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CONVERGENCE OF THE

APPROXIMATIONS OF AN INTEGRAL

BY SUMS OF RANDOM VARIABLES

Henar Urmeneta and Víctor Hernández

Abstract. Numeric methods of approximation on an integral suggest, in a natural way,
random methods of approximation by just evaluating approximation rules in random
points.

In Einmahl-Van Zuijlen (1997) random approximations of the integral of a smooth
function on[0,1], based on the trapezoidal rule and Simpson’s rule, are proposed. They
obtain results for the convergence in probability, in the first case, and for the convergence
in distribution, in the second case. The purpose of the present paper is to prove similar
results for the almost sure convergence. We obtain the rate of almost sure convergence
when smooth-conditions onf are holden.
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§1. Introduction

The approximation of integrals is an old problem of the numerical analysis. The classical
methods of the numerical analysis are deterministic, fixed the number of points, the approxi-
mated value and the error bound are determinate. Also there exist random methods to approx-
imate an integral, which consist in simulating the problem by random samples and justifying
its by means of laws of large numbers. In both cases, deterministic and random methods, we
would state the approximation together with a bound on the error in the approximation. The
analysis of error is an intrinsic part of the application of any approximation method.

There are several methods based on multiple evaluations of the integrand functionf . In
these cases, the main idea is that the error can be proved to go to 0 as the number of function
evaluations increase. Even more, we would examine how the error changes for an increasing
number of function evaluation to analyze the convergence velocity.

Most of random methods estimate the integralI of a function f by means of sums like

In =
n

∑
i=1

ωi f (Xi),

whereXi are random points where the functionf has to be evaluated andwi are real numbers,
for i = 1, . . . ,n.
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The analysis of the error requires the study of convergence, in probability, in distribution
and almost sure, of estimation error,In− I , for increasingn. The analysis of the convergence
velocity require study rates of convergence, for instance, results asIn− I = Oa.s.(1/nk) or

In− I = Op.(1/nk), whereαn = Oa.s.(p.)βn means|αn/βn|
a.s.(p.)−−−−→ K, with K ∈ R+.

Classical numerical rules of approximation of an integral suggest in a natural way random
methods of approximation by just evaluating approximation rules in random points. The
classical polynomial interpolation rules approximates the integral

∫ b
a f (x) dx by means of

this other
∫ b

a Pn(x) dx, wherePn is an interpolating polynomial of the functionf in (a,b).
These approximation takes the form

In =
n

∑
i=1

ωi f (xi),

where thexi , with i = 1, . . . ,n, are points in(a,b) chosen by means of a deterministic criteria.
The idea consists in substituting in the rule eachxi by a random pointXi , for all i = 1, . . . ,n.

§2. Approximations based on the trapezoidal rule

The approximation ofI =
∫ 1

0 f (x)dx by using trapezoidal rule is obtained dividing[0,1] into
n+1 parts by means ofn equidistant points and summing the areas of the trapezoids which
bases are each part and which heights are the images of the functionf at the points that
determine each part:

1
2

n+1

∑
i=1

1
n+1

(
f
( i−1

n+1

)
+ f
( i

n+1

))
.

If f ∈ C2[0,1], the approximation error in each subinterval[a,b] is 1/12(b− a)3 f ′′(c),
wherec∈ (a,b). Therefore, the total approximation error is

1
12

n+1

∑
i=1

(
1

n+1

)3

f ′′(ξi), with ξi ∈
( i−1

n+1
,

i
n+1

)
. (1)

Suppose we can only observe the values off at the independent uniformly distributed
random pointsX1,X2, . . . ,Xn. We can apply the trapezoidal rule withUn,1,Un,2, . . . ,Un,n,
the order statistics ofX1,X2, . . . ,Xn, instead of the equidistant points. Thus, by only using
(Un,i , f (Un,i)), i = 0,2, . . . ,n+ 1, whereUn,0 = 0 andUn,n+1 = 1, it proposes the random
approximation:

În =
1
2

n+1

∑
i=1

Dn,i ( f (Un,i−1)+ f (Un,i)) ,

whereDn,i = Un,i−Un,i−1.
In [1], the following result about the convergence in probability ofÎn to I is proved.

Theorem 1. If f ′′′ is bounded in[0,1], then

n2(În− I)
p−→ 1/2( f ′(1)− f ′(0))

when n→ ∞.
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Therefore, we have the following convergence rate for the convergence in probability:

În− I = Op.(1/n2).

We show in the following theorem the same rate for the almost sure convergence, relaxing
the condition about the smoothness off .

Theorem 2. If f ∈C2[0,1], thenÎn− I = Oa.s.(1/n2).

Proof. The following lemma is well-known and will be used in the proof (it can be found in,
e.g., [4, p. 721]).

Lemma 3.

(Dn,1,Dn,2, . . . ,Dn,n)
d=

(
α1

∑n+1
i=1 αi

,
α2

∑n+1
i=1 αi

, . . . ,
αn+1

∑n+1
i=1 αi

)
,

whereαi are independent exponential random variables with meanλ = 1.

From (1) we have that

n2|În− I |=
∣∣∣∣n2

12

n+1

∑
i=1

D3
n,i f ′′(Ũn,i)

∣∣∣∣≤ n2

12

n+1

∑
i=1

D3
n,i | f ′′(Ũn,i)| ≤M

n2

12

n+1

∑
i=1

D3
n,i ,

whereŨn,i ∈ (Un,i−1,Un,i) andM a positive constant.
Now, by Lemma 3 we have

n+1

∑
i=1

D3
n,i

d=
n+1

∑
i=1

α3
i

S3
n+1

,

where{αk}∞
k=1 is a sequence of independent exponential random variables with meanλ = 1

andSn = ∑n
k=1 αk; therefore, we have that

n2
n+1

∑
i=1

D3
n,i

d=
(

n
Sn+1

)3 ∑n+1
i=1 α3

i

n
.

SinceE(αi) = 1, whereE denotes expectation, andE(α3
i ) = 6, by strong Law of Kolmogorov

it follows that
Sn+1

n
=

n+1
n

Sn+1

n+1
a.s.−→ E(αi) = 1

and
∑n+1

i=1 α3
i

n
=

n+1
n

∑n+1
i=1 α3

i

n+1
a.s.−→ E(α3

i ) = 6.

Therefore

n2
n+1

∑
i=1

D3
n,i

a.s.−→ 6.

Thus, we have
În− I = Oa.s.(1/n2).



328 Henar Urmeneta and Víctor Hernández

§3. Approximations based on the Simpson’s rule

A much better estimator is obtained by applying a 3-points formula, i.e., in each subinterval
(a,b) is givenc∈ (a,b),

∫ b
a f (x) dx is approximated by

∫ b
a Pn(x) dx, wherePn is an interpo-

lating polynomial of degree 2 of the functionf at the pointsa, b andc. If the pointsa, b and
c are equidistant, this approximation is know as Simpson’s rule and in this case it has that∫ b

a
f (x)dx'

∫ b

a
Pn(x)dx=

1
6
(b−a)

(
2− b−c

c−a

)
f (a)

+
1
6

(b−a)3

(c−a)(b−c)
f (c)+

1
6
(b−a)

(
2− c−a

b−c

)
f (b).

If f ∈C3[0,1] the approximation error can be written as follows:∫ b

a
f (x)dx−

∫ b

a
Pn(x)dx=−1

6

∫ b

a
(x−a)(x−b)(x−c) f 3(η)dx,

whereη = η(x) ∈ (a,b) (see, e.g., [3, p. 304]).
In [1], an estimator ofI =

∫ 1
0 f (x)dx based on Simpson’s rule is proposed. It takes in-

dependent uniformly distributed random pointsX1,X2, . . . ,Xn, where, for convenience,n is
taken to be odd. They apply the Simpson’s rule again withUn,1,Un,2, . . . ,Un,n, the order
statistics ofX1,X2, . . . ,Xn, instead of the equidistant points. Therefore it proposes the random
approximation:

Ĩn =

n+1
2

∑
i=1

{
1
6
(Dn,2i−1 +Dn,2i)

(
2−

Dn,2i

Dn,2i−1

)
f (Un,2i−2)

+
1
6

(Dn,2i−1 +Dn,2i)3

Dn,2i−1Dn,2i
f (Un,2i−1)+

1
6
(Dn,2i−1 +Dn,2i)

(
2−

Dn,2i−1

Dn,2i

)
f (Un,2i)

}
.

If f ∈C3[0,1], the total error can be written as follows:

Ĩn− I =

n+1
2

∑
i=1

1
6

∫ Un,2i

Un,2i−2

(x−Un,2i−2)(x−Un,2i−1)(x−Un,2i) f 3(ηn,i)dx, (2)

with ηn,i = ηn,i(x) ∈ (Un,2i−2,Un,2i).
In [1], the following result about the convergence in distribution ofĨn to I is proved.

Theorem 4. If f v is bounded in[0,1], then

n7/2(In− I) d−→

√
35
3

∫ 1

0
( f 3)(x))2dx Z

where Z is a standard normal random variable.

In the following theorem we obtain a rate for the almost sure convergence forĨn.
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Theorem 5. If f ∈C3[0,1], thenĨn− I = Oa.s.(1/n3).

Proof. From (2), we have that

n3|Ĩn− I |= n3

∣∣∣∣
n+1

2

∑
i=1

1
6

∫ Un,2i

Un,2i−2

(x−Un,2i−2)(x−Un,2i−1)(x−Un,2i) f 3(ηn,i)dx

∣∣∣∣
≤ n3

n+1
2

∑
i=1

1
6

∫ Un,2i

Un,2i−2

(x−Un,2i−2)|x−Un,2i−1|(Un,2i−x)| f 3(ηn,i)|dx

≤ M
6

n+1
2

∑
i=1

(Dn,2i−1 +Dn,2i)4,

where{αk}∞
k=1 is a sequence of independent exponential random variables with meanλ = 1

andSn = ∑n
k=1 αk.

From Lemma 3 it follows that

(Dn,2i−1 +Dn,2i)4 d=
(α2i−1 +α2i)4

S4
n+1

.

Therefore, we have that

n3

n+1
2

∑
i=1

(Dn,2i−1 +Dn,2i)4 d=
(

n
Sn+1

)4 ∑
n+1

2
i=1 (α2i−1 +α2i)4

n
.

The sequence{α2i−1 + α2i}, with i = 1,2, . . ., is a sequence of independent and identi-
cally distributed random variables with finite mean. Then, by Strong Law of Kolmogorov, it
follows that (

n
Sn+1

)4 ∑
n+1

2
i=1 (α2i−1 +α2i)4

n
a.s.−−→ K.

Remark1. This method seems very relevant because it allows us estimate the mean of a
function f suppose thatUi represents some uncontrollable random quantity, like tempera-
ture, humidity or light intensity with a known distribution functionG having densityg, not
necessarily the Uniform distribution. Thus, if we want estimateI =

∫
f (x)dG(x) and we

can only measuref at points which are given randomly withG distribution, we can replace
(Un,i , f (Un,i)) in the estimator̂In by

(
G(Un,i), f

(
G−1(G(Un,i))

))
= (G(Un,i), f (Un,i)).

§4. Final comments

These methods are related to the well-known Monte Carlo approximation. We have stud-
ied some alternative methods from those using random Riemann sums in Hernández and
Urmeneta [2]. In this work we showed an unbiased estimator ofI =

∫
f dG which has less

variance than that of Monte Carlo. Although the variance is lower it is not enough to improve
the asymptotic behaviour of the error probability; however, simulated examples suggest that
for certain functionsf the Random Riemann Sum estimator can have much less error proba-
bility in the short-term.
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