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AN ANTIMAXIMUM PRINCIPLE FOR
A DEGENERATE PARABOLIC PROBLEM

Juan Francisco Padial, Peter Taldnd Lourdes Tello

Abstract. We present a mathematical treatment of an important example of a non-
Newtonian fluid flow that occurs in a model studying the penitration of water through
rocky or sandy dams. This model differs from porous medium models significantly. Here,
the nonlinear phenomena are described bypeplacianApu = div(|0u|P~20u). We

treat the following Dirichlet problem for thp-Laplacian with a spectral paramefenear

the first eigenvalué; :

% —Dpu= AP 2u+f(x 1), (xt)€Qx(0,Te);
u(x,t) =0, (x,t) € dQ x (0, Too);
u(x,0) = up(x), xe Q.

Here, 1< p< o andA € R is nearA;. The interval of existence in timgQ, Te),
is assumed to be maximal. We show that,f{f,t) > fp with some 0< fg £ 0 in
L®(Q), andug € C1(Q) is arbitrary, possibly nonpositive, arid < A < A3 + & where
6 = 6(fp,up) > 0 is small enough, then there is some time (0, T.) such that every
solution of problem (1) satisfiagx,t) > 0 for allx € Q and allt € (T, To ).

Keywords: Non-Newtonian flow,p-Laplacian, parabolic antimaximum principle, first
eigenvalue, local and global solution.
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81. Introduction

Beginning with the work of Clément and Peletier [4], various kinds of antimaximum prin-
ciples have been established for linear and nonlimdlgatic operators. In the case of the
Dirichlet p-LaplacianA, (1 < p < ©), Apu = div(|0uP~20u), which we deal with through-
out the present article, the antimaximum principle takes the following form; see Fleckinger
etal. [11]:

Let Q ¢ RN (N > 1) be a bounded domain with a connec@dboundarydQ. Denote
by A1 the first (smallest) eigenvalue efAp. Then, given anyf € L*(Q) with0< f £ 0 in
Q, there exists a constagt= 6(f) > 0 such that, ift; < A < A1 + & then every solution
ue Wol’p(Q) of the boundary value problem

—Apu=AuP2u+f(x) iInQ; u=0 ondQ, (1)

satisfiess < 0in Q anddu/dv > 0 ondQ. In contrast, if—c < A < A1 thenu> 0in Q and
du/dv < 00ondQ. As usuald/dv denotes the outer normal derivative @8.
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An antimaximum principle for linegparabolicoperators has been obtained in the recent
work of Diaz and Fleckinger [5, Theorem 2.1]. The main result of our present work is an
analogue for the nonlinear parabolic operator wighin the initial-boundary value problem

%—Apu:Mu\p’zu—i—f(x,t), (xt) € Qx (0,T);
u(x,t) =0, (%,t) € 9Q x (0,T); (2)
u(x,0) = up(x), xeqQ,

T = T, WhereT, (0 < T < ) denotes the maximum time for existence of a weak solution
u: Qx (0,T) — R; of course T = To(f,Up) depends orf andug € Wol’p(Q). We can state
it as follows:

Theorem 1. Let ¢; denote the eigenfunction associated wittand normalized by; > 0in
Q and [, ¢ dx= 1. Assume that & L*(Q x R, ) satisfies fx,t) > fo(x) in Q x R, where
fo € L(Q) is a function with0 < fo # 0in Q, and W € W;"P(Q) is such that y > —cgy
in Q, where c> 0 is a constant. Then there exist constaditss §(fo,up) > 0and T, =
T (f,up) € (0, Te) such that, ifA; < A < A1+ 8, then every weak solutiornt @2 x (0, Tw) —
R of problem(2) satisfies @x,t) > 0 for all (x,t) € Q x [T+, Tw) and (du/dv)(x,t) < 0O for
all (x,t) € 9Q x [T4, Too).

This means that even if the initial conditiong are large negative, sayy = —c¢; in
Q with a constant > 0, the solutionu(-,t) eventually becomes positive for all times
[T+, Tw). The hypothesis & fo # 0 in Q can be weakened tf}, fop1dx > 0 provided the
resonant elliptic problem (1) with = A; and f = fy hasno weak solution. For the elliptic
problem (1) this generalization is due to Arcoya and Gamez [3, Theorem 27, p. 1908].

82. Preliminaries

All Banach and Hilbert spaces used in this article are real. We work with the standard inner

product inL?(Q) defined by(u, V) d:ef( o uvdx for u,v € L2(Q). The orthogonal complement

in L2(Q) of a set# C L(Q) is denoted by,

art d:ef{u c LZ(Q): (uv)=0forallve .#}.

The inner product-, -) in L?(Q) induces a duality between the Lebesgue spa®éQ)
andLP (Q), where 1< p, p < o with ,—1)+ % = 1, and between the Sobolev spalig”(Q)

and its duaW 1P (Q), as well. We keep the same notation also for the duality between
the Cartesian productsP(Q)]N and[LP (Q)]N. The closure, interior and boundary of a set
Sc RN are denoted b, int(S) anddS, respectively, and the characteristic functiorSdfy

xs: RN — {0,1}. We write|S|y gef Jrn xs(X) dx if Sis also Lebesgue measurable.
We always assume the following

If N> 2 thenQ is a bounded domain i&®N whose boundaryQ is a
compact manifold of clas&®* for somex € (0,1), andQ satisfies also
the interior sphere condition at every point@®. If N =1 thenQ is a
bounded open interval iR

(H1)
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ForN > 2, (H1) is satisfied if2 ¢ RN is a bounded domain witG?-boundary.

We denoteApu = div(|Ou[P~20u) and always take X p < . Let A; denote the first
(smallest) eigenvalue of the positive DirichlglaplacianAy, that is,

—Dpp1 = M|01P %01 INQ; @1 =0 0ondQ, 3)

holds with an eigenfunctiomp, Wol’p(Q) \ {0}. Eigenvaluel; is simple, by a result due to
Anane [1, Théoréme 1, p. 727] or Lindgvist [13, Theorem 1.3, p. 157], and it is given by the
Rayleigh quotient

2 Eint { o[ OulPdx: ueWP(Q) with [ouPdx=1}, (4)

A1 > 0. Moreover, a minimizer — the corresponding eigenfuncigr Wol’p(Q) \ {0} —can
be normalized by, > 0in Q and|| 1| r(q) = 1, owing to the strong maximum principle [17,
Prop. 3.2.1 and 3.2.2, p. 801] or [19, Theorem 5, p. 200] (see also [1, Théoréme 1, p. 727] or
[13, Theorem 1.3, p. 157]). We hage € L*(Q) by [2, Théoréme A.1, p. 96]. Consequently,
recalling hypothesis (H1), we get even c C1+#(Q) (whereC+F (Q) = C1F(Q)) for some

B € (0,a), by a regularity result due to [6, Theorem 2, p. 829] and [18, Theorem 1, p. 127]
(interior regularity), and to [8, Theorem 1, p. 1203] (regularity near the boundary). The
constantf depends solely or, N and p. We keep the meaning of the constants&ind 3
throughout the entire article and denoteye (0, 8) an arbitrary, but fixed number. Finally,

the Hopf maximum principle [17, Prop. 3.2.1 and 3.2.2, p. 801] or [19, Theorem 5, p. 200]
renders

¢

3y 2 20 onaQ. (5)

¢1>01inQ and

We set def
U= {xeQ: Ogi(x) #0}, henceQ\U = {xe Q: Opy(x) = 0},
and observe thd® \ U is a compact subset 6%, by (5).
Often, a functioru € L%(Q) will be decomposed as the orthogonal sum ull - ¢; +u"

according to
| def
ul € ||<P1||Lz (U, @1) and (u', 1) =0. (6)

Given a linear subspace of L1(Q) with ¢, € ., we write

2T ue s (u @) =0}
In particular, we will find it convenient to work with the orthogonal suf{Q) = lin{¢;} @
L2(Q)".
We are interested in weak solutions to the evolutionary problem (2) in a cylindrical do-
mainQ x (0,T) with some 0< T < co.

Definition 1. Let0< T < 0. We say thati: Q x (0,T) — R is aweak solutiorof problem
(2) inQ x (0,T) if it satisfies

ueC([o,T] = L3(Q) NLP((0.T) — W (@)
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for everyT’ € (0, T), together with

/Qu(T/)¢(T/)dx—/oT’<u, aa(f>wol~r’xw1,p’dt
+/OT//QDu|p2Du~D¢dxdt—)L/oT,/Q|u|p2u¢dxdt (7

:/0 /Qf(x,t)¢(x,t)dxdt+/§2uo(x)¢(x7o)dx

for all ¢ € LP ((o,T’) —>w0“’(§2)) AWLP ((O,T’) —>W*1=p’(Q)> .

For

Too déersup{T > 0: uis a weak solution if2 x (0,T)}

we say tha{0, T.) is themaximal (time) interval of existena# a weak solutioru to prob-
lem (2).

For any weak solution, two alternatives are possible: either it exists for all tines
t < T = o0, Or else it blows up in finite time &s,” T, < 0. We will see later that the latter
case (blow-up) will be characterized By(t) || p(q) — % ast /" Te.

Local (in time) existence of weak solutiorof problem (2) follows from standard results
in Vrabie [20]. Global (in time) existence is guaranteed by a Lyapunov-like functional as
long as the nornju(t)||_»q) does not blow-up (stays locally bounded in time).

Notice that the solution is unique f > 2, by standard arguments, cf. [20], because the
nonlinearity on the right hand side is a locally Lipschitz continuous function®™). Even
if the solution might not be unique if £ p < 2, it is not difficult to construct a “minimal
solution” to problem (2) (with respect to the pointwise ordering of functionQon(0, T) by
“<™). Our hypothesis on the initial conditiong, thatug € WOL”(Q) be such thatip > —ce

in Q, wherec > 0 is a constant, plays a key role in both, defining and obtaining a minimal
solution. Our definition and construction guarantee that a minimal solution is unique.

83. Main result

We assume tha® c RN satisfies hypothesis (H1). If2 p < o, we need to impose another
technical hypothesis of2. To this end, we first introduce a new normwé’p(Q) by

1/2
Ilow % ([ Do 2muPax)  forvewgH(@), @

and denote byZ,, the completion ofool’p(Q) with respect to this norm. That the semi-

norm (8) is in fact a norm oWOl’p(Q) follows from an inequality in Tak&[14, ineq. (4.7),
p. 200]. The Hilbert spac#,, coincides with the domain of the closure of the quadratic form
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20: Wy P(Q) — R given by

0 2
2»9d¢)=‘4;Dwﬂ”*{llwz+(p—2)|Dz;~5¢‘}dx

€)
—(p=1) [ 0P 020 0 WGP
For 2< p < o we impose the following additional hypothesis on the donfain
If N> 2 anddQ is not connected, then there ii® functionv € Z,,,
2o(v) = 0, with the following four properties:
() v=91-xsa.e.inQ, whereSC Q is Lebesgue measurable<dSy <
1Qn;

(H2)

(i) Sis connected anB8NoQ # 0;

(iii) if V is a connected component 0f, then eithel C Sor elseV C
Q\S

(iv) (09NQcCQ\U. (RecallQ\U = {xe Q: Og1(x) =0}.)

It has beerconjecturedn Tak& [14, §2.1] that (H2) always holds true provided (H1) is
satisfied. The cases, whéhis either an interval ilR? or elsedQ is connected iN > 2, have
been covered within the proof of Proposition 4.4 in [14, pp. 202—205] which claims:

Proposition 2. Let2 < p < « and assume both hypothegetl) and (H2). Then a function
u € %,, satisfiesZp(u) = 0if and only if u= k¢, for some constant € R.

In particular, there is no function € Z,,, Zo(v) = 0, with properties (i)—(iv). This
proposition is the only place where (H2) is needed explicitly. All other results in this article
depend solely on the conclusion of the proposition which, in turn, implies (H2).

For 1< p < 2 we further require hypothesis (H1), but need to redefine the Hilbert space
24, as follows. We define ¢ 7, if and only if v e Wol‘z(Q), Ov(x) = O for almost every
xe Q\U = {xe Q: Og1(x) =0}, and

1/2
Moy ([, 100 20vPeK) <o (10)

ConsequentlyZ,, endowed with the nornj - |4, is continuously embedded inwol’z(Q).
We conjecturethat 7, is dense irL?(Q). This conjecture would immediately follow from
|Q\U|n = 0. The latter holds true @ is convex; then als@ \ U is a convex set ifRN with
empty interior, and hence of zero Lebesgue measure; see [12, Lemma 2.6, p. 55].

If the conjecture is false, we need to consider also the orthogonal complement

945 = Ve L2(Q): (v,¢) =0 forall ¢ € Zy,}.
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2 2
Notice thatv € @(jl’L implies v = 0 almost everywhere it). This means tha@(pﬁ’L is

isometrically isomorphic to a closed linear subspace?€ \ U). Moreover,xq\u ¢ @(ﬁl’Lz
sinceQ \ U is a compact subset 6%; hence, there is @' function¢ ¢ D, 0< ¢ <1, with
compact support i and such thap = 1 in an open neighborhood 6f\ U.

Hypothesis (H2) always holds true fodp < 2; see Tak&[14, Sect. 8, p. 225].
Remarkl. Itis not difficult to verify that the conclusion of Proposition 2 remains valid also
for1< p< 2, by[14, Remark 8.1, p. 225].

We write fo = § 1 + fy with { € R andf] € L°(Q).

The main result of our present article is the followiAgtimaximum Principldor prob-

lem (2) with any 1< p < . This is a more general version of Theorem 1 stated in the
Introduction (Section 1); here, functidr{x,t) does not need to be nonnegative.

Theorem 3. (Antimaximum Principle).Let 1 < p < « and assume tha® c RN satisfies
hypothesigH1). If p > 2, assume tha satisfies also hypothegid2). Let f € L*(Q xR)
be such that

f(x,t) > fo(x) INQxRy, (11)

where § € L*(Q) satisfies/, fog1dx > 0 and the resonant problem
—Apu= A1 |ulP2u+fo(x) iNQ;  u=0 onadQ, (12)
hasnoweak solution. Finally, assume thas @ Wol’p(Q) NL*(Q) satisfies
Uo(x) > —cgu(x) inQ, (13)

where c> 0is a constant. Then there exist constadts §(fo,up) >0and T. = T, (f,up) €
(0, Tw) such that, ifA; < A < A1+ 8, then every weak solution 2 x (0, T.,) — R of problem
(2) satisfies @x,t) > 0 for all (x,t) € Q x [T, Tw) and (du/dv)(x,t) < 0 for all (x,t) €
dQ X T4, Tw).

The following remark is about the functioig which appears in the resonant problem in
the statement of the main theorem:
Remark2. We notice that, given anfp(x) = f ' (x) + ¢ - @1(x) with { e Randf " € L*(Q)
satisfyingf " £0in Q and [, f " ¢1dx = 0, it follows from [15, Theorems 3.1 and 3.5] that
there exist two constants, {* € R, —oo0 < §, < 0 < {* < o, such that the elliptic problem

(12) has a weak solutiome W,"P(Q) if and only if §, < ¢ < {*.

Theorem 3 will be proved in a number of steps in a separate work. In fact, we obtain a
much more precise result if the tine in this theorem is chosen large enough:

Corollary 4 (“Large” Positive Solutions) In the situation of Theorem 3 above, we can
choose T = T, (f,up) € (0,Tw) such that, ifA1 < A < A1 + 8, then every weak solution
u: Q x (0,T,) — R of problem(2) satisfies

u(x,t) = 7(t) (pr(¥) +v' (x,t)) forall (x,t) € Qx (T}, To), (14)

where functiong and V' have the following properties:
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(@) 7: [T}, Tw) — (0,0) is locally absolutely continuous withe WP (T, T’) for every
T € (T}, Tw), andt(t) — +o0 ast " Te; and

(b) v € CHPHP/2(Q x [T, T']) for every T € (T4, T), With fo v’ (x,t) g1 dx=0and
VT (xt)] < 3gu(x) forall xe Qand T, <t < T, and HVT(~,t)HC1+B/@ — 0as
t / T., wheneved < ' < .

This means that the solutiar - ,t) eventually becomes positive and behaves tikg¢;
for all timest € [T;,T.). The asymptotic behavior af(t) ast ,” T is determined by the
(positive) solutiore: [T;,T.) — (0,) of the ordinary differential equation

d -
lo1llEz) - g 20 = (A =A)zO)P 7 +(F (1), 1), To <t <To, (15)
with a suitable initial condition at = T,. Notice that(f(-,t), 1) > (fo, 1) > 0 holds

by (11).
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