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AN ANTIMAXIMUM PRINCIPLE FOR

A DEGENERATE PARABOLIC PROBLEM

Juan Francisco Padial, Peter Takáč and Lourdes Tello

Abstract. We present a mathematical treatment of an important example of a non-
Newtonian fluid flow that occurs in a model studying the penitration of water through
rocky or sandy dams. This model differs from porous medium models significantly. Here,
the nonlinear phenomena are described by thep-Laplacian∆pu≡ div(|∇u|p−2∇u). We
treat the following Dirichlet problem for thep-Laplacian with a spectral parameterλ near
the first eigenvalueλ1:

∂u
∂ t
−∆pu = λ |u|p−2u+ f (x, t), (x, t) ∈Ω× (0,T∞);

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T∞);

u(x,0) = u0(x), x∈Ω.

Here, 1< p < ∞ and λ ∈ R is nearλ1. The interval of existence in time,(0,T∞),
is assumed to be maximal. We show that, iff ( · , t) ≥ f0 with some 0≤ f0 6≡ 0 in
L∞(Ω), andu0 ∈C1(Ω) is arbitrary, possibly nonpositive, andλ1 < λ < λ1 + δ where
δ ≡ δ ( f0,u0) > 0 is small enough, then there is some timeT ∈ (0,T∞) such that every
solution of problem (1) satisfiesu(x, t) > 0 for all x∈Ω and allt ∈ (T,T∞).

Keywords: Non-Newtonian flow,p-Laplacian, parabolic antimaximum principle, first
eigenvalue, local and global solution.

AMS classification:35K65, 35B35, 46E35, 35B33.

§1. Introduction

Beginning with the work of Clément and Peletier [4], various kinds of antimaximum prin-
ciples have been established for linear and nonlinearelliptic operators. In the case of the
Dirichlet p-Laplacian∆p (1 < p < ∞), ∆pu≡ div(|∇u|p−2∇u), which we deal with through-
out the present article, the antimaximum principle takes the following form; see Fleckinger
et al. [11]:

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with a connectedC2-boundary∂Ω. Denote
by λ1 the first (smallest) eigenvalue of−∆p. Then, given anyf ∈ L∞(Ω) with 0≤ f 6≡ 0 in
Ω, there exists a constantδ ≡ δ ( f ) > 0 such that, ifλ1 < λ < λ1 + δ then every solution
u∈W1,p

0 (Ω) of the boundary value problem

−∆pu = λ |u|p−2u+ f (x) in Ω; u = 0 on∂Ω, (1)

satisfiesu < 0 in Ω and∂u/∂ν > 0 on∂Ω. In contrast, if−∞ < λ < λ1 thenu > 0 in Ω and
∂u/∂ν < 0 on∂Ω. As usual,∂/∂ν denotes the outer normal derivative on∂Ω.
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An antimaximum principle for linearparabolicoperators has been obtained in the recent
work of Díaz and Fleckinger [5, Theorem 2.1]. The main result of our present work is an
analogue for the nonlinear parabolic operator with∆p in the initial-boundary value problem

∂u
∂ t
−∆pu = λ |u|p−2u+ f (x, t), (x, t) ∈Ω× (0,T);

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,T);
u(x,0) = u0(x), x∈Ω,

(2)

T = T∞, whereT∞ (0 < T∞ ≤ ∞) denotes the maximum time for existence of a weak solution
u: Ω× (0,T)→ R; of course,T∞ ≡ T∞( f ,u0) depends onf andu0 ∈W1,p

0 (Ω). We can state
it as follows:

Theorem 1. Letϕ1 denote the eigenfunction associated withλ1 and normalized byϕ1 > 0 in
Ω and

∫
Ω ϕ

p
1 dx = 1. Assume that f∈ L∞(Ω×R+) satisfies f(x, t)≥ f0(x) in Ω×R+, where

f0 ∈ L∞(Ω) is a function with0≤ f0 6≡ 0 in Ω, and u0 ∈W1,p
0 (Ω) is such that u0 ≥ −cϕ1

in Ω, where c> 0 is a constant. Then there exist constantsδ ≡ δ ( f0,u0) > 0 and T+ ≡
T+( f ,u0) ∈ (0,T∞) such that, ifλ1 < λ < λ1+δ , then every weak solution u: Ω× (0,T∞)→
R of problem(2) satisfies u(x, t) > 0 for all (x, t) ∈ Ω× [T+,T∞) and (∂u/∂ν)(x, t) < 0 for
all (x, t) ∈ ∂Ω× [T+,T∞).

This means that even if the initial conditionsu0 are large negative, say,u0 = −cϕ1 in
Ω with a constantc > 0, the solutionu( · , t) eventually becomes positive for all timest ∈
[T+,T∞). The hypothesis 0≤ f0 6≡ 0 in Ω can be weakened to

∫
Ω f0ϕ1dx > 0 provided the

resonant elliptic problem (1) withλ = λ1 and f = f0 hasno weak solution. For the elliptic
problem (1) this generalization is due to Arcoya and Gámez [3, Theorem 27, p. 1908].

§2. Preliminaries

All Banach and Hilbert spaces used in this article are real. We work with the standard inner

product inL2(Ω) defined by〈u,v〉 def=
∫

Ω uvdx for u,v∈ L2(Ω). The orthogonal complement

in L2(Ω) of a setM ⊂ L2(Ω) is denoted byM⊥,L2
,

M⊥,L2 def= {u∈ L2(Ω) : 〈u,v〉= 0 for all v∈M }.

The inner product〈 · , · 〉 in L2(Ω) induces a duality between the Lebesgue spacesLp(Ω)
andLp′(Ω), where 1≤ p, p′ ≤ ∞ with 1

p + 1
p′ = 1, and between the Sobolev spaceW1,p

0 (Ω)

and its dualW−1,p′(Ω), as well. We keep the same notation also for the duality between
the Cartesian products[Lp(Ω)]N and[Lp′(Ω)]N. The closure, interior and boundary of a set
S⊂ RN are denoted byS, int(S) and∂S, respectively, and the characteristic function ofSby

χS: RN→{0,1}. We write|S|N
def=
∫
RN χS(x)dx if S is also Lebesgue measurable.

We always assume the following
If N ≥ 2 thenΩ is a bounded domain inRN whose boundary∂Ω is a
compact manifold of classC1,α for someα ∈ (0,1), andΩ satisfies also
the interior sphere condition at every point of∂Ω. If N = 1 thenΩ is a
bounded open interval inR1.

(H1)
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ForN≥ 2, (H1) is satisfied ifΩ⊂ RN is a bounded domain withC2-boundary.

We denote∆pu≡ div(|∇u|p−2∇u) and always take 1< p < ∞. Let λ1 denote the first
(smallest) eigenvalue of the positive Dirichletp-Laplacian∆p, that is,

−∆pϕ1 = λ1|ϕ1|p−2
ϕ1 in Ω; ϕ1 = 0 on∂Ω, (3)

holds with an eigenfunctionϕ1 ∈W1,p
0 (Ω)\{0}. Eigenvalueλ1 is simple, by a result due to

Anane [1, Théorème 1, p. 727] or Lindqvist [13, Theorem 1.3, p. 157], and it is given by the
Rayleigh quotient

λ1
def= inf

{∫
Ω |∇u|pdx: u∈W1,p

0 (Ω) with
∫

Ω |u|pdx = 1
}

, (4)

λ1 > 0. Moreover, a minimizer – the corresponding eigenfunctionϕ1 ∈W1,p
0 (Ω)\{0} – can

be normalized byϕ1 > 0 in Ω and‖ϕ1‖Lp(Ω) = 1, owing to the strong maximum principle [17,
Prop. 3.2.1 and 3.2.2, p. 801] or [19, Theorem 5, p. 200] (see also [1, Théorème 1, p. 727] or
[13, Theorem 1.3, p. 157]). We haveϕ1 ∈ L∞(Ω) by [2, Théorème A.1, p. 96]. Consequently,
recalling hypothesis (H1), we get evenϕ1 ∈C1+β (Ω) (whereC1+β (Ω)≡C1,β (Ω)) for some
β ∈ (0,α), by a regularity result due to [6, Theorem 2, p. 829] and [18, Theorem 1, p. 127]
(interior regularity), and to [8, Theorem 1, p. 1203] (regularity near the boundary). The
constantβ depends solely onα, N and p. We keep the meaning of the constantsα andβ

throughout the entire article and denote byβ ′ ∈ (0,β ) an arbitrary, but fixed number. Finally,
the Hopf maximum principle [17, Prop. 3.2.1 and 3.2.2, p. 801] or [19, Theorem 5, p. 200]
renders

ϕ1 > 0 in Ω and
∂ϕ1

∂ν
< 0 on∂Ω. (5)

We set
U

def= {x∈Ω : ∇ϕ1(x) 6= 0}, henceΩ\U = {x∈Ω : ∇ϕ1(x) = 0},

and observe thatΩ\U is a compact subset ofΩ, by (5).
Often, a functionu∈ L1(Ω) will be decomposed as the orthogonal sumu = u‖ ·ϕ1 +u>

according to

u‖
def= ‖ϕ1‖−2

L2(Ω)〈u,ϕ1〉 and 〈u>,ϕ1〉= 0. (6)

Given a linear subspaceM of L1(Ω) with ϕ1 ∈M , we write

M> def= {u∈M : 〈u,ϕ1〉= 0}.

In particular, we will find it convenient to work with the orthogonal sumL2(Ω) = lin{ϕ1}⊕
L2(Ω)>.

We are interested in weak solutions to the evolutionary problem (2) in a cylindrical do-
mainΩ× (0,T) with some 0< T ≤ ∞.

Definition 1. Let 0< T ≤ ∞. We say thatu: Ω× (0,T)→ R is aweak solutionof problem
(2) in Ω× (0,T) if it satisfies

u∈C
(
[0,T ′]→ L2(Ω)

)
∩Lp

(
(0,T ′)→W1,p

0 (Ω)
)
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for everyT ′ ∈ (0,T), together with

∫
Ω

u(T ′)φ(T ′)dx−
∫ T ′

0

〈
u,

∂φ

∂ t

〉
W1,p

0 ×W−1,p′
dt

+
∫ T ′

0

∫
Ω
|∇u|p−2∇u·∇φ dxdt−λ

∫ T ′

0

∫
Ω
|u|p−2uφ dxdt

=
∫ T ′

0

∫
Ω

f (x, t)φ(x, t)dxdt +
∫

Ω
u0(x)φ(x,0)dx

(7)

for all φ ∈ Lp
(
(0,T ′)→W1,p

0 (Ω)
)
∩W1,p′

(
(0,T ′)→W−1,p′(Ω)

)
.

For

T∞
def= sup{T > 0: u is a weak solution inΩ× (0,T)}

we say that[0,T∞) is themaximal (time) interval of existenceof a weak solutionu to prob-
lem (2).

For any weak solution, two alternatives are possible: either it exists for all timest, 0≤
t < T∞ = ∞, or else it blows up in finite time ast ↗ T∞ < ∞. We will see later that the latter
case (blow-up) will be characterized by‖u(t)‖Lp(Ω)→ ∞ ast↗ T∞.

Local (in time) existence of aweak solutionof problem (2) follows from standard results
in Vrabie [20]. Global (in time) existence is guaranteed by a Lyapunov–like functional as
long as the norm‖u(t)‖Lp(Ω) does not blow-up (stays locally bounded in time).

Notice that the solution is unique ifp≥ 2, by standard arguments, cf. [20], because the
nonlinearity on the right hand side is a locally Lipschitz continuous function onLp(Ω). Even
if the solution might not be unique if 1< p < 2, it is not difficult to construct a “minimal
solution” to problem (2) (with respect to the pointwise ordering of functions onΩ×(0,T) by
“≤”). Our hypothesis on the initial conditionsu0, thatu0 ∈W1,p

0 (Ω) be such thatu0≥−cϕ1

in Ω, wherec > 0 is a constant, plays a key role in both, defining and obtaining a minimal
solution. Our definition and construction guarantee that a minimal solution is unique.

§3. Main result

We assume thatΩ⊂ RN satisfies hypothesis (H1). If 2< p < ∞, we need to impose another
technical hypothesis onΩ. To this end, we first introduce a new norm onW1,p

0 (Ω) by

‖v‖ϕ1

def=
(∫

Ω
|∇ϕ1|p−2|∇v|2dx

)1/2

for v∈W1,p
0 (Ω), (8)

and denote byDϕ1 the completion ofW1,p
0 (Ω) with respect to this norm. That the semi-

norm (8) is in fact a norm onW1,p
0 (Ω) follows from an inequality in Taká̌c [14, ineq. (4.7),

p. 200]. The Hilbert spaceDϕ1 coincides with the domain of the closure of the quadratic form
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Q0 : W1,p
0 (Ω)→ R given by

2·Q0(φ) =
∫

Ω
|∇ϕ1|p−2

{
|∇φ |2 +(p−2)

∣∣∣∣ ∇ϕ1

|∇ϕ1|
·∇φ

∣∣∣∣2}dx

−λ1(p−1)
∫

Ω
ϕ

p−2
1 φ

2dx, φ ∈W1,p
0 (Ω).

(9)

For 2< p < ∞ we impose the following additional hypothesis on the domainΩ:

If N ≥ 2 and∂Ω is not connected, then there isno function v ∈ Dϕ1,
Q0(v) = 0, with the following four properties:

(i) v= ϕ1 ·χS a.e. inΩ, whereS⊂Ω is Lebesgue measurable, 0< |S|N <
|Ω|N;

(ii) S is connected andS∩∂Ω 6= /0;

(iii) if V is a connected component ofU , then eitherV ⊂ S or elseV ⊂
Ω\S;

(iv) (∂S)∩Ω⊂Ω\U . (RecallΩ\U = {x∈Ω : ∇ϕ1(x) = 0}.)

(H2)

It has beenconjecturedin Taká̌c [14, §2.1] that (H2) always holds true provided (H1) is
satisfied. The cases, whenΩ is either an interval inR1 or else∂Ω is connected ifN≥ 2, have
been covered within the proof of Proposition 4.4 in [14, pp. 202–205] which claims:

Proposition 2. Let 2 < p < ∞ and assume both hypotheses(H1) and (H2). Then a function
u∈Dϕ1 satisfiesQ0(u) = 0 if and only if u= κϕ1 for some constantκ ∈ R.

In particular, there is no functionv ∈ Dϕ1, Q0(v) = 0, with properties (i)–(iv). This
proposition is the only place where (H2) is needed explicitly. All other results in this article
depend solely on the conclusion of the proposition which, in turn, implies (H2).

For 1< p < 2 we further require hypothesis (H1), but need to redefine the Hilbert space
Dϕ1 as follows. We definev∈ Dϕ1 if and only if v∈W1,2

0 (Ω), ∇v(x) = 0 for almost every
x∈Ω\U = {x∈Ω : ∇ϕ1(x) = 0}, and

‖v‖ϕ1

def=
(∫

U
|∇ϕ1|p−2|∇v|2dx

)1/2

< ∞. (10)

Consequently,Dϕ1 endowed with the norm‖ · ‖ϕ1 is continuously embedded intoW1,2
0 (Ω).

We conjecturethatDϕ1 is dense inL2(Ω). This conjecture would immediately follow from
|Ω\U |N = 0. The latter holds true ifΩ is convex; then alsoΩ\U is a convex set inRN with
empty interior, and hence of zero Lebesgue measure; see [12, Lemma 2.6, p. 55].

If the conjecture is false, we need to consider also the orthogonal complement

D⊥,L2

ϕ1 = {v∈ L2(Ω) : 〈v,φ〉= 0 for all φ ∈Dϕ1}.
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Notice thatv ∈ D⊥,L2

ϕ1 implies v = 0 almost everywhere inU . This means thatD⊥,L2

ϕ1 is

isometrically isomorphic to a closed linear subspace ofL2(Ω\U). Moreover,χΩ\U 6∈D⊥,L2

ϕ1

sinceΩ\U is a compact subset ofΩ; hence, there is aC1 functionφ ∈Dϕ1, 0≤ φ ≤ 1, with
compact support inΩ and such thatφ = 1 in an open neighborhood ofΩ\U .

Hypothesis (H2) always holds true for 1< p < 2; see Taká̌c [14, Sect. 8, p. 225].

Remark1. It is not difficult to verify that the conclusion of Proposition 2 remains valid also
for 1 < p < 2, by [14, Remark 8.1, p. 225].

We write f0≡ ζ ϕ1 + f>0 with ζ ∈ R and f>0 ∈ L∞(Ω).
The main result of our present article is the followingAntimaximum Principlefor prob-

lem (2) with any 1< p < ∞. This is a more general version of Theorem 1 stated in the
Introduction (Section 1); here, functionf (x, t) does not need to be nonnegative.

Theorem 3. (Antimaximum Principle).Let 1 < p < ∞ and assume thatΩ ⊂ RN satisfies
hypothesis(H1). If p > 2, assume thatΩ satisfies also hypothesis(H2). Let f ∈ L∞(Ω×R+)
be such that

f (x, t)≥ f0(x) in Ω×R+, (11)

where f0 ∈ L∞(Ω) satisfies
∫

Ω f0ϕ1dx > 0 and the resonant problem

−∆pu = λ1 |u|p−2u+ f0(x) in Ω; u = 0 on ∂Ω, (12)

hasnoweak solution. Finally, assume that u0 ∈W1,p
0 (Ω)∩L∞(Ω) satisfies

u0(x)≥−cϕ1(x) in Ω, (13)

where c> 0 is a constant. Then there exist constantsδ ≡ δ ( f0,u0) > 0 and T+ ≡ T+( f ,u0)∈
(0,T∞) such that, ifλ1 < λ < λ1+δ , then every weak solution u: Ω×(0,T∞)→R of problem
(2) satisfies u(x, t) > 0 for all (x, t) ∈ Ω× [T+,T∞) and (∂u/∂ν)(x, t) < 0 for all (x, t) ∈
∂Ω× [T+,T∞).

The following remark is about the functionf0 which appears in the resonant problem in
the statement of the main theorem:

Remark2. We notice that, given anyf0(x) = f>(x)+ζ ·ϕ1(x) with ζ ∈ R and f> ∈ L∞(Ω)
satisfying f> 6≡ 0 in Ω and

∫
Ω f>ϕ1dx = 0, it follows from [15, Theorems 3.1 and 3.5] that

there exist two constantsζ∗,ζ ∗ ∈ R, −∞ < ζ∗ < 0 < ζ ∗ < ∞, such that the elliptic problem
(12) has a weak solutionu∈W1,p

0 (Ω) if and only if ζ∗ ≤ ζ ≤ ζ ∗.

Theorem 3 will be proved in a number of steps in a separate work. In fact, we obtain a
much more precise result if the timeT+ in this theorem is chosen large enough:

Corollary 4 (“Large” Positive Solutions). In the situation of Theorem 3 above, we can
choose T+ ≡ T+( f ,u0) ∈ (0,T∞) such that, if λ1 < λ < λ1 + δ , then every weak solution
u: Ω× (0,T∞)→ R of problem(2) satisfies

u(x, t) = τ(t)
(
ϕ1(x)+v>(x, t)

)
for all (x, t) ∈Ω× (T+,T∞), (14)

where functionsτ and v> have the following properties:
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(a) τ : [T+,T∞)→ (0,∞) is locally absolutely continuous withτ ∈W1,p′(T+,T ′) for every
T ′ ∈ (T+,T∞), andτ(t)→+∞ as t↗ T∞; and

(b) v> ∈C1+β ,(1+β )/2
(
Ω× [T+,T ′]

)
for every T′ ∈ (T+,T∞), with

∫
Ω v>(x, t)ϕ1dx= 0 and

|v>(x, t)| ≤ 1
2ϕ1(x) for all x ∈ Ω and T+ ≤ t < T∞, and

∥∥v>( · , t)
∥∥

C1+β ′ (Ω) → 0 as

t↗ T∞, whenever0 < β ′ < β .

This means that the solutionu( · , t) eventually becomes positive and behaves likeτ(t)ϕ1

for all timest ∈ [T+,T∞). The asymptotic behavior ofτ(t) ast ↗ T∞ is determined by the
(positive) solutionz: [T+,T∞)→ (0,∞) of the ordinary differential equation

‖ϕ1‖2L2(Ω) ·
d
dt

z(t) = (λ −λ1)z(t)p−1 + 〈 f ( · , t),ϕ1〉, T+ ≤ t < T∞, (15)

with a suitable initial condition att = T+. Notice that〈 f ( · , t),ϕ1〉 ≥ 〈 f0,ϕ1〉 > 0 holds
by (11).
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