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AXISYMMETRIC COMPUTATIONAL

MODELLING OF A

LASER INDUCED AIR PLASMA

P. Pignolet, S. Schall and S. Soubacq

Abstract. Recent developments in pulsed high voltage technologies used in some great
scientific facilities (i.e. the Méajoule laser, or X radiation generator,. . . ), have presently a
large revival of interest for triggering methods. Because of numerous advantages (lower-
ing of d.c. breakdown voltage, accuracy of shot control, variable delay without jitter, com-
plete insulation between the triggering system and the high power electrical circuit,. . . ),
one of these consists in the use of laser triggered switches. As the relevant laser trigger-
ing is physically based on the laser induced gas breakdown process involving a plasma
generation which sharply depends on complex experimental conditions (gas pressure, ra-
diative absorption conditions,. . . ), it is of a great importance to investigate the dynamic
evolution of that phenomenon under that parametric influence. Thus, a numerical two-
dimensional compressible flow simulation of the plasma expansion induced in air by a
focused Nd:YAG laser beam is proposed. A modelling of the dynamic phase of laser
plasma is presented. This phase, described as a strong shock wave expanding out of
the focal volume, is simulated by using a two-dimensional compressible flow calculation
code. The evolution of pressure, temperature, densities and velocities are analysed.
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§1. The optical breakdown

When a high-energy laser beam is focused through a lens onto a gas for any given laser
intensity threshold, we can observe the creation of transient plasma. The dimensions of it
depend on the focal length, the divergence of the laser beam and the pressure of the gas. This
breakdown mechanism is the so-called “optical breakdown” of a gas and includes a static and
a dynamic part [8].

Analysis and modelling. We describe the dynamic phase of the plasma in relation to local
macroscopic quantities (density, pressure, velocity and temperature). The conservation equa-
tions for mass, momentum and energy are associated with the state equation of the gas to
complete the system. Moreover, a local thermodynamic equilibrium is supposed to exist and,
the Saha-Eggert law allows one to evaluate the electron density. The aim of this numerical
study consists in modelizing the spatio-temporal evolution of laser plasma. The radiation-gas
coupling, which will macroscopically describe the behavior of the heavy particles, is done by
the intermediary of a macroscopic absorption coefficient, which includes the different absorp-
tion processes (multiphoton ionization and inverse bremsstrahlung). From the initial plasma
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boundary (under drastic heating induced by the laser, which is the result of high optical ab-
sorption) a rapid extension phenomenon expands through the whole space. Thus, the only
worthwhile method for describing laser governed plasma expansion is the numerical solution
of the hydrodynamic equations. In that case, the most important requirement is to control the
discontinuity propagation in a physically consistent way. For that reason, we have used the
previous method proposed by Godunov [4], which satisfies the prerequirements mentioned
above.

Hypothesis. We suppose that there is a local thermodynamic equilibrium (LTE), which is
the simplest hypothesis allowed for in plasma study [5, 14]. Thus, there is only a single
temperature for ions, electrons and neutrals which characterize each ionized layer. The Saha-
Eggert law is still valid, it allows us to determine the electron density in each layer at an
equilibrium temperature T. The LTE condition is written∆t > τei with ∆t the integration
time step andτei the electron-ion collision time. At the beginning of the ionization process,
the electrons are created in the focal volume which is a sphere of radiusr0 = f × l , with
f being the focal length of the lens andl the divergence of the laser beam. Thereafter, the
irradiation of the plasma by the laser flux is limited to a the solid angle, even though the
expansion occurs outside of this cone. We consider a two dimensional space problem. We
suppose that the focal volume is uniformly lighted by the laser flux. Although we consider
the plasma propagation in relation to the solid angle of the incident beam, we will consider
parallel beams. Thus, the calculation of the absorbed laser energy will only be done in one
direction (onlyOx). This corresponds to the laser beam.

Equations. The dynamic state of plasma creation is described by the Euler equations for
mass, momentum and energy which are in an axisymmetric form:
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The laser pulse has a Gaussian shape with a full width at half the maximum ofτl = 12 ns
and a maximum energy of 350 mJ (Fig. 1). According to the Beer-Lambert law, radiation
propagating through an absorbing medium undergoes an exponential decrease in the fluence
F(x) given in relation to the incident fluenceF0 such asF(x) = F0exp(−κpx), whereκp is
the absorption coefficient. In laser induced plasma, due to the high temperature of the plasma
(> 104 K), the absorption of the laser radiation is done by inverse bremsstrahlung [9]. The
absorption coefficient used, which corresponds to inverse bremsstrahlung, is the one given by
Rosenet al. [11]:
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soκp in cm−1, λ in micrometer, and the densities are in cm−3. Considering the region of a
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Figure 1: Experimental profile of the incident laser fluence from the timeτa.

single ionization, the degree of ionizationα = ne/n0 is written as follows:
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wherene the electron density andn0 the neutral density at the timet.
At the timet= 0, we have reached the local thermodynamic equilibrium [15]. The value of

the electron density corresponds to the final value given by the modelling of the preionization
phase at the timeτa and the equilibrium temperature is equal toTe. Elsewhere, the gas remains
cold. Thus, the initial boundaries are:

• out of the focal volume:ρ0 = 1 kg/m3, P0 = 105 Pa,T0 = 350 K,ne = 0 cm−3;

• in the focal volume:ρ0 = 1 kg/m3, P0 = 107 Pa,T0 = 4×104 K, ne = 1019 cm−3.

Numerical method. The set of equations and boundary conditions previously presented are
solved numerically by a two-dimensional compressible flow algorithm in a cartesian compu-
tational domain. This code (NSC2KE) solves the Euler equations which form a hyperbolic
system of conservation laws. Indeed, it uses an approximated Riemann solver of Roe [10],
while a spatial second order scheme is given by a MUSCL method described by Van Leer in
[13]. This code has been modified in order to modelize the plasma expansion as being the
electron creation due only to the laser-gas interaction. The spatial discretization of the Euler
equations, based on a finite volume, can be found in [7, 2]. There is symmetry of the mesh
according to the (Oy) axis. In order to distribute the laser energy in the medium, according to
the Beer-Lambert law, we need to determine the origin for the abscissax. The nodes of the
mesh located on the (Ox) axis are classified in ascending order. During the calculation, from
the left side of the domain, we scan these nodes and we compare the value of the correspond-
ing electron densityne with the initial onene0. When the inequalityne > ne0 is verified for a
node of abscissaxis, we have the position of the plasma frontier.
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Figure 2: Cell construction around a nodei.

Finite volume formulation. The variational form is obtained by multiplying (1) by a test
functionψi and by integrating it into an open fieldΩ:∫

Ω
ψi

∂W
∂ t

dΩ+
∫

Ω
ψi∇.ΦΦΦ(W)dΩ = 0. (2)

We describe here the general framework of the finite volume methods to solve the system
of equations. To numerically solve equation (1), we use a temporal iterative process which
consists in approaching the solution at two successive momentstn. We define the calculation
time step as:∆tn = tn+1− tn. The guiding principle of the finite volume methods consists in a
division of the spatial field at each timet into finite volumes or cells defined in one dimension
as follows:Ci(t) = (xi−1/2;xi+1/2).

We consider the unknown values of the function in these control volumes. More precisely,
the unknown factors are supposed to represent approximations at the timetn of the average
of the unknown solutionu for the cellCn

i , that is to say:

un
i ∼

1
∆xn

i

∫
Ci

u(x, tn)dx.

Each vertexi of the mesh is associated with a cellCi (Fig. 2) which is delimited by the
medians of the close triangles of the vertexi. According to the finite volume method, we
approximate the unknown factorW by a constantWi for each cell. Moreover, we select as
the test functionψi , which is the characteristic function associated withCi (i.e. the function
equal to 1 on the surfaceCi and 0 outside the cell). The equation (2) is written as follows:∫

Ci

∂Wi

∂ t
dΩ+

∫
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∇.Φ(W)dΩ = 0 ∀i = 1, . . . ,N, (3)

whereN is the node number of the mesh. The Green formula is applied to the divergence
term, thus we have:∫
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dΩ+

∫
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whereννν is the normal unit external to the edge of the cell. This equation can be written as∫
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dΩ+ ∑

j∈ν(i)

∫
∂Ci j

Φ(W)νννdΓ = 0 ∀i = 1, . . .N, (5)
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where∂Ci j = ∂Ci ∩ ∂Cj andν(i) is the unit of nodes close to the nodei. We numerically
integrate this by measuring it at pointI , the middle of the edgei j :∫

∂Ci j

Φ(W)ννν dΓ = Φ(Wi)ηi jηi jηi j , (6)

whereηi jηi jηi j =
∫

∂Ci j
ννν dl . Then, we use a cell reconstruction. In the case of a first order scheme,

the result of the reconstruction is a constant within the cell with the valueWI in the whole cell
Ci . At the pointI , the unknown factor is discontinuous (Riemann problem). Consequently,
we make a decentration through discontinuity. In the case of linear conservation laws with
constant coefficients, a decentration through discontinuity consists in takingWI = Wi or WI =
Wj in relation to the flow direction. In the case of non-linear conservation laws, the decen-
tration is introduced through an approximated Riemann solver. There are various decentred
numerical flows and the approximated solver used here is the one proposed by Roe [10].

§2. Results and discussion

Figures 3(a), 3(b), 3(c) and 3(d) represent the profiles of the mass density, the pressure, the
electronic density and the axial speed of the ionized gas for a calculation time of 50 ns,
which is the total irradiation time (Fig. 1). Figures 3(e) and 3(f) illustrate the same profiles
of ne and ρ for a 2D calculation. Figure 4 shows the ratio between the axial and radial
velocities for 2D and axisymetric computation. All the calculations have been made for a
constant time step∆t= 0.1 ns. This time step is small enough that the energy deposition is
considered to be constant during this interval. Thus, the local thermodynamic equilibrium
criterion is fulfilled. More specifically, since the absorbed quantity of laser energy becomes
significant, which induces the high ionization and heating of the gas, the plasma expands.
The electron density reached at the end of the preionization phase is not the highest value and
does not remain constant during the whole process of creation. The density sharply continues
to increase due to the high absorption of the laser flux by the plasma. Meanwhile, due to
expansion, the plasma goes cold in the post-discharge regime, which leads to the occurrence
of recombination processes [3] and a gradual decrease in electrons [1, 12]. This fact is clearly
shown by Liu [6] in the special case of a plasma created by laser ablation. Although the
expansion of the plasma outside of the focal volume occurs in all directions, the visualization
of the flow dynamics shows that the plasma is propagated through the privileged direction of
the laser beam. The propagation velocity of the shock front (the side irradiated by the laser)
is far higher than the speed of the back front. The maximum velocity reached during the laser
irradiation is about 106 cm/s.

For the profile of density, we observe the propagation of both shock fronts, one moving
towards the laser source and the other moving away from it. Each shock wave is followed
by a rarefaction wave which leads to a reduction in neutral density, moving in the opposite
direction.

The front temperature is propagated much more slowly than the density wave. Thus,
between the position of the density front (which represents the border of the plasma) and the
position of the maximum temperature; there is a colder layer which leads to the maximum
absorption of radiation according to the absorption lawT−1/2.
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(a) (b)

(c) (d)
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Figure 3: Att = 50ns. Axi computation: (a)ρ [kg/m3], (b) P [Pa], (c)ne [cm−3], (d) u [m/s].
2D computation: (e)ne [kg/m3], (f) u [m/s].
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Figure 4: Ratio of axial and radial velocities for axi and 2D calculation.
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Figure 3(c) represents the profile of electron density. It is noted that this profile has
the same shape as the density profile. Contrary to appearances this is coherent, since the
electron density is computed locally by using the Saha law and this is calculated by using
the equilibrium temperature. However, this is also especially influenced by the local density
ρ of the gas. The distribution of the electrons thus follows that of the atoms, because the
model does not take into account electron diffusion phenomena. Furthermore, in the dynamic
phase, the recombination process is not taken into account because we would need to know
the distribution of the different positive and negative ions. However, this code considers only
one species, the heavy particles. At the end of the laser pulse, the expansion of the plasma
continues.

The variations of the different parameters remain the same as during the phase of heating
and expansion, but it is noted that plasma takes a circular form in the course of time. This
is in agreement with the description of the Taylor wave described by Raizer for the phase of
post-discharge. We see on Figures 3(e) and 3(f) that the profiles for a 2D calculation are close
to axi ones but the propagation of the shock front is quicker in the case of 2D. The geometry
of the plasma is more crushed in axi than in 2D. This fact is clearly shown in Figure 4, the
ration between axial and radial velocities is greater in axi calculation than in 2D after a certain
delay.

§3. Conclusions

In this work, the dynamic phases of laser induced plasma have been studied. The dynamic
phase of plasma creation was modelized using an aerodynamic 2D code. We treated the ex-
pansion of the plasma as being the propagation of a shock wave irradiated by a laser beam.
We considered a model with a single temperature and species, that is to say the heavy parti-
cles. We supposed the system to be in local thermodynamic equilibrium and we determined
the electron density by using the Saha law.

Moreover, the numerical results, given by the model for the phase of heating and expan-
sion, describe the physical phenomena rather well. Indeed, the gas is brought up to very high
temperatures (' 105 K). It expands towards a privileged direction, towards the laser, and we
observe the propagation of an absorption wave towards the laser source. This study was also
a first attempt at describing plasma laser phenomena description by using numerical simula-
tion for compressible flow. In future works, improvements will be added to the description
of the physical model, which would take into account the Gaussian distribution of the laser
energy to be closer to reality and to compare numerical results with experimental ones.
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