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FEATURE SELECTION USING MUTUAL

INFORMATION AND NEURAL NETWORKS

O. Valenzuela, I. Rojas, L. J. Herrera, A. Guillén, F. Rojas,
L. Marquez and M. Pasadas

Abstract. Reducing the dimensionality of the raw input variable space is an important
step in pattern recognition and functional approximation tasks often determined by prac-
tical feasibility. The purpose of this study was to investigate an information theoretic
approach to feature selection. We will use mutual information (MI) as a pre-processing
step for artificial neural networks. The reasons why mutual information is not in wider
use currently (except between two scalar variables) lie in computational difficulties. The
probability density functions of the variables are required, and MI involves numerical in-
tegration of functions of those, which leads to a high computational complexity. Because
of the difficulty in directly implementing the maximal dependency condition, we first de-
rive an equivalent form, called minimal redundancy maximal relevance criterion, for first
order incremental feature selection.

The feature selection methodology is hybridized with three different classification
and universal function approximation paradigms: Multilayer Perceptron, Radial Basis
Function and Support Vector Machine. We perform extensive experimental comparison of
the proposed hybrid algorithm for different problem: breast cancer classification, diabetes
in Pima Indians and arrhythmia.

§1. Introduction

Feature selection is the process of choosing a subset of features relevant to a particular ap-
plication. During the selection process, a decision criterion is used to remove irrelevant or
redundant features. Extensive research has led researchers to appreciate the importance of
feature selection when developing Computer-Assisted Diagnostic (CAD) tools. Optimized
feature selection reduces data dimensionality and potentially removes noise, thus resulting
in CAD tools that are not only more accurate but also more robust. Several CAD applica-
tions have demonstrated the positive impact of optimized feature selection. The most popular
feature selection algorithm utilized in CAD is the stepwise linear discriminant analysis, bor-
rowed from linear statistics. It is designed to reduce the dimensionality of the feature vector
by selecting in stepwise fashion the features that maximize the linear separability of the out-
put classes.

The approach is based on the Mutual Information (MI) concept. MI measures the general
dependence of random variables without making any assumptions about the nature of their
underlying relationships. Consequently, MI can potentially offer some advantages over fea-
ture selection techniques that focus only on the linear relationships of variables. MI accounts
for higher-order statistics, not just for second order. In addition, it can also be used as the
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basis for non-linear transforms. MI also bounds the optimal Bayes error rate. The reasons
why mutual information is not in wider use currently (except between two scalar variables)
lie in computational difficulties. The probability density functions of the variables are re-
quired, and MI involves numerical integration of functions of those, which leads to a high
computational complexity. Given two random variablesx andy, their mutual information is
defined in terms of their probabilistic density functionsp(x), p(y) andp(x,y).

The feature selection methodology is hybridized with three different classification and
universal function approximation paradigms: Multilayer Perceptron, Radial Basis Function
and Support Vector Machine. Multilayer perceptrons (MLPs) are feedforward neural net-
works trained with the standard backpropagation algorithm. They are supervised networks so
they require a desired response to be trained. They have been shown to approximate the per-
formance of optimal statistical classifiers in difficult problems. Radial basis function (RBF)
networks have a static Gaussian function as the nonlinearity for the hidden layer processing
elements. The Gaussian function responds only to a small region of the input space where
the Gaussian is centred. The Support Vector Machine (SVM) is one of the most successful
learning algorithms proposed in recent years. One of the main advantages of the SVM over
other networks is that its training is performed through the solution of a linearly constrained
convex quadratic programming problem: therefore, only a global (not necessarily unique)
minimum exists and, given a fixed tolerance, efficient algorithms can find an approximate
solution in a finite number of steps.

We perform extensive experimental comparison of the proposed hybrid algorithm for dif-
ferent problem: function approximation or regression problem, classification (breast cancer,
diabetes and thyroid classification) and time series forecasting. This different technique, in
order to obtain a self-containing paper, will be explained in the following section. The re-
mainder of this paper is organized as follows: In Section 2, we will present a feature selection
algorithm, which selects the more important variables to the artificial intelligent paradigms
(different kinds of neural networks). Section 3 presents a brief resume of the main intelligent
computation techniques used in this paper. The benchmark problems selected to check the
behaviour of the proposed algorithm are detailed in Section 4, whereas the simulation results
are given in Section 5. Finally, Section 6 presents the main conclusions.

§2. Feature selection: Mutual information and Minimal Redundancy
Maximal Relevance Criterion

Mutual information is a good indicator of relevance between variables, and has been used as a
measure in several feature selection algorithms. However, calculating the mutual information
is difficult, and the performance of a feature selection algorithm depends on the accuracy of
the mutual information [2]. In this section we use a method of calculating mutual information
between input and class variables based on the Parzen window [3]. In the breast cancer clas-
sification problem presented in this paper, the mutual information between the input features
X and the classC can be represented as follows:

I(X;C) = H(C)−H(C|X). (1)
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In this equation, because the class is a discrete variable, the entropy of the class variableH(C)
can be calculated as:

H(X) =−∑
x∈X

p(x) logp(x). (2)

Where the discrete variableX hasX alphabets and the probability density function (pdf) is
p(x) = Pr{X = x}, x∈ X. The hard problem is to compute the conditional entropy:

H(C|X) =−
∫

X
p(x)

N

∑
c=1

p(c|x) logp(c|x)dx. (3)

Because it is not easy to estimatep(c|x), beingN the number of classes. By the Bayesian
Rule, the conditional probabilityp(c|x) can be written as

p(c|x) =
p(x|c)p(c)

p(x)
. (4)

Using the Parzen Window method [3], is it possible to estimate the conditional pdfp̂(x|c), an
using the estimate the conditional pdfp̂(x|c), the conditional probability is

p̂(c|x) =
∑i∈Ic exp

(
− (x−xi)T ∑−1(x−xi)

2h2

)
∑N

k=1 ∑i∈Ik exp
(
− (x−xi)T ∑−1(x−xi)

2h2

) . (5)

Therefore, usingn training samples, the conditional entropy, assuming that each sample has
the same probability is

Ĥ(C|X) =−
n

∑
j=1

1
n

N

∑
c=1

p̂(c|x j) log p̂(c|x j). (6)

Wherex j is the jth sample of the training data. Therefore, given the input dataD tabled
asN samples andM featuresX = {xi , i = 1, . . . ,M}, and the target classification variable
c, feature selection problem is to find from theM-dimensional observation space,RM, a
subspace ofm features,Rm, that “optimally” characterizesc. Given a condition defining the
“optimal characterization”, a search algorithm is needed to find the best subspace. Because
the total number of subspaces is 2M, and the number of subspaces with dimensions no larger
than m is ∑m

l=1(
M
l ), it is hard to search the feature subspace exhaustively. Alternatively,

many sequential-search based approximation schemes have been proposed, including best
individual features, sequential forward search, sequential forward floating search, etc (see [6,
10] for detailed comparison.). Max-Relevance is to search features satisfying the following
equation:

maxD(S,c), D =
1
|S| ∑

xi∈S

I(xi ;c), (7)

and satisfying theminimal redundancy(Min-Redundancy) condition expressed as

maxR(S), R=
1

|S|2 ∑
xi ,x j∈S

I(xi ,x j). (8)

The criterion combining the above two constraints is calledminimal-redundancy-maximal
relevance(mRMR) [1]. This is the criterion that has been used in the proposed paper.
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§3. Paradigms from Artificial Intelligence

3.1. Multilayer Perceptron

The essential idea of a feed-forward ANN is that each neuron outputs a smoothly rising
function of the sum of its weighted inputs, e.g.F(a∗w1+ b∗w2+ c∗w3). The weighted
sum in the brackets also equals the scalar product of the data and weight vectors,d.w, which
in turn equalsD∗W∗cos(angle betweend andw), whered is (a,b,c) andw is (w1,w2,w3).
This is worth knowing because it demonstrates that the neuron is effectively detecting the
featurew.

When networks are built using three layers, the middle layer is called “the hidden layer”.
Each unit within the hidden layer may act as a feature detector, responding to features ap-
pearing within the input data. This neural network structure is usually called a multi-layer
perceptron (MLP). The MLP architecture is the most popular in real world applications. Each
layer is fully connected to the next. The results of many authors working with MLPs over
many years, including the authors of this paper, tends towards the optimistic view that simple
monotonic functions like the sigmoid or the tan(h) are widely applicable.

The connection weights of a neural network need to be discovered for a correct solution
to any problem and this is called training. Where the interpretation of a set of (training)
data is known, it is appropriate to use supervised learning; whereas if there are no available
interpretations for the data, supervised learning cannot be used and unsupervised learning can
be useful. One of the most popular algorithms to adapt the weights of a multilayer Perceptron
is based on the Generalized Delta Rule (GDR) [7]. With the GDR, small updates are made
to each weight such that the updates are proportional to the backpropagated error term at the
node. The update rule for the GDR is

∆wi j (t) = ηδ jx ji . (9)

The problem with the gradient descent approach is in choosingη : we’d like it to be small, to
ensure we make progress moving downhill, but we’d also like it to be big so that we converge
to the solution quickly. Solutions to this dilemma include varyingη in response to how well
previous steps worked, or iteratively finding the minimum in the direction of the gradient (i.e.
“minimization”).

The Levenberg-Marquardt method takes a different approach, by recognizing that the
curvature of the function gives us some information about how far to move along the slope of
the function. This has been the method use in the present paper.

3.2. Radial Basis Function

Broomhead and Lowe[4] were the first to exploit the use of radial basis functions in the
design of neural networks and to show how RBF networks model nonlinear relationships
and implement generalization or interpolation between data points. Radial basis function
(RBF) neural networks consist of neurons which are locally tuned. An RBF network can be
regarded as a feedforward neural network like a multilayer perceptron (MLP) with a single
layer of hidden units, whose responses are the output of radial basis functions. Both MLP
and RBF architectures have the capability of approximating mathematically well-behaved
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functions to any desired degree of accuracy, provided there are enough nodes in the network.
Theoretical frameworks [5] show that RBF networks with Gaussian units having different
kernel widths are universal approximators with respect to the uniform norm for continuous
functions defined on a compact convex set. Experience shows that RBF response networks
often give approximations that are as good as or better than MLP, with one or two orders of
magnitude less training effort. The output of the networks is defined as the linear combination
of the radial basis function layer, as follows:

F̃RBF(X) =
N

∑
i=1

wiφi(X,Ci ,σi)+λ0, (10)

where the radialRn basis functionsφi are the nonlinear functions, which depend on the pa-
rametersCi ∈ Rn that represent the centre of the basis function andσi ∈ Rn, the dilation or
scaling factor. The basis function is expressed as

φi(X,Ci ,σi) = φi(‖X−Ci‖/σi), (11)

with ‖ .‖ being the norm used. This is the expression of the weighted sum of the radial basis
function (F̃RBF).

3.3. Support Vector Machine

We are given a set ofN data points{xi ,yi}Ni=1, wherexi ∈ Rn is the ith input data, andyi ∈
{−1,+1} is the label of the data. The Support Vector Machine (SVM) approach aims at
finding a classifier of form [9, 10]:

y(x) = sign

[
N

∑
i=1

αiyiK(xi ,x)+b

]
, (12)

whereαi are positive real constants andb is also a real constant, in general, andK(xi ,x) =
〈φ(xi),φ(x)〉, 〈 . , .〉 is inner product andφ(x) is the nonlinear map from original space to the
high dimensional space. In the high dimensional space, we assume the data can be separated
by a linear hyperplane, this will cause:{

wTφ(xi)+b≥ 1, if yi = +1,

wTφ(xi)+b≤−1, if yi =−1,
(13)

which is equivalent to
yi [wT

φ(xi)+b]≥ 1, i = 1, . . . ,N. (14)

In case of such separating hyperplane does not exist, we introduce a so called slack variable
ξi such that {

yi [wTφ(xi)+b]≥ 1−ξi , i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N.
(15)
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According to the structural risk minimization principle, the risk bound is minimized by the
following minimization problem:

min
w,ξ

J1(w,ξ ) =
1
2

wTw+c
N

∑
i=1

ξi (16)

subject to (15).

§4. Dataset used

In this section we present the medical diagnosis problem and the results of the different
approaches presented in the bibliography.

4.1. Wisconsin breast cancer dataset

The presence of a breast mass is an alert sign, but it does not always indicate a malignant
cancer. Fine needle aspiration (FNA) of breast masses is a cost-effective, non-traumatic, and
mostly non-invasive diagnostic test that obtains information needed to evaluate malignancy.

The Wisconsin breast cancer dataset was obtained from repository of machine learning
database University of California, Irvine. This data set has 32 attributes (30 real-valued
input features) and 569 instances of which 357 benign and 212 malignant class. However,
diagnostic decisions are essentially black boxes, with no explanation as to how they were
attained.

Nine visually assessed characteristics of an FNA sample considered relevant for diagnosis
were identified, and assigned an integer value between 1 and 10. The measured variables are
as follows: 1. Clump Thickness (V1); 2. Uniformity of Cell Size (V2); 3. Uniformity of Cell
Shape (V3); 4. Marginal Adhesion (V4); 5. Single Epithelial Cell Size (V5); 6. Bare Nuclei
(V6); 7. Bland Chromatin (V7); 8. Normal Nucleoli (V8); 9. Mitosis (V9). The diagnostics in
the Wisconsin breast cancer dataset were furnished by specialists in the field. The database
itself contains 683 cases, with each entry representing the classification for a certain ensemble
of measured values.

4.2. Diabetes in Pima Indians

This database is taken from the UCI repository (see [8]) and is a fairly well know bench mark
problem in machine learning. A population of women who were at least 21 years old, of Pima
Indian heritage and living near Phoenix, Arizona, was tested for diabetes according to World
Health Organization criteria. The data were collected by the US National Institute of Diabetes
and Digestive and Kidney Diseases. The diagnostic, binary-valued variable investigated is
whether the patient shows signs of diabetes according to World Health Organisation criteria.
The database contains details of 768 females all of which are older than 21. This was split
into a training and test set each containing 384 instances. There are 8 attributes: 1. Number
of times pregnant; 2. Plasma glucose concentration; 3. Diastolic blood pressure, 4. Triceps
skin fold thickness; 5. 2-Hour serum insulin; 6. Body mass index; 7. Diabetes pedigree
function; 8. Age.
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4.3. Arrythmia database

In order to assess the ability of techniques considered in this work to deal with incomplete
or ambiguous biosignal data from multiple patients in a real-world setting, we use the UCI
Arrythmia dataset developed by Guveniret. al. for our simulation experiment. This database
contains 279 attributes, 206 of which are linear valued and the rest are nominal. Concerning
the study of H. Altay Guvenir: “The aim is to distinguish between the presence and absence
of cardiac arrhythmia and to classify it in one of the 16 groups. Class 01 refers to ‘normal’
ECG classes 02 to 15 refers to different classes of arrhythmia and class 16 refers to the rest
of unclassified ones. For the time being, there exists a computer program that makes such
a classification. However there are differences between the cardiolog’s and the programs
classification. Taking the cardiolog’s as a gold standard we aim to minimise this difference
by means of machine learning tools”.

§5. Simulation results

The proposed methodology consist of two different phases: in the first one, the feature selec-
tion algorithm is applied in order to obtain the most relevant attributes, in the second phase, a
soft-computing paradigm is used for classification purpose. The feature selection algorithm
used tries to select a feature that minimizes the redundancy and maximizes the relevance,
instead of selecting just independent features. In fact, in real problems, features selected us-
ing the feature selection algorithm presented in section 2 will have more or less correlation
with each other. However, experiments show that the joint effect of these features can lead to
very good classification accuracy. A set of features that are completely independent of each
other usually would be less optimal. In the second phase, powerful classifier paradigms, as
Multilayer perceptron, Radial Basis Function Neural Networks or Support Vector Machine
are used with the most important attributes selected in previous phase. The simulation re-
sult, comparing the different paradigms for the three different problems are presented in the
figures 1 to 3.

From Figure 1, it is important to note that due the small number of attributes presented in
the data base, reducing the number of features contribute to continuously decrease the error
rate for all the classifier used. Figure 2 shows the evolution of the error rate and the compar-
ison of feature classification accuracies of different paradigms for the Arrhythmia problem.
It is important to note that this benchmark has a big number of attributes for just a small
number of instances. Therefore, even if the classification paradigm has more input nodes
(big number of features), the error rate is not decreased because overfitting is produced. In
fact, the critical issue in developing a neural network or kernel method (as SVM) is general-
ization: how well will the network make predictions for cases that are not in the training set?
Neural network, like other flexible nonlinear estimation methods such as kernel regression
and smoothing splines, can suffer from either underfitting or overfitting. A network that is
not sufficiently complex can fail to detect fully the signal in a complicated data set, leading
to underfitting (analysing Figure 2, this is the behaviour presented with only 1 or 2 features).
A network that is too complex may fit the noise, not just the signal, leading to overfitting.
Overfitting is especially dangerous because it can easily lead to predictions that are far be-
yond the range of the training data with many of the common types of NNs. Overfitting can
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Figure 1: Comparison of feature classifica-
tion accuracies of different paradigms for the
Breast-Cancer problem

Figure 2: Comparison of feature classifica-
tion accuracies of different paradigms for the
Diabetes problem

also produce wild predictions in multilayer perceptrons even with noise-free data (analysing
Figure 2, this is the behaviour presented with classifiers with a big number of features, around
15). For decision-making, the probability output from the classifier is rounded to 1,2, . . . ,16
depending on the classification probability threshold. Examining results in detail, it was ob-
served that misclassifications were mainly concentrated on the area where probabilities are
estimated to be between integer number (for example, between 1.4 and 1.7). It is therefore
concluded that the classification results around and real number, with the non-integer part
around 0.5 have higher risk of misclassification.

This also suggests that if the misclassifications between output result with non-integer
part in the interval[0.4,0.7] could be ignored, the misclassification would be reduced sub-
stantially. The randomness of the occurrence of arrhythmic beats suggests that a static anal-
ysis, based only on the features of the current beat, might be appropriate. The high intra-
and interpatient variability of the beat shape suggests an approach that takes the patient as a
reference of himself or herself. However, in clinical domain, it is hard for a physician to build
a new model for every patient, especially when we want to monitor a patient’ condition in the
real-time but have no his/her data to train our classifier and build our model. Therefore, the
use of inter-patient data included high noisy component and incomplete information becomes
very important in practical domain.

Finally, Figure 3 shows the behaviour of the error rate for the diabetes problem. The
evolution of the error is similar to the Breast-Cancer problem.

§6. Conclusions

We have presented a method for feature extraction using as criterion an approximation of the
mutual information between features and class labels. This approximation is inspired by the
minimal-redundancy-maximal-relevance condition. The purpose of this study was to inves-
tigate an information theoretic approach to feature selection for classification and function
approximation problems and its hybridization with artificial neural networks. The approach
is based on the mutual information (MI) concept. MI measures the general dependence of
random variables without making any assumptions about the nature of their underlying re-
lationships. Consequently, MI can potentially offer some advantages over feature selection
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Figure 3: Comparison of feature classification accuracies of different paradigms for the Ar-
rhythmia problem

techniques that focus only on the linear relationships of variables. MI accounts for higher-
order statistics, not just for second order. In addition, it can also be used as the basis for
non-linear transforms. MI also bounds the optimal Bayes error rate. The reasons why mutual
information is not in wider use currently (except between two scalar variables) lie in com-
putational difficulties. The probability density functions of the variables are required, and
MI involves numerical integration of functions of those, which leads to a high computational
complexity. Given two random variablesx andy, their mutual information is defined in terms
of their probabilistic density functionsp(x), p(y) andp(x,y). We present a theoretical anal-
ysis of the minimal-redundancy-maximal-relevance (MRMR) condition and its hybridising
with different paradigms from the artificial intelligence, as Multilayer Perceptron, Radial Ba-
sis Function and Support Vector Machine. We perform extensive experimental comparison
of the proposed hybrid algorithm for different problem: breast cancer classification, Diabetes
in Pima Indians and Arrhythmia. The experimental results show that for benchmark problem
with a small number of attributes, increasing the number of selected features, the error index
decrease. However, in real problem with big number of attributes, although in general more
selected features will lead to a smaller classification error, the decrement of error might not
be significant for each additional feature, or occasionally there could be fluctuation of classi-
fication errors. For example, in Figure 2, the 10th selected feature seemingly has not led to a
major reduction of the classification error produced with the first 11th features.
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