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Abstract

In this work we present two new Pareto based ranking methods. We compare

them with three classical ones due to Belegundu, Goldberg and Fonseca and Flem-

ing. Furthermore, we introduce the problem of classification errors. One of the

proposed methods outperforms the others in five out of seven test problems.
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1 Introduction

In this work, we study an important element in Multiobjective Evolutionary Algorithms

(MOEAs): the ranking of the population individuals, in order to establish later the prob-

abilities of survival that are necessary for the selection process.

We show how three classical ranking methods work, we present two new ones and we

make a comparative study. At the end we introduce the problem of classification errors.

Evolutionary Algorithms (EAs) are heuristic methods for search and learning, based on

the principles of natural evolution. A key aspect of EAs is that they evolve a population

of potential solutions to a problem (individuals) instead of only one candidate. The

population evolves by means of the selection, mutation and recombination processes of

its individuals.

A common and very important element in EAs is the selection mechanism. This

process determines which elements of the population are selected to be members of the

next generation. It is done according to how good or bad a solution is. The better it

is, the higher probability of survival it has, and so, it has a higher probability of being

selected for the next generation. It is necessary to establish some criteria to determine if

one solution is better than another. In the scalar case, it is obvious: the better objective

value it has, the better a solution is. In the multiobjective case, there is not only one

criterion to conclude whether one solution is better than another, because no total order

exists in the set of solutions.
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A classification of solving methods for Multiobjective Problems (MOP) can be done in

function of the moment when the Decision Maker (DM) takes part in selecting the efficient

solutions. The DM can take part before, during or after the optimization process. The

researches developed in this paper are methods that are used, in general, in methods

that use ’a posteriori’ information, in which the aim of the process is to generate a set of

efficient solutions. A reference about the different approaches can be found in [3] and [6].

The approach in which we are interested uses directly the concept of Pareto optimality

to define the selection process. These methods rank the individuals in a manner such that

the non dominated individuals of the population have a lower ranking, and so, a higher

probability of being selected. These methods are known as Pareto ranking. Some of them

can be found in [1], [2], [5] and [7].

2 Multiobjective Problems. Pareto Rankings

Let a Multiobjective Problem be

min F (a) = (f1(a), . . . , fq(a))

s.a: a ∈ A

where A = {a ∈ Rn|gi(a) ≤ 0, i = 1, . . . , m}, fj : Rn → R, j = 1 . . . , q and gi : Rn →

R, i = 1, . . . , m.

A is the feasibility region of the problem and its points are called feasible solutions to

the problem. When these solutions are a part of a population, we will refer to them as

individuals of the population.

In general, the objective functions are of a conflicting nature, improving an objective

can make another objective worsen and this causes there to be no solution that simulta-

neously minimizes all the objectives. So, no ordering can be defined in a natural way (in

function of the values of the objective functions) that let us say if one solution is better

than another.

There are several approaches for solving MOP and all of them have a point in common,

they look for solutions that are satisfactory for the DM from a set of solutions called

efficient solutions.

Definition: Given two solutions a1, a2 ∈ A, we say that a1 = (a1

1
, . . . , a1

n) dominates

a2 = (a2

1
, . . . , a2

n) if and only if F (a1) is partially less than F (a2), i.e., if and only if

fi(a
1) ≤ fi(a

2)∀i = 1, . . . , q and ∃i ∈ {1, . . . , q} with fi(a
1) < fi(a

2)

Definition: One solution a ∈ A is said to be Pareto optimal or efficient with regard to a

set B⊂A if and only if there does not exist any a′ ∈B such that a′ dominates a.

It is clear from the second definition that the DM only looks for solutions to the

problem that are non dominated, and among them, the DM selects those that are more
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satisfactory.

Next, we describe briefly how three of the most commonly used methods work. One

belongs to Belegundu [1], another to Goldberg [5] and the last one to Fonseca and Fleming

[2].

a) Belegundu’s ranking: All non dominated individuals are assigned rank 0 (or 1) and

the dominated ones rank 1 (or 2).

b) Goldberg’s ranking: It assigns equal probability of reproduction to all non domi-

nated individuals in the population. The method consisted of assigning rank 1 to

the non dominated individuals and removing them from contention, then finding a

new set of non dominated individuals, ranked 2, and so forth.

c) Fonseca and Fleming’s ranking: An individual’s rank corresponds to the number of

individuals in the current population by which it is dominated. Non dominated indi-

viduals are, therefore, all assigned the same rank equal to zero, while the dominated

ones have values between 1 and k − 1, where k is the population size.

Considering the example MOP2 introduced in [6], the landscapes of the ranking func-

tions in a discretization of 1000 points in −2 ≤ x ≤ 2,−2 ≤ y ≤ 2 is shown in figure 1.
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3 New Pareto Rankings

In this section we present two new methods for ranking solutions. Both have in common

the same ideas as the previous ones. They establish a ranking that gives the lowest values

to the efficient solutions and they increase the ranking when the solutions are further, in

any sense, from the efficient ones.

AM1 Method

This method transforms the solution vectors (f1(a), . . . , fq(a)) in scalar values by

means of an aggregation with random weights U(0, 1).

Given the current population, P , q random weights are generated. The value of the

aggregated function is obtained for each one of the individuals. Then, for each individual,

it is determined how many individuals have a better value of the aggregated function (in

a similar way to Fonseca-Fleming’s ranking determines, for each individual, how many
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individuals dominate him). This process is repeated a prefixed number of times. Basically,

the method determines as best solutions those that are preferred under more points of

view (best for a bigger set of random weights) To guarantee that the efficient individuals

are given rank 1, they are identified in a first step of the algorithm and removed from

the population before the process starts. Then, the process is applied on the non efficient

individuals.

The schema of the algorithm is shown in figure 2 a), in which it is assumed that the

efficient individuals have been removed from the population.

The function rand() returns U(0, 1) values and the function sort() returns a vector in

which the h−th component contains the index of the vector F̄ that occupies the h−th

position after sorting it from the lowest to the highest value. As we have pointed out

before, M is the number of times that the process of selecting random weights is repeated.

AM2 Method

This method uses Goldberg and Fonseca and Fleming’s ideas together, and is a re-

finement of Goldberg’s method. Initially, Goldberg’s ranking is used to separate the

individuals into layers. Then, the individuals of each layer are ranked using the number

of individuals in the preceding layer that dominate them. So, in each layer the individuals

are ranked with the information contained in the preceding layer.

Let Ch, h = 1, . . . , H the layers defined by Goldberg’s ranking such that RG(ai) =

h ∀ai ∈ Ch and let ah
i ∈ Ch, where i = 1, . . . , |Ch|.

The schema of the algorithm is shown in figure 2 b).

for i = 1 to k

RAM1(ai)=0

end for

for j = 1 to M

U = (U1, U2, . . . , Uq)
′ =

= (rand(), . . . , rand())′

for i = 1 to k

F̄ (ai) = F (ai) × U

end for

index=sort(F̄ )

for i = 1 to k

l =index(i)

RAM1(al)=RAM1(al)+i − 1

end for

end for

for i = 1 to |C1|

RAM2(a
1

i ) = 1

end for

acum = 1

for h = 2 to H

for i = 1 to |Ch|

RAM2(a
h
i ) = acum

for j = 1 to |Ch−1|

if ah−1

j dominates ah
i

RAM2(a
h
i ) = RAM2(a

h
i ) + 1

end if

end for

end for

acum = max
i=1,...,|Ch|

{RAM2(a
h
i )}

end for

Figure 2 a). AM1 method Figure 2 b). AM2 method
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In figure 3, the landscapes of the normalized ranking function are presented for the

test problem MOP2 for both methods (in the AM1 method, we have considered M=20)
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4 Comparison of Methods. Classification errors

With regard to the relationships among the rankings generated, we can establish the

following characteristics:

a) In all of them, the existing and the new ones, the efficient solutions get the lowest

ranking, and starting from there, the ranking of the rest of the solutions is estab-

lished in an increasing way. The further a solution is from the efficient ones (in any

sense), the higher ranking this solution gets.

b) The discrimination capacity of these methods for a population P with |P | = k, from

minor to major is:

- Belegundu’s ranking. ∀ai ∈ P ⊂ A, RB(ai) ∈ {0, 1}.

- Goldberg’s ranking, Fonseca-Fleming’s ranking and AM2. ∀ai ∈ P ⊂ A,

RG(ai), RFF (ai), RAM2(ai) ∈ {0, . . . , k}.

- AM1 ranking. ∀ai ∈ P ⊂ A, RAM1(ai) ∈ {0, . . . , M × k}.

Then, the AM2 method equals (or improves, for Belegundu’s ranking) the dis-

crimination capacity of the existing ones, and the AM1 method, can provide the

smoothest ranking. We also have to take into account that Fonseca-Fleming’s rank-

ing, in general, and in spite of the fact that it has the same rank of variation as

Goldberg’s ranking, generates rankings with a higher capacity of discrimination

([4]). With respect to the AM2 method, it is a refinement of Goldberg’s ranking,

and so it will generally provide a higher capacity of discrimination.
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c) In general, no relation among the rankings exists, except for the obvious one:

- Given ai, aj ∈ P ⊂ A such that RB(ai) < RB(aj) then R∗(ai) < R∗(aj) where

∗ represents any of the other rankings.

If we compare the graphics presented before, we can observe that there is no com-

patibility between Goldberg’s and Fonseca-Fleming’s rankings. Given a set of alter-

natives, we can assign different ranking relations among them, that is to say, there

can exist ai, aj ∈ P ⊂ A such that RG(ai) < RG(aj) and RFF (ai) > RFF (aj) and

viceversa.

With respect to the rankings we present, the situation is similar, except for Gold-

berg’s ranking and AM2. The following result can be established immediately:

- Given ai, aj ∈ P ⊂ A such that RG(ai) < RG(aj) then RAM2(ai) < RAM2(aj)

Another important point corresponds to the errors produced when ranking a sample (a

population for the evolutionary algorithm) instead of all the individuals of the feasibility

region. As we show in figure 4, all methods can present, in some situations, ranking

errors with respect to the sorting when the information of the global feasibility region

is considered. In this figure we can observe that there is no monotone behaviour of the

sample’s ranking with respect to the order obtained when the global feasibility region is

considered.
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Although this population is classified relatively well by all the methods presented,

there can exist cases in which this might not happen, as we show in figure 5.
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To examine the better or worse behaviour of the former rankings, we have taken the

seven test problems, MOP1,. . . , MOP7, proposed in [6] and we have generated, for each

problem, 4 sets of 500 populations with sizes 10, 20, 30 and 40. For each of these 14000

populations, we have determined its ranking with every method and the ranking when

considering the population in the global feasibility region (discretization of around 1000

points). After this, to measure the ranking error, Spearman’s correlation coefficient has

been calculated between both rankings and for every population size. Next, we present

the mean values and the sum of the squares of the deviations to the mean of this coefficient

in figure 6.

Goldberg Fons-Fleming AM1 AM2

MOP1 (10)x 0,936 0,952 0,972 0,941
ns2 1,811 1,114 0,408 1,534

(20) x 0,965 0,980 0,989 0,966
ns2 0,401 0,117 0,029 0,367

(30) x 0,971 0,985 0,993 0,971
ns2 0,384 0,080 0,008 0,372

(40) x 0,976 0,990 0,995 0,976
ns2 0,248 0,0328 0,004 0,241

Goldberg Fons-Fleming AM1 AM2

MOP5 (10) x 0,648 0,706 0,646 0,659
ns2 37,50 24,67 67,41 39,31

(20) x 0,741 0,817 0,831 0,774
ns2 20,19 11,09 31,92 17,39

(30) x 0,818 0,883 0,914 0,849
ns2 7,991 3,401 8,143 5,683

(40) x 0,842 0,910 0,942 0,869
ns2 6,850 2,336 5,112 4,949

Figure 6.
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Goldberg Fons-Fleming AM1 AM2

MOP2 (10) x 0,890 0,931 0,973 0,888
ns2 4,204 1,941 1,502 3,810

(20) x 0,922 0,964 0,992 0,923
ns2 0,964 0,331 0,0528 0,861

(30) x 0,936 0,976 0,995 0,937
ns2 0,624 0,113 0,011 0,560

(40) x 0,946 0,982 0,997 0,948
ns2 0,421 0,050 0,003 0,374

MOP3 (10) x 0,734 0,822 0,813 0,746
ns2 20,39 65,72 13,74 22,07

(20) x 0,798 0,887 0,909 0,806
ns2 10,28 2,586 2,438 9,380

(30) x 0,835 0,920 0,937 0,843
ns2 7,374 1,052 1,138 6,465

(40) x 0,861 0,941 0,953 0,868
ns2 5,525 0,555 0,566 4,950

MOP4 (10) x 0,630 0,664 0,550 0,641
ns2 17,77 27,20 27,76 15,93

(20) x 0,714 0,752 0,672 0,726
ns2 9,191 6,985 13,24 8,458

(30) x 0,762 0,814 0,741 0,776
ns2 5,109 3,440 7,230 4,650

(40) x 0,789 0,840 0,778 0,804
ns2 3,969 2,277 5,237 3,507

Goldberg Fons-Fleming AM1 AM2

MOP6 (10) x 0,816 0,904 0,861 0,820
ns2 13,02 4,244 12,86 12,11

(20) x 0,850 0,951 0,932 0,851
ns2 4,810 0,519 2,833 4,617

(30) x 0,863 0,965 0,951 0,864
ns2 3,593 0,212 1,726 3,396

(40) x 0,875 0,974 0,966 0,876
ns2 2,399 0,119 0,802 2,312

MOP7 (10) x 0,855 0,913 0,915 0,866
ns2 6,544 2,664 4,969 5,655

(20) x 0,893 0,949 0,963 0,900
ns2 0,893 0,949 0,963 0,900

(30) x 0,914 0,964 0,977 0,920
ns2 1,304 0,494 0,260 1,084

(40) x 0,927 0,975 0,984 0,932
ns2 0,576 0,129 0,106 0,527

Figure 6. Cont.

As we gather from this figure, Goldberg’s method is the one that, in general, produces

higher classification errors. In almost every case, the AM2 method slightly improves

Goldberg’s method, as it was expected because AM2 is a refinement of Goldberg’s.

The AM1 method and Fonseca-Fleming’s method share the best behaviour. The AM1

method is the best in 5 of the 7 test problems. Furthermore, AM1 and Fonseca-Fleming’s

methods are those which have a smaller variance and this means that these methods are

more stable in the classification.

5 Conclusions

In this work, we have tackled an important element in the design of Multiobjective Evo-

lutionary Algorithms: the construction of rankings for the individuals of the population

to later establish the probabilities of survival.

We have taken two of the most usual ranking methods, belonging to Goldberg and

Fonseca and Fleming; and a third one for its simplicity, belonging to Belegundu. These

methods have been presented together with two new ones. All these methods have in

common that the efficient solutions have the best (lowest) ranking. For the other solutions,

the further they are from the efficient set, the higher ranking they get.

The AM1 method gives a higher discrimination capacity than the existing ones, be-

cause the rank of values is a positive multiple (integer) of the population size. The other,

AM2, equals the discrimination capacity of Goldberg’s and Fonseca-Fleming’s methods.
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On the whole, there is no compatibility among the rankings, except for Belegundu’s

ranking with respect to all the other methods, and Goldberg’s ranking with respect to

the AM2 method.

Finally, in 5 out of the 7 test problems, the proposed AM1 method outperforms the

others, and the AM2 method only outperforms Goldberg’s method.

Lastly, with the test done on ranking errors, we guess the necessity of future research

to be done in a theoretical way on one of the topics in this paper: the classification errors

and the designing of ranking methods which, alone or interacting with other elements

of evolutionary algorithms, guarantee ranking errors as small as possible or even their

diminution in successive iterations of the algorithms.
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