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FRACTAL SPLINES

M. A. Navascués and M. V. Sebastián

Abstract. Fractal methodology provides a general setting for the understanding of real-
world phenomena. In particular, the classical methods of real-data interpolation can be
generalized by means of fractal techniques. In this paper we use this kind of procedures
to define a family of interpolating mappings associated to a cubic spline. This fact adds
a “degree of freedom” to the function, allowing to preserve or modify its properties. In
particular, the elements of the class can be defined so that the smoothness of the original
be preserved. Under some hypotheses, and using Hermite polynomial techniques, bounds
of the interpolation error for function and derivatives are obtained.
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§1. Introduction. Fractal Interpolation Functions

Fractal interpolation techniques provide good deterministic representations of complex phe-
nomena. Barnsley ([1, 2]) was a pioneer in the use of fractal functions to interpolate a set
of data. Fractal interpolants of Barnsley can be defined for any continuous function defined
on a real compact interval. This method constitutes an advance in the techniques of ap-
proximation, since all the classical methods of real-data interpolation can be generalized by
means of fractal techniques (see for instance [6, 7]). Fractal interpolation functions are de-
fined as fixed points of maps between spaces of functions using iterated function systems.
The theorem of Barnsley and Harrington ([3]) proves the existence of differentiable frac-
tal interpolation functions. In this paper we describe a very general way of constructing
smooth fractal functions with the help of Hermite interpolating polynomials. The proce-
dure has a very low computational cost. In the last section of the communication, a par-
ticular type of interpolating mappings associated to a cubic spline is defined. Under some
hypotheses, bounds of the interpolation error for function and derivatives are obtained. Let
t0 < t1 < · · ·< tN be real numbers, andI = [t0, tN]⊂R the closed interval that contains them.
Let a set of data points{(ti ,xi) ∈ I ×R : i = 0,1,2, . . . ,N} be given. SetIn = [tn−1, tn] and let
Ln : I → In, n∈ {1,2, . . . , ,N} be contractive homeomorphisms such that:

Ln(t0) = tn−1, Ln(tN) = tn, (1)

|Ln(c1)−Ln(c2)| ≤ l |c1−c2| , ∀ c1,c2 ∈ I , (2)

for some 0≤ l < 1. Let−1 < αn < 1, for n = 1,2, . . . ,N, andF = I ×R. Let N continuous
mappingsFn : F → R be given satisfying:

Fn(t0,x0) = xn−1, Fn(tN,xN) = xn, n = 1,2, . . . ,N, (3)

|Fn(t,x)−Fn(t,y)| ≤ |αn| |x−y| , t ∈ I , x,y∈ R. (4)
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Now define functions

wn(t,x) = (Ln(t),Fn(t,x)), ∀n = 1,2, . . . ,N, (5)

and consider the following theorem:

Theorem 1 ([1, 2]). The iterated function system (IFS){F, wn : n = 1,2, . . . ,N} defined
above admits a unique attractor G that is the graph of a continuous function f: I →R which
obeys f(ti) = xi for i = 0,1,2, . . . ,N.

The previous functionf is called a fractal interpolation function (FIF) corresponding to
{(Ln(t),Fn(t,x))}Nn=1. The function f : I → R is the unique one satisfying the functional
equation

f (Ln(t)) = Fn(t, f (t)), n = 1,2, . . . ,N, t ∈ I , (6)

or

f (t) = Fn(L−1
n (t), f ◦L−1

n (t)), n = 1,2, . . . ,N; t ∈ In = [tn−1, tn]. (7)

Let F be the set of continuous functionsf : [t0, tN]→R such thatf (t0) = x0 and f (tN) = xN.
Define a metric onF by

d( f ,g) = ‖ f −g‖∞ = max{| f (t)−g(t)| : t ∈ [t0, tN]} ∀ f ,g∈F .

Then(F ,d) is a complete metric space. Define a mappingT : F →F by

(T f)(t) = Fn
(
L−1

n (t), f ◦L−1
n (t)

)
∀ t ∈ [tn−1, tn], n = 1,2, . . . ,N. (8)

Using (1)–(4), it can be proved that(T f)(t) is continuous on the interval[tn−1, tn] for n =
1,2, . . . ,N and at each of the pointst1, t2, . . . , tN−1. T is a contraction mapping on the metric
space(F ,d)

‖T f−Tg‖∞ ≤ |α|∞‖ f −g‖∞, (9)

where|α|∞ = max{|αn| : n = 1,2, . . . ,N}. Since|α|∞ < 1, T possesses a unique fixed point
on F , that is to say, there isf ∈F such that(T f)(t) = f (t) for t ∈ [t0, tN]. This function is
the FIF corresponding town. The most widely studied fractal interpolation functions so far
are defined by the following IFS:{

Ln(t) = ant +bn,

Fn(t,x) = αnx+qn(t),
(10)

with

an =
(tn− tn−1)
(tN− t0)

and bn =
(tN tn−1− t0tn)

(tN− t0)
. (11)

αn is called the vertical scaling factor of the transformationwn andα = (α1,α2, . . . ,αN) is
the scale vector of the IFS. Ifqn(t) is a line ([1, 6]), the FIF is termed affine (AFIF). The
cubic FIF ([9, 7]) are constructed using asqn(t) a cubic polynomial. In many cases the data
are evenly sampled,h= tn− tn−1, tN− t0 = Nh, thenan = 1/N. In the particular caseαn = 0,
for n = 1,2, . . . ,N then:Fn(t,x) = qn(t) and f (t) = qn◦L−1

n (t) for t ∈ In.
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§2. Construction of differentiable FIF

In this section we study the construction of differentiable fractal interpolation functions. The
theorem of Barnsley and Harrington [3] provides the conditions on the IFS (10) which are
sufficient for their existence. We will define IFS satisfying the prescribed hypotheses.

Theorem 2 (Barnsley and Harrington [3]). Let t0 < t1 < t2 < · · · < tN and Ln(t), for n =
1,2, . . . ,N, the affine function Ln(t) = ant + bn satisfying the expressions (1)–(2). Let an =
L′n(t) = tn−tn−1

tN−t0
and Fn(t,x) = αnx+qn(t), for n= 1,2, . . . ,N, verifying (3)–(4). Suppose, for

some integer p≥ 0, |αn|< ap
n and qn ∈Cp[t0, tN], for n= 1,2, . . . ,N. Let

Fnk(t,x) =
αnx+q(k)

n (t)
ak

n
, k = 1,2, . . . , p, (12)

x0,k =
q(k)

1 (t0)
ak

1−α1
, xN,k =

q(k)
N (tN)

ak
N−αN

, k = 1,2, . . . , p.

If Fn−1,k(tN,xN,k) = Fnk(t0,x0,k), with n= 2,3, . . . ,N and k= 1,2, . . . , p, then

{(Ln(t),Fn(t,x))}Nn=1

determines a FIF f∈Cp[t0, tN] and f(k) is the FIF determined by

{(Ln(t),Fnk(t,x))}Nn=1, k = 1,2, . . . , p.

From here on, we consider a uniform partition in order to simplify the calculus,

an =
1
N

. (13)

If we consider a generic polynomialqn (for instance) the equality proposed in the theorem
implies the resolution of systems of equations. We will proceed in a different way. In order
to define an IFS satisfying Theorem 2, we consider the mappings (10) where

qn(t) = g◦Ln(t)−αn b(t), (14)

g is a continuous function satisfyingg(ti) = xi , i = 0,1, . . . ,N, andb(t) is a real continuous
function,b 6= g, such thatb(t0) = x0 andb(tN) = xN. In the reference [8] we proved some
properties about this IFS.

Definition 1. Let g∈ C (I), ∆ : t0 < t1 < · · ·< tN a partition of the closed intervalI = [t0, tN].
Letbbe as in the previous paragraph andα = (α1, . . .αN) the scaling vector of the IFS defined
by (10) and (14). The corresponding FIFgα

∆b, or simplygα , is termedα-fractal function ofg
with respect to the partition∆ and the functionb.

Theorem 3. [8] The α-fractal function gα of g with respect to∆ and b satisfies the inequality

‖gα −g‖∞ ≤
|α|∞

1−|α|∞
‖g−b‖∞, (15)

with |α|∞ = max1≤n≤N{|αn|}. Besides, gα interpolates to g, that is to say,

gα(tn) = g(tn) ∀n = 0,1, . . . ,N.
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Remark1. By the equation (7), fort ∈ In, n = 1,2, . . . ,N,

gα(t) = g(t)+αn(gα −b)◦L−1
n (t). (16)

The first step is to see which conditions we should impose tob(t) so that the hypotheses
of Barnsley & Harrington Theorem are satisfied, assuring the existence of differentiable FIF.
Let us considerp≥ 0, |αn|< 1/Np andqn(t) ∈Cp[t0, tN], for n = 1,2, . . . ,N. The prescribed
conditions, forn = 2,3, . . . ,N andk = 1,2, . . . , p, are:

Fn−1,k(tN,xN,k) = Fnk(t0,x0,k). (17)

The theorem considersFnk(t,x) =
(
αnx+q(k)

n (t)
)
/ak

n. In this particular case, asLn(t) =
t/N+bn andL′n(t) = 1/N = an, we have by (14)

q(k)
n (t) =

1
Nk g(k)(Ln(t))−αn b(k)(t), ∀k = 0,1, . . . , p. (18)

So that (17) becomes:

Nk
αn−1

g(k)(tN)−NkαN b(k)(tN)
1−NkαN

−αn−1 Nk b(k)(tN)

= Nk
αn

g(k)(t0)−Nkα1 b(k)(t0)
1−Nkα1

−αn Nk b(k)(t0).

If we consider constant scale factorsαn = α, for all n = 1, . . . ,N:

g(k)(tN)−b(k)(tN) = g(k)(t0)−b(k)(t0). (19)

A sufficient condition in order to satisfy this equality is{
b(k)(t0) = g(k)(t0),
b(k)(tN) = g(k)(tN), k = 0,1,2, . . . , p.

(20)

Thus we look for a functionb such thatb agrees withg at the extremes of the interval until the
p-th derivative. The conditions (20) will be satisfied if a Hermite interpolating polynomial
b is considered, with nodest0, tN andp derivatives at the extremes. Briefly let us remember

some concepts on Hermite polynomial interpolation. Consider the real numbersξi , y(k)
i , for

k = 0,1, . . .ni − 1 andi = 0,1, . . . ,m, with ξ0 < ξ1 < · · · < ξm. The Hermite interpolation
problem for these data consists of determining a polynomialP whose degree does not exceed
n, wheren+1 = ∑m

i=0ni , and which satisfies the following interpolation conditions:

P(k)(ξi) = y(k)
i , k = 0,1, . . .ni−1, i = 0,1, . . . ,m. (21)

The existence and uniqueness of the polynomialP verifying the previous conditions (21) it is
assured ([10]). Hermite interpolating polynomials can be given explicitly by :

P(x) =
m

∑
i=0

ni−1

∑
k=0

y(k)
i Lik(x),
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where the polynomialsLik ∈∏n are generalized Lagrange polynomials ([10]). In the case in
study, the sought polynomialP is the functionb(t). Let us assumem= 1, the interpolation
points are the extremes of the interval[t0, tN], ξ0 = t0, ξ1 = tN, and forr = 0,1, . . . , p:

b(r)(t0) = g(r)(t0), b(r)(tN) = g(r)(tN),

whereb,g∈ C p andni = p+1, for i = 0,1, thenn+1= ∑1
i=0ni = 2p+2 so thatn= 2p+1.

As consequenceb(t) is a Hermite interpolating polynomial of degree 2p+1. The functiong
can be arbitrarily chosen satisfyingg∈Cp.

We consider a theorem of Ciarlet, Schultz & Varga concerning Hermite interpolation.

Theorem 4 (Ciarlet, Schultz & Varga [4]). Let g∈Cr [t0, tN] with r ≥ 2p+ 2, let ∆ be any
partition of [t0, tN], ∆ : t0 < t1 < · · · < tN, and letϕ(t) be the unique interpolation of g(t) in
H p+1

∆ , i.e., g(l)(tn) = ϕ(l)(tn), for all 0≤ n≤ N, 0≤ l ≤ p. Then,

‖g(k)−ϕ
(k)‖∞ ≤

‖∆‖2p+2−k

22p+2−2k k! (2p+2−2k)!
‖g(2p+2)‖∞, (22)

for all k = 0,1, . . . , p+1.

In the case in study we need a single subinterval of lengthT = b−a. Using (15) and (22)
for k = 0 andϕ = b,

‖gα −g‖∞ ≤
|α|∞

1−|α|∞
‖g−b‖∞ ≤

|α|∞
1−|α|∞

T2p+2

22p+2 (2p+2)!
‖g(2p+2)‖∞. (23)

§3. Interpolation Error Bounds

We consider again a uniform partition and constant scaling factorsα. According to theorem
of Barnsley & Harrington the IFS associated with thek-th derivative of a FIF can be expressed
as: {

Ln(t) = 1
N t +bn,

Fnk(t,x) = Nkαx+Nkq(k)
n (t), k = 0,1,2, . . . , p.

(24)

In our case,
qn(t) = g◦Ln(t)−αnb(t),

whereb(t) is a Hermite interpolating polynomial of degree 2p+ 1 of g. The derivatives of
qn(t) are:

q(k)
n (t) =

1
Nk g(k)(Ln(t))−α b(k)(t), k = 0,1,2, . . . , p, (25)

so that the IFS defining thek-th derivative of the FIFgα
b is expressed as:{

Ln(t) = 1
N t +bn,

Fnk(t,x) = Nkαx+g(k) ◦Ln(t)−Nkα b(k)(t), k = 0,1,2, . . . , p,
(26)
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that is to say,qnk(t) = g(k) ◦Ln(t)−Nkαb(k)(t), k = 0,1,2, . . . , p, so that thek−th derivative
of the functionα-fractal ofg respect toα andb, gα

b , agrees with theα-fractal function ofg(k)

respect toNkα andb(k), that is to say:

(gα
b )(k) = (g(k))Nkα

b(k) , k = 0,1,2, . . . , p.

To bound the difference between thek−th derivative ofg and thek−th derivative ofgα
b we

can use Theorem 3:

‖(gα
b )(k)−g(k)‖∞ = ‖(g(k))Nkα

b(k) −g(k)‖∞ ≤
Nk|α|

1−Nk|α|
‖g(k)−b(k)‖∞.

Considering thatb(t) is the Hermite interpolating polynomial of degree 2p+ 1 of g, the
theorem of Ciarlet, Schultz & Varga can be used in order to bound‖g(k)− b(k)‖∞, so that
applying (22) forϕ = b and consideringg∈C(2p+2)

‖(gα
b )(k)−g(k)‖∞ ≤

Nk|α|
1−Nk|α|

‖g(k)−b(k)‖∞

≤ Nk|α|
1−Nk|α|

T2p+2−k

22p+2−2k k! (2p+2−2k)!
‖g(2p+2)‖∞, k = 0,1, . . . , p.

§4. Fractal Cubic Splines

In this section we study a particular case, considering the IFS (10) withan = 1/N, αn = α,
for all n = 1,2, . . . ,N, andqn(t) = g◦Ln(t)−αnb(t), whereg is a cubic spline with respect
to a uniform partition∆ andb is a Hermite interpolating polynomial satisfying the described
conditions (20) wherep = 2 (b(t) is a polynomial of degreen = 5). In order to bound the
interpolation error we consider the following theorem:

Theorem 5 (Hall & Meyer [5]). Let f ∈ C4[a,b] and | f (4)(t)| ≤ L for all t ∈ [a,b]. Let
∆ = {a = t0 < t1 < · · ·< tN = b} be a partition of the interval[a,b], with constant distances
between nodes h= tn− tn−1. Let S∆ be the spline function that interpolates the values of the
function f at the points t0, t1, . . . , tN ∈ ∆, being S∆ type I or II. Then,

‖ f (r)−S(r)
∆ ‖∞ ≤Cr L h4−r (r = 0,1,2), (27)

with C0 = 5/384, C1 = 1/24, C2 = 3/8. The constants C0 and C1 are optimum.

Remark2. A spline is type I if its first derivatives ata andb are known. A spline is type II if
it can be explicitly represented by its second derivatives ata andb.

To estimate‖x−gα
b ‖∞, it is easy to observe that

‖x−gα
b ‖∞ ≤ ‖x−g‖∞ +‖g−gα

b ‖∞.

The first adding can be bounded applying the theorem of Hall and Meyer sinceg = S∆(t) is a
cubic spline. Thus

‖x−g‖∞ ≤C0Lh4. (28)



Fractal splines 167

In the second term, Theorem 3 can be used; from (15)

‖g−gα
b ‖∞ ≤

|α|
1−|α|

‖g−b‖∞. (29)

From (28)–(29)

‖x−gα
b ‖∞ ≤C0Lh4 +

|α|
1−|α|

‖g−b‖∞. (30)

The inequality above can be transformed considering the following result:

Lemma 6. If |α|< 1/N2, there exists s= s(N) such that0 < s< 1 and|α| ≤ 1/N2+s.

Proof. By hypothesis|α| < 1/N2. Since 1/N2+x→ 1/N2 asx→ 0+, there existss= s(N)
such that 0< s< 1 and|α| ≤ 1/N2+s.

As a consequence, if|α|< 1/N2, there existss such that

|α|
1−|α|

≤ 1
N2+s−1

,

and we obtain the following result.

Theorem 7. Let x(t) be a function verifying x(t)∈C4[t0, tN] and|x(4)(t)| ≤L for all t ∈ [t0, tN].
Let s= s(N) > 0 such that0 < s< 1 and|α| ≤ 1

N2+s . Then,

‖x−gα
b ‖∞ ≤ K0h4 +

1
N2+s−1

‖g−b‖∞,

or

‖x−gα
b ‖∞ ≤ K0h4 +

h2+s

T2+s−h2+s ‖g−b‖∞, (31)

where K0 = LC0 is the constant of Hall and Meyer Theorem and T= tN− t0 = Nh.

We proceed in a similar way for the derivatives of the spline.

Theorem 8. Let x(t) be a function verifying x(t)∈C4[t0, tN] and|x(4)(t)| ≤L for all t ∈ [t0, tN].
Let g(t) be a cubic spline and b(t) be a Hermite interpolating polynomial of degree 5 of g.
Let s= s(N) > 0 be, such that0 < s< 1 and|α| ≤ 1

N2+s . Then,

‖x′− (gα
b )′‖∞ ≤ K1h3 +

1
N1+s−1

‖g′−b′‖∞,

and

‖x′′− (gα
b )′′‖∞ ≤ K2h2 +

1
Ns−1

‖g′′−b′′‖∞, (32)

where K1 = LC1, K2 = LC2 are the constant of Hall and Meyer Theorem and T= tN−t0 = Nh.

The differences‖g(k)−b(k)‖∞ can be bounded considering thatb is the interpolating Her-
mite polynomial ofg and using a theorem of interpolation error for this kind of approximants.
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