Anti-maximum principle for cooperative system involving Schrödinger operator in \mathbb{R}^{N}

Bénédicte Alziary and Naziha Besbas
CEREMATH, Université des Sciences Sociales. 21 Allées de Brienne, F-31042 Toulouse Cedex, France
email: naziha@math1.univ-tlse1.fr

Abstract

We obtain a result concerning the anti-maximum principle for weak solutions $U=(u, v) \in \mathbb{R}^{N}$ of the following cooperative elliptic system: $$
(S)\left\{\begin{array}{l} \mathcal{A} u(x):=(-\Delta+q(|x|)) u(x)=\lambda u(x)+b v(x)+f(x) \\ \mathcal{A} u(x):=(-\Delta+q(|x|)) v(x)=c u(x)+\lambda v(x)+g(x) \\ u(x) \rightarrow 0, \quad v(x) \rightarrow 0, \quad \text { as }|x| \rightarrow+\infty . \end{array}\right.
$$

Here $\mathcal{A}=-\Delta+q(x)$ in $L^{2}\left(\mathbb{R}^{2}\right)$ is the Schrödinger operator. We assume that the potential $q(x) \equiv q(|x|)$, is strictly positive, locally bounded, and has superquadratic growth as $|x| \rightarrow \infty ; b, c$ are strictly positive constants. We show that there exists a simple eigenvalue Λ_{1} of (S) with positive eigenfunction Φ_{1}. Then we prove an antimaximum principle in the following form: Let $f, g \in L^{2}\left(\mathbb{R}^{2}\right)$ be positive functions which are "sufficiently smooth" perturbations of a radially symmetric function, then there exists $\delta=\delta(f, g, b, c)>0$ such that for $\lambda \in\left(\Lambda_{1}, \Lambda_{1}+\delta\right)$ the weak solution U satisfies $U=(u, v) \leq-C \Phi_{1}$ where $C=C(f, g, \lambda)$ is a positive constant.

Keywords: Schrödinger operator, maximum principle, anti-maximum principle.
AMS Classification: 35-P.D.E-

1 Schrödinger equation in \mathbb{R}^{N}

We first recall recent results obtained for the scalar case in [1, 2].
We recall the Schrödinger equation in \mathbb{R}^{N};

$$
\begin{equation*}
\mathcal{A} u:=(-\Delta+q) u=\lambda u+f \quad \text { in } \mathbb{R}^{N}, \quad f \in L^{2}\left(\mathbb{R}^{N}\right) \tag{1}
\end{equation*}
$$

The potential q is assumed to be continuous in \mathbb{R}^{N} satisfying $q \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), q \geq C>0$ and $q(x) \longrightarrow \infty$ when $|x| \longrightarrow \infty$. λ is a real parameter.

1.1 Maximum principle: φ_{1}-positivity

Hypothesis 1.1 The potential $q: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is locally essentially bounded, $q(r) \geq$ const $>$ 0 for $r \geq 0$, and there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
c_{1} Q(r) \leq q(r)-\frac{1}{4 r^{2}} \quad \text { for } \quad R_{0} \leq r<\infty \tag{2}
\end{equation*}
$$

where $Q(r)$ is a function of $r \equiv|x|, R_{0} \leq r<\infty$, for some $R_{0}>0$:

$$
\left\{\begin{array}{l}
Q(r)>0, \quad Q \text { is locally absolutely continuous, } \tag{3}\\
Q^{\prime}(r) \geq 0, \quad \text { and } \quad \int_{R_{0}}^{\infty} Q(r)^{-1 / 2} d r<\infty
\end{array}\right.
$$

Theorem 1.2 [2] Let the hypothesis 1.1 be satisfied. Assume that $u \in \mathcal{D}(\mathcal{A}), \mathcal{A} u-\lambda u=$ $f \in L^{2}\left(\mathbb{R}^{2}\right), \lambda \in \mathbb{R}$, and $f \geq 0$ a.e. in \mathbb{R}^{2} with $f>0$ in some set of positive Lebesgue measure. Then, for every $\lambda \in\left(-\infty, \lambda_{1}\right)$, there exists a constant $c>0$ (depending upon f and $\lambda)$ such that

$$
\begin{equation*}
u \geq c \varphi_{1} \quad \text { in } \mathbb{R}^{2} \tag{4}
\end{equation*}
$$

1.2 Anti-maximum principle: φ_{1}-negativity

We get an anti-maximum principle for systems (S) involving some potentials with a superquadratic growth at infinity. Here we study 2×2 systems; analogous results can be obtained for the case of N equations- see [3].

We define $X^{1,2}$ the space of Lebesgue measurable functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ having the following properties:

$$
\frac{\partial f}{\partial \theta}(r, \bullet) \in L^{2}(-\pi, \pi) \quad \text { for all } \quad r \geq 0
$$

and there is a constant $C \geq 0$ such that

$$
\begin{equation*}
|f(r, \theta)|+\left(\oint\left|\frac{\partial f}{\partial \theta}(r, \vartheta)\right|^{2} d \vartheta\right)^{1 / 2} \leq C \varphi_{1}(r) \tag{5}
\end{equation*}
$$

for almost every $r \geq 0$ and $\theta \in[-\pi, \pi]$.
Theorem 1.3 Let hypothesis 1.1 be satisfied. Assume that $u \in \mathcal{D}(\mathcal{A})$ satisfies (1), $f \geq$ $0, \quad f \in X^{1,2}$. then there exists a positive number δ (depending upon f) such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, we have

$$
\begin{equation*}
u \leq-c \varphi_{1} \quad \text { in } \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

2 Results

2.1 Estimate of the constant

Theorem 2.1 Let the hypothesis (6) be satisfied [3]. Assume that $u \in \mathcal{D}(\mathcal{A}), \mathcal{A} u-\lambda u=$ $f \in L^{2}\left(\mathbb{R}^{2}\right), \lambda \in \mathbb{R}$, and $f \geq 0$ a.e. in \mathbb{R}^{2} with $f>0$ in some set of positive Lebesgue measure. If $f \in X^{1,2}$, then there exists a positive number $\delta=\delta(f)>0$ and $C(f, \lambda)>0$ such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, on a :

$$
\begin{gather*}
u \leq-C(f, \lambda) \varphi_{1} \quad \text { in } \mathbb{R}^{2} \\
\delta=\min \left(\delta_{1}, C^{-1} \cdot \alpha\right) \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
C(f, \lambda)=\left(\left(\lambda-\lambda_{1}\right)^{-1}-\Gamma\right) \alpha \tag{8}
\end{equation*}
$$

Where;

$$
\begin{aligned}
& \left.\delta_{1}=S p\left[(\mathcal{A}-\lambda)^{-1}\right)\right]^{-1} \\
& \alpha=\int_{\mathbb{R}^{2}} f \varphi_{1} ; \\
& \Gamma=\left(2 C_{f}+\|f\|_{X^{1,2}}\right)\left(2 c_{q}\right)^{-1 / 2} \int_{R_{1}}^{+\infty} \mathcal{Q}(r)^{-1 / 2}+M\left(R_{1}\right)\left(2 C_{f} M\left(R_{1}\right) R_{1}^{2} / 2+\|f\|_{X^{1,2}}\right) \\
& M\left(R_{1}\right)=\max _{0 \leq s \leq r \leq R_{1}} \frac{\varphi_{1}(s)}{\varphi_{1}(r)}
\end{aligned}
$$

2.2 Anti-maximum Principle for a linear cooperative system 2×2

We decouple systems (S)

$$
\left(\left(\begin{array}{cc}
\mathcal{A} & 0 \tag{9}\\
0 & \mathcal{A}
\end{array}\right)-\left(\begin{array}{cc}
\sqrt{b c} & 0 \\
0 & -\sqrt{b c}
\end{array}\right)\right) P U=\lambda P U+P F
$$

Where $U=\binom{u}{v}, F=\binom{f}{g}$ and $P=\left(\begin{array}{cc}1 / 2 & 1 / 2 \gamma \\ 1 / 2 & -1 / 2 \gamma\end{array}\right), \gamma=\sqrt{c / b}>0$
Theorem 2.2 Assume that $b>0, c>0$ (a strictly cooperative system) and $0 \leq f$, $g \in L^{2}\left(\mathbb{R}^{2}\right)$ with f and $g \in X^{1,2}$. Then

There exists an eingenvalue Λ_{1} with a positive eigenfunction Φ_{1} defined by

$$
\left\{\begin{array}{l}
\Lambda_{1}=\lambda_{1}-\sqrt{b c}>0 \\
\Phi_{1}=\binom{\sqrt{b c}}{c} \varphi_{1}
\end{array}\right.
$$

and there exists a constant $\delta=\delta(f, g, b, c)>0$ such that, for every $\lambda \in\left(\Lambda_{1}, \Lambda_{1}+\delta\right)$, the weak solution $P U=(\tilde{u}, \tilde{v})$ to (9) satisfies

$$
P F=\binom{0 \neq \tilde{f}>0}{0 \neq \tilde{g}>0} \Longrightarrow P U=\binom{\tilde{u}<0}{\tilde{v}>0}
$$

The weak solution $U=(u, v)$ to (S) satisfies

$$
U=\binom{u}{v} \leq-C \Phi_{1}
$$

Where $C=C(f, g, \lambda)>0$.

References

[1] B. Alziary, J. Fleckinger, P. Takáč, An extension of maximum and anti-maximum principles to a Schrödinger equation in \mathbb{R}^{2}, J. Diff. Equations 156 (1999), 122-152.
[2] B. Alziary, P. Takáč, A pointwise lower bound for positive solutions of a Schrödinger equation in \mathbb{R}^{N}, J. Diff Equations 133 (1997), 280-295.
[3] N. Besbas, An anti-maximum principle for cooperative systems involving Schrödinger operators with radially symmetric potentials, Séminaire Analyse-EDP du Ceremath/MIP-UT1, Preprint (2001).
[4] A. Beltramo, P. Hess, On the principal eigenvalue of a periodic-parabolic operator, Comm. P.D.E. 9 (1984), 919-941.
[5] Ph. Clément, L.A. Peletier, An anti-maximum principle for second order elliptic operators, J. Diff. Eqns. 34 (1979), 218-229.
[6] Ph. Clément, G. Sweers, Uniform anti-maximum principles, J. Diff. Equations 164 (2000), 118-154.
[7] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, 1983.
[8] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.
[9] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
[10] G. Sweers, Strong positivity in $C(\bar{\Omega})$ for elliptic systems, Math. Z. 209 (1992), 251271.
[11] P. Takáč, An abstract form of maximum and anti-maximum principles of Hopf's type, J. Math. Anal. Appl. 201 (1996), 339-364.

