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ORTHOGONAL SERIES DENSITY ESTIMATION
IN MIXTURE MODELS

Denys Pommeret

Abstract. This paper concerns estimation of mixture densities. It is the continuation
of the work of Pommeret [5] on mixture models in two directions: first we consider
orthogonal series density estimates within the frame of a wide class of mixture models.
Second, we illustrate the methods using real data sets and we compare them with other
density estimators.
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81. Introduction

Mixture models play an important role in many statistical problems such as for example in
biostatistics, psychometry or econometrics. Many works have been devoted to estimation of
the density: in finite mixture, nonparametric maximum likelihood estimation (see [4]) give
estimates for both mixing distribution and number of components. In parametric models,
when number of components is fixed, the EM algorithm introduced by Demgistdr [2]
has been widely used and extended in the literature. Recently, in [5], polynomials as density
estimates have been proposed within the frame of mixture exponential families. The aim
of this paper is to extend this work to any distributions family such that densities admit an
orthogonal series expansion. Moreover, we are interested in applying the method to real data
sets.
We consider the following modelisation: D, ..., X, be ani.i.d. sample from a mixture
with density
(X) = J f(x,0)1(d6), continuous mixture )
J y f(x,0)1(0), discrete mixture

wherell is a probability distribution andif (., 6) ; 6 € ©} are parent mixed density functions.
We are interesting in finding an orthogonal series estimatg.fdve assume thdt andg are
densities with respect to a common known meagui@nd we denote b = {P,;n € N}
an orthogonal basis df(u). Then the two expansions gfand f in the basisB permit the
construction of &th order estimate of. An expression of the distance betwegand its
estimate irL! andL? norms is given. It provides also bounds for the difference between the
mixture distribution function and its estimate. This method is illustrated through few data set:
Notice data ([9]), Sibship data ([8]), Bortkewisch’s data ([10]) and Accident data ([7]).

The paper is organized as follows: in Section 2 we introduce orthogonal series. In Section
3 we derive an expression of the density estimator. In Section 4 we briefly treat error bounds.
Section 5 is devoted to illustrations when the mixing den§ltyis unknown.
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82. General expansions

We assume now thdt(., 6) andg are densities with respect to a given probability measure
1. We write {P,; n € N} a basis of orthonormal polynomials with respectitdhat is,

/awaawww={§ o

Itis required that the basBis dense in.2(u). We assume that all densitiéé., 6) are square
integrable with respect to; that is, [ f(x, 8)2u(dx) < c. Thus we can write

f(X, 9) = Z an(G)Pn(x), )

neN

wherean(8) = [ f(x,0)P(x)u(dx). We will write it simply a, instead ofa,(6) when no
confusion can arise. We will denote B the expectation with respect fd. By abuse of
notation we writeé€n (a,) instead ofEn (an(0)). Let us mention an important consequence
of (2):

Lemma 1. Let g be a mixture density defined by (1). If the sefigesyEn(an)|P(X)| con-
verges then we have

90 = 3 En(an)Pa(). 3)

neN

Proof. Combining (1) with (2) we obtain

g(x):/ S aPh(IN(dm) = 5 En(an)P(x). O

neN neN

As a direct consequence we have the following expansion of the difference between the
mixture density and its parent:

Proposition 2. Fix 6 € ©. If the seriesy oy En(an) |[Pa(X)| converges, then we have

9(x) — f(x,60) = ) (En(an) —an(60))Pn(X).

n>1

8§3. Estimation

From the expansion given in Proposition 2 we may deddleerder approximations of the
mixture densityg, namely

gM(x,60) = f(x,60)+ 5 {Ex(an)—an(60)}Pn(X),

1<n<k

for some fixeddy € ©. Note that, fokk = 0, gl%(x, 6g) = f(x, 60).
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In practice, statisticians may be confronted with a mixture of known mixed distributions
f but with unknown mixing distributioll. Then, estimating the quantiti® (a,) and re-
porting them ingl yields an estimated approximation, sgl§!, of the mixture density. We
have
GM(x,60) = f(x.00)+ 5 {Ex(an) —an(60)}Pn(x),

1<n<k

wherem) are convergent empirical estimates. Note thdas deduce from the knowledge
of f. Inthat case, the mean integrated square error (MISE) may be used to evaluate the quality
of this approximation. The MISE is defined by

MISE = E{|g(.) — G¥(., 60)[|*}-
We have the following property:

Proposition 3. If E/ﬂ(;) are convergent estimatesBf (an) then theMISE tends to||g(.) —
gi(,M)|% as.

Proof.

—

MISE = [|g(.) —g¥(., V*-Z En(an) —En(an))?,

and the MISE tends tfig(.) — g/ (.,M)]||2 at the same rate &( ). O

Example 1 (Poisson mixture) If f(x,0) = exp(—0)6*/x!, then, writing 6y = En(6), we
have (see [5]):

_ 2_
0 (x, 60) = f(x, 60) + (Xgiglx Vvar(6).

0

84. Error bounds

Write G and G (., 6p) the distribution functions associateddgandg (., 6y) respectively;
that is,G(x) = [*,, g(y)u(dy) andGK (x, 60) = [*, gM(y, 60)u(dy). We have a general re-
sult:

Proposition 4. Under the assumptions of Proposition 2 we have:
X

60~ GHix o)l < 3 [En(an) - an(6o)| [Py,

n>k+1 -
2

Hg g4(. 60)|| = 3 (Enlan) —an(60)”

n>k+1
1909~ gMx aolu(@) < 5 En(en) —an(6o)] [ 1P| u(@0,

n>k+1

Proof. It is immediate from Proposition 2 and from tlyeorthogonality of the polynomials
{Pa(.);neN}. O
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Number of notices 0 1 2 3 4 5 6 7 8 9
Frequencies 162 267 271 185 111 61 27 8 3 |1

Table 1: Notice data

Notices 0 1 2 3 4 5 6 7 8 9
Empirical 0.148 0.244 0.247 0.169 0.101 0.056 0.025 0.007 0.003 0.001
2-component 0.147 0.248 0.239 0.175 0.104 0.052 0.022 0.009 0.003 0.001
Orthogonal |0.142 0.253 0.244 0.172 0.101 0.052 0.023 0.008 0.003 0.001

Table 2: Notice data set.

85. lllustrations

5.1. Notice data

Data in Table 1 consist of the numbers of death notices for women aged 80 years and over
from theTimes Newspapdor each day between 1910-1912. These data have been analysed
by Titteringtonet al. [9]. Assuming a two-component mixture, these authors obtathesd
1.2561,6, = 2.6634 and1(6,) = 0.3599. Using our orthogonal series approach we get:

1+ v((x—m)?—x))
2me ’

wherem = 2.157 andv = 0.448. Table 2 gives estimated values from these two methods.

6 = exp(—m) ™ {

5.2. Sibship data

The data in Table 3 are taken from Sokal and Rohlf [8]. They consist of frequencies of males
in 6115 sibship of size 12 in Saxony (1876—85).

The nature of the data set suggests the use of a binomial(REgE as the model. How-
ever, Gelfand and Dalal [3] proved that there is a significant overdispersion; that is, the es-
timated variance significantly exceeds the theoretical one. Such overdispersed data could be
fitted better by truncated Poisson model. Figure 1 shows that truncated orthogonal series
estimation fit better than Poisson density. We have consideredSd0o, ..., 12}:

. o,
§2(x) = CeXp(fm)% (1+v((x2mzm) %),

whereC is a constant for normalization.

5.3. Accident data

The data in Table 4 are taken from [7]. They consist of frequencies of accident counts issued
by La Royale Belge Insurance Company.
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Males 01 2 3 4 5 6 7 8 9 10 11 1
Observed 3 24 104 286 670 1033 1343 1112 829 478 181 45 |7

o

Table 3: Sibship data

0.2 r

.15

0.1 r

2 4 6 8 10 12

Figure 1: Densities for Sibship data: empirical densityi—), second order orthogonal
series (- 4—) and Poisson approximation-ll—)

The estimate density given by Bohning [1] is a two-component Poisson mixture with
additional mass at zero. More precisely the author proposed

m
X!’

with pp = 0.42, p, = 0.57, p3 = 0.009,m; = 0.34, mp = 2.55 and wherey(x) is 1, if x=0,
and 0, otherwise. Table 5 compare these results with our method.

§(x) = podo(X) + p1 eXp(—ml)% + pz2exp(—my)

5.4. Bortkewitsch data

The data in Table 6 are taken from [10]. They consist of frequencies of Prussian soldiers
killed by horse-kicks .

Although these counts are historically associated to the Poisson distribution, Preéce
[6] showed that the negative binomial distribution may be derived as a model for these data.
Applying our method with orthogonal series of second order we obtain:

(0.7)* (1+0.06((x—0.7)? — x))
X! 0.98 ’

Figure 2 shows that empirical and orthogonal series densities coincide while Poisson one
doesn't fit well the data.

62 (x) = exp(—0.7)
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Number of accidents

o 1 2 3 4 5 6 7

Observed freq.

7840 1317 239 42 14 4 4

Table 4: Accident data set.

Number of accidentsO

1 2 3 4 5 6

7

Empirical prob.
Bohning’s results
Orthogonal series

0.828 0.139 0.025 0.004 0.001 0.0004 0.0004
0.830 0.139 0.025 0.004 0.001 0.0006 0.0002
0.837 0.119 0.036 0.006 0.0006 0.00004 2.5%1Q1.0 107

0.00
0.00

01
009

Table 5: Accident data set.

Number of deathg 0 1 2 3 4 5+
Observed freq. 144 91 32 11 2 O
Table 6: Bortkewisch’s data set.
1.5
.4t A
f}.»
2.3 | AR
1.2 F ‘"‘*\.;\,.
)1t ‘
0.‘5 1 1.‘5 2 2.‘5 3 3.5 4

Figure 2: Bortkewitsch data. Empirical density% —), orthogonal series estimation ¢ —)
and Poisson estimation estimationll—)
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