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ORTHOGONAL SERIES DENSITY ESTIMATION

IN MIXTURE MODELS

Denys Pommeret

Abstract. This paper concerns estimation of mixture densities. It is the continuation
of the work of Pommeret [5] on mixture models in two directions: first we consider
orthogonal series density estimates within the frame of a wide class of mixture models.
Second, we illustrate the methods using real data sets and we compare them with other
density estimators.
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§1. Introduction

Mixture models play an important role in many statistical problems such as for example in
biostatistics, psychometry or econometrics. Many works have been devoted to estimation of
the density: in finite mixture, nonparametric maximum likelihood estimation (see [4]) give
estimates for both mixing distribution and number of components. In parametric models,
when number of components is fixed, the EM algorithm introduced by Dempsteret al. [2]
has been widely used and extended in the literature. Recently, in [5], polynomials as density
estimates have been proposed within the frame of mixture exponential families. The aim
of this paper is to extend this work to any distributions family such that densities admit an
orthogonal series expansion. Moreover, we are interested in applying the method to real data
sets.

We consider the following modelisation: letX1, . . . ,Xq be an i.i.d. sample from a mixture
with density

g(x) =

{∫
f (x,θ)Π(dθ), continuous mixture,

∑ f (x,θ)Π(θ), discrete mixture,
(1)

whereΠ is a probability distribution and{ f (.,θ) ; θ ∈Θ} are parent mixed density functions.
We are interesting in finding an orthogonal series estimate forg. We assume thatf andg are
densities with respect to a common known measureµ and we denote byB = {Pn;n ∈ N}
an orthogonal basis ofL2(µ). Then the two expansions ofg and f in the basisB permit the
construction of akth order estimate ofg. An expression of the distance betweeng and its
estimate inL1 andL2 norms is given. It provides also bounds for the difference between the
mixture distribution function and its estimate. This method is illustrated through few data set:
Notice data ([9]), Sibship data ([8]), Bortkewisch’s data ([10]) and Accident data ([7]).

The paper is organized as follows: in Section 2 we introduce orthogonal series. In Section
3 we derive an expression of the density estimator. In Section 4 we briefly treat error bounds.
Section 5 is devoted to illustrations when the mixing density,Π, is unknown.
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§2. General expansions

We assume now thatf (.,θ) andg are densities with respect to a given probability measure
µ. We write{Pn;n∈ N} a basis of orthonormal polynomials with respect toµ; that is,

∫
Pn(x)Pk(x)µ(dx) =

{
1, if n = k,

0, if n 6= k.

It is required that the basisB is dense inL2(µ). We assume that all densitiesf (.,θ) are square
integrable with respect toµ; that is,

∫
f (x,θ)2µ(dx) < ∞. Thus we can write

f (x,θ) = ∑
n∈N

an(θ)Pn(x), (2)

wherean(θ) =
∫

f (x,θ)Pn(x)µ(dx). We will write it simply an instead ofan(θ) when no
confusion can arise. We will denote byEΠ the expectation with respect toΠ. By abuse of
notation we writeEΠ(an) instead ofEΠ(an(θ)). Let us mention an important consequence
of (2):

Lemma 1. Let g be a mixture density defined by (1). If the series∑n∈N EΠ(an)|Pn(x)| con-
verges then we have

g(x) = ∑
n∈N

EΠ(an)Pn(x). (3)

Proof. Combining (1) with (2) we obtain

g(x) =
∫

∑
n∈N

anPn(x)Π(dm) = ∑
n∈N

EΠ(an)Pn(x).

As a direct consequence we have the following expansion of the difference between the
mixture density and its parent:

Proposition 2. Fix θ0 ∈Θ. If the series∑n∈N EΠ(an)|Pn(x)| converges, then we have

g(x)− f (x,θ0) = ∑
n≥1

(EΠ(an)−an(θ0))Pn(x).

§3. Estimation

From the expansion given in Proposition 2 we may deducekth order approximations of the
mixture densityg, namely

g[k](x,θ0) = f (x,θ0)+ ∑
1≤n≤k

{Eπ(an)−an(θ0)}Pn(x),

for some fixedθ0 ∈Θ. Note that, fork = 0, g[0](x,θ0) = f (x,θ0).
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In practice, statisticians may be confronted with a mixture of known mixed distributions
f but with unknown mixing distributionΠ. Then, estimating the quantitiesEΠ(an) and re-
porting them ing[k] yields an estimated approximation, sayĝ[k], of the mixture density. We
have

ĝ[k](x,θ0) = f (x,θ0)+ ∑
1≤n≤k

{Êπ(an)−an(θ0)}Pn(x),

whereÊπ(an) are convergent empirical estimates. Note thatan is deduce from the knowledge
of f . In that case, the mean integrated square error (MISE) may be used to evaluate the quality
of this approximation. The MISE is defined by

MISE = E{‖g(.)− ĝ[k](.,θ0)‖2}.

We have the following property:

Proposition 3. If Êπ(an) are convergent estimates ofEπ(an) then theMISE tends to‖g(.)−
g[k](.,M)‖2, a.s.

Proof.

MISE = ‖g(.)−g[k](.,M)‖2 +
k

∑
n=1

(EΠ(an)− ÊΠ(an))2,

and the MISE tends to‖g(.)−g[k](.,M)‖2 at the same rate aŝEΠ(an).

Example 1 (Poisson mixture). If f (x,θ) = exp(−θ)θ x/x!, then, writingθ0 = EΠ(θ), we
have (see [5]):

g[2](x,θ0) = f (x,θ0)+
(x−θ0)2−x

2θ 2
0

Var(θ).

§4. Error bounds

Write G andG[k](.,θ0) the distribution functions associated tog andg[k](.,θ0) respectively;
that is,G(x) =

∫ x
−∞ g(y)µ(dy) andG[k](x,θ0) =

∫ x
−∞ g[k](y,θ0)µ(dy). We have a general re-

sult:

Proposition 4. Under the assumptions of Proposition 2 we have:

|G(x)−G[k](x,θ0)| ≤ ∑
n≥k+1

|EΠ(an)−an(θ0)|
∫ x

−∞
|Pn(y)|µ(dy),∥∥∥g(.)−g[k](.,θ0)

∥∥∥2
= ∑

n≥k+1

(EΠ(an)−an(θ0)2,∫
|g(x)−g[k](x,θ0)|µ(dx)≤ ∑

n≥k+1

|EΠ(an)−an(θ0)|
∫
|Pn(x)|µ(dx).

Proof. It is immediate from Proposition 2 and from theµ-orthogonality of the polynomials
{Pn(.) ; n∈ N}.
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Number of notices 0 1 2 3 4 5 6 7 8 9
Frequencies 162 267 271 185 111 61 27 8 3 1

Table 1: Notice data

Notices 0 1 2 3 4 5 6 7 8 9
Empirical 0.148 0.244 0.247 0.169 0.101 0.056 0.025 0.007 0.003 0.001
2-component 0.147 0.248 0.239 0.175 0.104 0.052 0.022 0.009 0.003 0.001
Orthogonal 0.142 0.253 0.244 0.172 0.101 0.052 0.023 0.008 0.003 0.001

Table 2: Notice data set.

§5. Illustrations

5.1. Notice data

Data in Table 1 consist of the numbers of death notices for women aged 80 years and over
from theTimes Newspaperfor each day between 1910–1912. These data have been analysed
by Titteringtonet al. [9]. Assuming a two-component mixture, these authors obtainedθ1 =
1.2561,θ2 = 2.6634 andΠ(θ1) = 0.3599. Using our orthogonal series approach we get:

ĝ[2](x) = exp(−m)
mx

x!
(1+v((x−m)2−x))

2m2 ,

wherem= 2.157 andv = 0.448. Table 2 gives estimated values from these two methods.

5.2. Sibship data

The data in Table 3 are taken from Sokal and Rohlf [8]. They consist of frequencies of males
in 6115 sibship of size 12 in Saxony (1876–85).

The nature of the data set suggests the use of a binomial NEF(B)12 as the model. How-
ever, Gelfand and Dalal [3] proved that there is a significant overdispersion; that is, the es-
timated variance significantly exceeds the theoretical one. Such overdispersed data could be
fitted better by truncated Poisson model. Figure 1 shows that truncated orthogonal series
estimation fit better than Poisson density. We have considered forx∈ {0, . . . ,12}:

ĝ[2](x) = Cexp(−m̂)
m̂x

x!
(1+ v̂((x− m̂)2−x))

2m̂2 ,

whereC is a constant for normalization.

5.3. Accident data

The data in Table 4 are taken from [7]. They consist of frequencies of accident counts issued
by La Royale Belge Insurance Company.
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Males 0 1 2 3 4 5 6 7 8 9 10 11 12
Observed 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Table 3: Sibship data

2 4 6 8 10 12

0.05

0.1

0.15

0.2

Figure 1: Densities for Sibship data: empirical density (−F−), second order orthogonal
series (−�−) and Poisson approximation (−�−)

The estimate density given by Bohning [1] is a two-component Poisson mixture with
additional mass at zero. More precisely the author proposed

ĝ(x) = p0δ0(x)+ p1exp(−m1)
mx

1

x!
+ p2exp(−m2)

mx
2

x!
,

with p0 = 0.42, p2 = 0.57, p3 = 0.009,m1 = 0.34,m2 = 2.55 and whereδ0(x) is 1, if x = 0,
and 0, otherwise. Table 5 compare these results with our method.

5.4. Bortkewitsch data

The data in Table 6 are taken from [10]. They consist of frequencies of Prussian soldiers
killed by horse-kicks .

Although these counts are historically associated to the Poisson distribution, Preeceet al.
[6] showed that the negative binomial distribution may be derived as a model for these data.
Applying our method with orthogonal series of second order we obtain:

ĝ[2](x) = exp(−0.7)
(0.7)x

x!
(1+0.06((x−0.7)2−x))

0.98
,

Figure 2 shows that empirical and orthogonal series densities coincide while Poisson one
doesn’t fit well the data.
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Number of accidents 0 1 2 3 4 5 6 7
Observed freq. 7840 1317 239 42 14 4 4 1

Table 4: Accident data set.

Number of accidents0 1 2 3 4 5 6 7
Empirical prob. 0.828 0.139 0.025 0.004 0.001 0.0004 0.0004 0.0001
Bohning’s results 0.830 0.139 0.025 0.004 0.001 0.0006 0.0002 0.00009
Orthogonal series 0.837 0.119 0.036 0.006 0.0006 0.00004 2.5 10−6 1.0 10−7

Table 5: Accident data set.

Number of deaths 0 1 2 3 4 5+
Observed freq. 144 91 32 11 2 0

Table 6: Bortkewisch’s data set.
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Figure 2: Bortkewitsch data. Empirical density (−F−), orthogonal series estimation (−�−)
and Poisson estimation estimation (−�−)
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