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ON MODELLING VISCOELASTICITY OF

FIBRED BIOLOGICAL TISSUES

E. Peña, B. Calvo, M. A. Martínez and M. Doblaré

Abstract. The main goal of this paper is to present a fully three-dimensional finite strain
anisotropic viscohyperelastic model for soft biological tissues. The structural model is
formulated by employing Simos constitutive framework based on irreversible thermody-
namics with internal variables. This model is based in a local additive decomposition of
the stress tensor into initial and non-equilibrium part (Kelvin-Voight generalized model)
where we consider different viscoelastic behavior of the matrix material and families of
the fibers. To describe the constitutive behavior of biological soft tissue, we consider a
material constructed from two family fibers continuously distributed in a compliant solid
isotropic matrix. Since the mechanical response of biological tissues is almost isochoric,
we employ uncoupled volumetric and deviatoric response over any range of deformation.
This is achieved by a local multiplicative decomposition of the deformation gradient into
volume-preserving and dilatational parts that permits to model the incompressible prop-
erties of soft biological tissues.
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§1. Motivation and Introduction

The main characteristics of biological soft tissues are that they sustain large deformations, ro-
tations and displacements, have a highly non-linear behavior and possess strongly anisotropic
mechanical properties with time and rate dependency. The typical anisotropic behavior is of-
ten caused by a number of collagen fiber families which are arranged in a soft matrix material
named ground substance [3]. The time-rate dependent material behavior of soft biological tis-
sues has been well-documented and quantified in the literature. This has included ligaments,
tendons, blood vessels and articular cartilage. This behavior can arise from fluid flow in or
out of the tissue, from inherent viscoelasticity of the solid phase, or from viscous interactions
between tissue components of phases [1]. In this paper we present a fully three-dimensional
finite strain anisotropic viscohyperelastic model for fibred biological tissues. The structural
model is formulated within the framework of nonlinear continuum mechanics [9] and is well-
suited for a finite element formulation based on irreversible thermodynamics with internal
variables [6]. This model is based in a local additive decomposition of the stress tensor into
initial and non-equilibrium part as resulted from a structure of the free energy that generalizes
linear viscoelastic models (Kelvin-Voight generalized model). Also, we used a local multi-
plicative decomposition of the deformation gradient into volume-preserving and dilatational
parts [8] that permits to model the incompressible properties of soft biological tissues. To
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simulate the viscoelastic properties of soft biological tissues, we consider different viscoelas-
tic behavior of the matrix material and families of the fibers [3]. A numerical integration
procedure that is second-order accurate and takes place entirely in the reference configura-
tion is used, this fact implies that incremental objectivity is trivially satisfied [7].

§2. Viscohyperelastic Model

Following Simo [6], we postulate an uncoupled free energy functionΨ(C,m0,n0,Q) of the
form

Ψ = Ψ0
vol(J)+Ψ0

dev(C̄,m0⊗m0,n0⊗n0)−
n

∑
i=1

1
2

C̄ : Qi +Ξ(
n

∑
i=1

Qi) (1)

whereΨ0
vol andΨ0

dev are the volumetric and deviatoric part of the initial elastic stored energy
functionΨ0, m0 andn0 are the direction of the fibers,Qi play the role of internal variables
(not accessible to direct observation and corresponding to the reference configuration) andΞ
is a certain function of the internal variables. Note that we have considered a material rein-
forced by two families of fibers continuously distributed in a compliant solid isotropic ma-
trix [9]. Restricting our attention to the isothermal case and exploiting the Clausius-Duhem
inequalityDint =−Ψ̇+ 1

2S : Ċ≥ 0 [5] lead to
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i=1

∂Ψ(C,m0,n0,Qi)
∂Qi

: Q̇i =
n

∑
i=1

[
1
2

C̄− ∂Ξ(Qi)
∂Qi

]
: Q̇i ≥ 0. (3)

The stressQi may be interpreted as non-equilibrium stresses in the sense of non-equilibrium
thermodynamics, which remain unaltered under superposed spatial rigid body motions [7].
This fundamental requirement is the same invariance property classically placed on the sec-
ond Piola-Kirchhoff tensorSand automatically ensures frame indifference of the constitutive
relationship (2). Motivated by Holzapfel and Gasser [3] and in order to consider different
contribution of the matrix material and families of the fibers on the non-equilibrium part, we
divide the internal variables in

Qi =
8

∑
j=1,
j 6=3

Qi j , (4)

whereQi1 andQi2 are the isotropic contribution due to the matrix material associated toĪ1
and Ī2 invariants ofC̄ [9] and Qi4, . . . ,Qi8 are the anisotropic contribution due to the two
family of fibers associated tōI4, . . . , Ī8 invariants [9] with

Ī1 = tr C̄, Ī4 = m0.C̄.m0, Ī6 = n0.C̄.n0,

Ī2 =
1
2
(tr(C̄)2− tr C̄2), Ī5 = m0.C̄2.m0, Ī7 = n0.C̄2.n0, Ī8 = m0.C̄.n0.

(5)
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So, we formulate the evolution equations separately for each contribution. We consider the
following set of rate equations governing the evolution of the internal variablesQi j (cf. [6])

Q̇i j +
1

τi j
Qi j =

γi j

τi j
DEV

[
2

∂Ψ0( j)
dev

∂ C̄

]
,

lim
t→−∞

Qi j = 0,

(6)

with γi j ∈ [0,1] andτi j > 0. The evolution equations (6) are linear and, therefore, explicitly
lead to the following convolution representation

Qi j (t) =
γi j

τi j

∫ t

−∞
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τi j
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Substitution (7) into (2) then yields the following equivalent expression
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Note thatQi attains its equilibrium values ast/τi j −→ ∞. The corresponding value of the
equilibrium stress is a fraction of the initial stress; that is

lim
t/τi j−→∞

S= JpC−1 +J−
2
3

8
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[(
1−

n
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DEV
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}]
. (9)

§3. Integration Algorithm

The basic idea in the numerical integration of constitutive equations is to evaluate the convo-
lution integral in (8) through a recurrence relation. A related procedure was first suggested
by Herrmann and Peterson [2] and Taylor et al. [10] and modified by Simo [6]. The key
idea is to transform the convolution representation discussed in the preceding sections into a
two-step recurrence formula involving internal variables stored at the quadrature points of a
finite-element method [7]. First at all, we introduce the following internal algorithmic history
variables by expression [7]

H(i j ) =
∫ t

−∞
exp

[
−(t−s)

τi j

]
d
ds
·
{

DEV

[
2

∂Ψ0( j)
dev

∂ C̄(s)

]}
ds. (10)

Let [T0,T] ⊂ R, with T0 < T, be the time interval of interest. Without lost of generality,
we takeT0 = −∞. Further, let[T0,T] =

⋃
n∈I[tn, tn+1], be a partition of the interval[T0,T]

with I the integers and∆tn = tn+1− tn the associated time increment. From an algorithmic
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standpoint, the problem is in the usual strain-driven format and we assume that at certain
timestn andtn+1 all relevant kinematics quantities are known. Using the semigroup property
of the exponential function, the property of additivity of the integral over the interval of
integration and the midpoint rule to approximate the integral over[tn, tn+1] to arrive at update
formula [7]

H(i j )
n+1 = exp

[−∆tn
τi j

]
H(i j )

n +exp
[−∆tn

2τi j

]
(S̄0( j)

n+1− S̄0( j)
n ). (11)

Following the convolution representation (8), the algorithmic approximation for the second
Piola-Kirchhoff stress takes the form

S=Jn+1pn+1C−1
n+1 +J

− 2
3

n+1

8
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(i j )
n+1]

})]
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whereS̄0( j)
n+1 is the term in the initial stress response corresponding toĪ j , i.e., S̄0(1)

n+1 andS̄0(2)
n+1

are due to the matrix material and̄S0(4)
n+1 . . . S̄0(8)

n+1 are due to the two family fibers.

§4. Consistent algorithmic tangent moduli

We wish to use the proposed constitutive model in a Finite Element Method (FEM) [4]. The
tangent moduli plays a crucial role in the numerical solution of the boundary value problem
by Newton-type iterative methods as FEM. For instance, use of these consistently linearized
moduli is essential in order to preserve the quadratic rate of the asymptotic convergence that
characterizes Newtons method [4]. In order to obtain a more easy recursive update procedure,
we rewrite the update formula (11) as follows [7]
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]
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With this notation
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Using the standard definition for elasticity tensor (C = 2∂S(C)/∂C) from (15) we obtain

Cn+1 = C0
vol n+1 +

8

∑
j=1
j 6=3

[
(1− γ j +ν j)C

0( j)
dev n+1

− 2
3

J
4
3
n+1

n

∑
i=1

γi j

{
DEVn+1[H̃

(i j )
n ]⊗ C̄−1

n+1 + C̄−1
n+1⊗DEVn+1[H̃

(i j )
n ]

−
(
H̃(i j )

n : C̄
)(

I−1
Cn+1
− 1

3
C̄−1

n+1⊗ C̄−1
n+1

)}]
.



On modelling viscoelasticity of fibred biological tissues 181

C1 C2 C3 C4 D

Set I 10 10 100 1 0.0036844

Set II 10 10 10 1 0.0036844

Set III 10 10 0.1 1 0.0036844

γ11 τ11(s) γ12 τ12(s) γ14 τ14(s)

Example I 0.3 10.0 0.3 10.0 0.3 10.0

Example II 0.05 10.0 0.05 10.0 0.3 10.0

Example III 0.05 0.1 0.05 0.1 0.3 10.0

Example IV 0.3 10.0 0.3 10.0 0.05 10.0

Example V 0.3 10.0 0.3 10.0 0.05 0.1

Example VI 0.6 10.0 0.6 10.0 0.3 10.0

Example VII 0.3 10.0 0.3 10.0 0.6 10.0

Table 1: Viscoelastic material parameters

§5. Influence of Viscoelastic Parameters in Strain-Stress Response

In order to study the influence of the viscoelastic parameters in the stress-strain response, we
considered a transversely isotropic and hyperelastic material with its constitutive behaviour
defined by the the initial elastic stored energy function

Ψ(C)0 = Ψvol(J)+Ψ0
dev(C̄,m⊗m)

=
1
D

(ln(J))2 +C1(Ī1−3)+C2(Ī1−3)2 +
C3

C4

[
eC4(Ī4−1)−1

]
,

whereC3 ≥ 0 is a stress-like material parameter andC4 ≥ 0 is a dimensionless parameter.
Three sets of elastic material constant were chosen (Table 1) and we considered only one
internal variable (i = 1).

For a strain rate of 3.6%s−1, uniaxial relaxation test was simulated up to a stretch ratio
λ = 1.36. The viscoelastic parameters are as summarized in Table 1. Example I where the
viscoelastic parameters are equal for matrix and fibers, correspond to isotropic viscoelastic
material. In the examples II and III the viscoelastic parameters of the matrix are assumed
very small with respect to the fibers. For the examples IV and V the viscoelastic parameters
of the fibers are assumed very small with respect to the matrix. Finally, in examples VI and
VII τ1 j is increased for the matrix and fibers respectively. Fig.1.a illustrates the evolution
of the stress response with the time for the set I of constants. As can be seen, changing the
viscoelastic parameters of the matrix contribution not produce changes in the stress evolution
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and the thermodynamic equilibrium stress, examples I, II, III and VI. On the contrary, when
we decrease the free-energy factorγ14 (example IV), there are increase of the initial stress
(6%) and the equilibrium stress (29%). In addition, when the relaxation time is decrease until
τ14 = 0.1 s (example V) the equilibrium stress is achieved very fast. This fact is due to the
contribution of the matrix to stress response is very small with respect to fibers one. The
evolution of the stress response with the time for the set II of constants is shown in Fig.1.b. In
this case, the elastic parameters of the family fibers are assumed to be of the same order as the
stiffness parameters of the matrix material. So, changes in the viscoelastic parameters of the
matrix or fibers part similarly affect to the equilibrium stress. On the contrary, when the set III
of constants was used, the elastic parameters of the family fiber are assumed to be very small
with respect to the matrix one. This causes a material response which is almost isotropic
elastic according the Mooney-Rivlin material and provokes that changes in the viscoelastic
parameters of the family fibers not affect to the stress response (Fig.1.c).

§6. Conclusions

We have presented an anisotropic Kelvin-Voight type visco-hyperelastic constitutive model
capable to model fiber-reinforced composite materials undergoing finite strains as soft bi-
ological tissues. The structural model was formulated by employing Simos constitutive
framework based on irreversible thermodynamics with internal variables [6], where we have
considered different viscoelastic behavior of the matrix material and the different families
of fibers. Motivated by [3] and in order to consider different contributions of the matrix
and fibers on the non-equilibrium part, we considered the internal variables to correspond
to separated contributions of the matrix and fibers. A numerical integration procedure that
is second-order accurate and takes place entirely in the reference configuration was used;
this fact implies that incremental objectivity is trivially satisfied. To our knowledge, the
anisotropic visco-hyperelastic model based local additive decomposition of the stress tensor
into initial and non-equilibrium parts (Kelvin-Voight generalized model) in fibred materials
has not been recorded previously in the literature.
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(a) Set I

(b) Set II

(c) Set III

Figure 1: Results of the influence of viscoelastic parameters in strain-stress response
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