω

Kε (x) Mw(sε)∇pε
cg.∇vdxdt

+
∫ T

0

∫

Ω

Kε (x) M o(s
ε)

(

∇pε
cg −∇pε

cw

)

.∇vdxdt = −
∫ T

0

∫

Γs

υg(s
ε)qsvdγsdt (11)

and ∀ w ∈ H1(Ω)/IR :

∫

Ω

Kε (x) M(sε)∇pε.∇wdx =
∫

Γe

qewdγe −
∫

Γs

qswdγs. (12)

For the existence and uniqueness of the solution of this problem, we refer to [5].
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4 A Homogenization Result

In this section, we give a homogenization result for the problem (Pε). The convergence

of the homogenization process is obtained by the technique of two-scale convergence [1].

Let (pε
cw, pε

cg,
→

V ε
t , pε) be the solution of the problem (Pε) then the following result holds:

1) (pε
cw, pε

cg) converge in (L2(]0, T [; H1(Ω)))
2

weakly towards (p0

cw, p0

cg).

2) (sε
w, sε

g) converge in (L2(QT ))
2

strongly towards (s0

w, s0

g) := s0.

3)
→

V ε
t converge in (L2(QT ))

d
weakly towards

→

V 0
t .

4) pε(., t) converge towards p0(., t) in L2(Ω) strongly a.e. in t.

5) (p0
cw, p0

cg,
→

V 0
t , p0) is the solution of the following homogenized problem (P0):

(s0

w, s0

g) ∈ >, ∂t(Φ
∗s0

η) ∈ L2(]0, T [; V ′), η = w, g,

(p0

cw, p0

cg) ∈
(

L∞(]0, T [×Ω)
⋂

L2(]0, T [; V)
)2

,

→

V 0

t ∈ L∞(]0, T [; IH), p0 ∈ L∞(]0, T [; H1(Ω)/IR),

such that ∀ (u, v) ∈ (L2(]0, T [; V))
2

:

∫ T

0

〈∂t(Φ
∗s0

w), u〉dt −
∫ T

0

∫

Ω

υw(s0)
→

V 0

t .∇udxdt

+
∫ T

0

∫

Ω

K∗Mg(s
0)∇p0

cw.∇udxdt

+
∫ T

0

∫

Ω

K∗M o(s
0)

(

∇p0

cw −∇p0

cg

)

.∇udxdt = −
∫ T

0

∫

Γs

υw(s0)qsudγsdt (13)

∫ T

0

〈∂t(Φ
∗s0

g), v〉dt −
∫ T

0

∫

Ω

υg(s
0)

→

V 0

t .∇vdxdt

+
∫ T

0

∫

Ω

K∗Mw(s0)∇p0

cg.∇vdxdt

+
∫ T

0

∫

Ω

K∗M o(s
0)

(

∇p0

cg −∇p0

cw

)

.∇vdxdt = −
∫ T

0

∫

Γs

υg(s
0)qsvdγsdt (14)

and ∀ w ∈ H1(Ω)/IR :

∫

Ω

K∗M(s0)∇p0.∇wdx =
∫

Γe

qewdγe −
∫

Γs

qswdγs, (15)

→

V 0

t = −K∗M(s0)∇p0, (16)

where K∗ represents the effective absolute permeability tensor given by

(K∗)ij =
∫

Y

[

Kij(y) + Kik(y)
∂wj

∂yk

(y)

]

dy 1 ≤ i, j ≤ d, (17)

with wj, 1 ≤ j ≤ d, is the solution of the so-called local or cell problem defined by

wj ∈ H1

p(Y )/IR,
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∫

Y
K(y)∇ywj∇yϕ dy = −

∫

Y
Kij(y)

∂ϕ

∂yi

dy, ∀ ϕ ∈ H1

p(Y ) (18)

and

Φ∗ =
∫

Y
Φ(y)dy. (19)

The proof of this result (for details see [7]) is based on a priori estimates and two-scale

convergence results (cf. [1] see also [3]). This result could also be obtained formally by

the technique of two-scale asymptotic expansions [2].

It can be clearly seen that the effective permeability tensor is symmetric and positive

definite but in general cases, even with each type of porous medium being isotropic, we

may have non-diagonal tensor. The determination of the effective coefficients requires the

knowledge of the functions wj appearing in the local problems (18). Numerical computa-

tions for the two dimensional case using a finite element method have been performed to

solve the local problems and obtain the effective permeability tensor [2].

5 Conclusion

In this paper we have presented a model of three-phase flow in a heterogeneous porous

medium where the porosity and the absolute permeability tensor characterize the porous

medium type. We have presented a weak formulation of the coupled system and finally,

we have presented a homogenization result for this problem. The extension of the result

to a model with different rock types is presented in [7] following the ideas developed in

[3].
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337-373, (1993).

54



[6] U. Hornung, Homogenization and Porous Media, Interdisciplinary Applied Mathe-

matics, Springer, New York, (1997).
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poreux, Thèse de Doctorat, Université de Pau, (2001).
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