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LOCATION OF MISTAKEN DATA USING

WAVELETS DEFINED BY A CLASSICAL MEAN

María Moncayo

Abstract. This work may be regarded as a link between classical and modern tools used in
Mathematics and other disciplines. We consider the trigonometric de la Vallée Poussin’s
mean [11], discovered in 1908, to construct wavelet functions [3], really developed eighty
years later, and considered the most recent addition to the subject of orthogonal systems.
The obtained functions, via the representation of the wavelet coefficients, are successfully
applied to the location of mistaken data.
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§1. Introduction

Wavelets constitute the latest addition to the subject of orthogonal series by their wide appli-
cability. This work provides a construction of wavelets in the framework of a Multiresolution
Analysis (MRA) [2, 3, 5] by using the de la Vallée Poussin’s mean. Our purpose is to show
the usefulness of this classical mean to define, in anatural manner, wavelet functions. A
MRA scheme deals with a trigonometric polynomialm[n]

0 (ξ ), which is an approximation of
the so calledideal low pass transfer functionχ[−π/2,π/2](ξ ), whereξ represents the variable
at frequency domain. In practice, it is not possible to implement an ideal low pass trans-
fer function. It must be approximated (see [5, p. 27]). A measure of this approximation is
obtained by the quantity

ε(n) =
∫

π

−π

∣∣∣χ[− π
2 , π

2 ](ξ )−
∣∣∣m[n]

0 (ξ )
∣∣∣2∣∣∣2dξ . (1)

Our construction involves a trigonometric polynomialm[n]
0 (ξ ), whose square modulus is de-

fined by using the approximation of the identity associated with the de la Vallée Poussin’s
sum. In this work we first present some of the standard facts on wavelets. Then we define

m[n]
0 (ξ ) by using the classical mean. We state some basic relations of the introduced functions

in order to guarantee the orthogonality of the wavelet systems. We used known theoretical
statements to obtain

ε(n)∼O
(1

n

)
,

which may be regarded as a localization property concerningm[n]
0 (ξ ). Finally, an interesting

application is presented. For the detailed proofs, see [6, 7].
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§2. Background

A MRA structure ofL2(R) is a nested sequence of closed subspacesVj , with j ∈ Z, such that

(i) · · · ⊂V2⊂V1⊂V0⊂V−1⊂V−2⊂ ·· · ⊂ L2(R).

(ii)
⋃

j Vj = L2(R),
⋂

j∈ZVj = {0}.

(iii) f ∈Vj ⇔ f (2 j ·) ∈V0.

(iv) There existsϕ ∈ V0, called the scaling function, such that the system{ϕ(· −n);
n∈ Z} is an orthonormal basis forV0. It is also assumed the condition|

∫
R ϕ(x)dx|= 1.

A wavelet basis is defined as{
ψ j,k(x) = 2− j/2

ψ(2− jx−k) ; j,k∈ Z
}
,

whereψ is a real-valued square-integrable compactly supported function. The basisψ j,k(x)
is derived from a MRA associated to a compactly supported scaling function and a trigono-

metric polynomialm[n]
0 . An important property for the scaling functionϕ is the so-calledtwo

scale relation:
ϕ(x) =

√
2 ∑

n
hn ϕ(2x−n), (2)

where(hn) ∈ `2(Z). By taking the Fourier transform, this relation becomes

ϕ̂(ξ ) = m[n]
0 (ξ/2) ϕ̂(ξ/2),

wherem[n]
0 (ξ ) is given by

m[n]
0 (ξ ) =

1√
2

2n−1

∑
k=0

hk e−i kξ . (3)

Condition (iv) implies

|m[n]
0 (ξ )|2 +

∣∣∣m[n]
0 (ξ +π)

∣∣∣2 = 1,

which may be regarded as a necessary condition for the orthogonality of the system. Moreo-
ver

m[n]
0 (0) = 1 and m[n]

0 (π) = 0. (4)

The relations satisfied by the coefficientshn in (3) (see [2, Chap. 5, Th. 6] and [3, p. 163])

imply that m[n]
0 (ξ ) approximates the ideal low pass transfer functionχ[−π/2,π/2](ξ ). The

scaling function is used to construct the associated wavelet function,ψ. It must be chosen
such that{ψ(x−n)} is an orthonormal basis of the spaceW0, the orthogonal complement of
V0 in V−1. ThenV0⊕W0 = V−1. If such aψ(x) can be found, then{

ψ j,k(x) = 2− j/2
ψ(2− jx−k) ; k∈ Z

}
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is an orthonormal basis ofWj , the orthogonal complement ofVj in Vj−1, and{ψ j,k(x)} j,k∈Z
is an orthonormal basis ofL2(R) (see [3, p. 130]). In particular, it follows forj < j0 that

Vj = Vj0

j0− j−1⊕
k=0

Wj0−k. (5)

The spacesWj are called wavelet spaces or detail spaces. A relation between the scaling and
the wavelet function is given by

ψ(x) =
√

2∑
n

gn ϕ(2x−n), (6)

wheregn = (−1)nh1−n.

Remark1. From the coefficientshn, a standard recursive procedure on (2) (see [2, p. 67]) is
used to find the scaling function and, by (6), the wavelet function is also obtained.

§3. Definition of
∣∣∣m[n]

0 (ξ )
∣∣∣2

We consider the classical de la Vallée Poussin’s sum (see [1, p. 1])

Vn(t) = 1+2
n

∑
k=1

(n!)2

(n−k)!(n+k)!
cos(kt), t ∈ (−π,π). (7)

This mean, together with the Fejér’s, Poisson’s and Jacobi’s sums, is considered the last of
the important positive approximate identities from the nineteenth century. More precisely, it
is well known thatVn≥ 0 and

lim
n→0
‖Vn∗ f − f‖L2(−π,π) = O

( 1
nγ

)
, f ∈ L2(−π,π)∩Lip(γ), (8)

where Lip(γ) denotes the class of Lipschitz functions of orderγ ∈ (0,1] (see [11, vol. I,
p. 43]), and∗ denotes the convolution product (see [4, p. 77]). Property (8) motivates the
expression (1) and also the following definition:

Definition 1. The function
∣∣∣m[n]

0 (ξ )
∣∣∣2 is defined by∣∣∣m[n]

0 (ξ )
∣∣∣= (Vn∗χ[− π

2 , π
2 ]
)
(ξ ). (9)

On account of the definition of the convolution product equation (9) takes the form

|m[n]
0 (ξ )|2 =

1
2π

∫
π

−π

χ[− π
2 , π

2 ](u)Vn(ξ −u)du=
1

2π

∫
π/2

−π/2
Vn(ξ −u)du. (10)

As a consequence, we have that the functions|m[n]
0 (ξ )|2 are nonnegative trigonometric cosine

polynomials, i.e., they may be expressed as

|m[n]
0 (ξ )|2 = a0 +2

n

∑
k=1

ak cos(kξ ), a0,a1, . . . ,an ∈ R. (11)
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Remark2. The coefficientshn in (3) are computed fromak by applying the classical Riesz
Representation Theorem (see [9, p. 4]) and, in order to obtain an unique solution, the condi-
tions satisfied byhn in the framework of the MRA scheme, have also to be imposed (see [2,
p. 58]).

Proposition 1. Under the previous notation, we have∫
π

−π

Vn(t)dt = 2π.

If the integral is evaluated on intervals[a,b] ⊂ R with b−a = 2π, the same conclusion can
be taken.

Proof. The detailed proof can be found in [6, 7]

Proposition 2. The functions|m[n]
0 (ξ )|2 defined in (9) satisfy

|m[n]
0 (ξ )|2 + |m[n]

0 (ξ +π)|2 = 1. (12)

Proof. From (10), a change of variable in both summands of (12) yields

|m[n]
0 (ξ )|2 + |m[n]

0 (ξ +π)|2 =
1

2π

∫
ξ+π/2

ξ−π/2
Vn(s)ds+

1
2π

∫
ξ+3π/2

ξ+π/2
Vn(s)ds

=
1

2π

∫
ξ+3π/2

ξ−π/2
Vn(s)ds= 1,

where, for the last equality, we have used Proposition 1.

The functions|m[n]
0 (ξ )|2 does not satisfy, at first, (4). In order to get this relation, it can

be consider, without loss of generality, an affine transformation.

§4. Localization-best approximation property

In this section we derive thatm[n]
0 (ξ ) is well localized at frequency.

Proposition 3. The functions|m[n]
0 (ξ )|2 satisfy

∥∥|m[n]
0 (ξ )|2−χ[− π

2 , π
2 ](ξ )

∥∥
L2(−π,π) ∼O

( 1√
n

)
.

Proof. The detailed proof can be found in [6, 7].
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h0 = 0.4380 h1 = 0.8248 h2 = 0.2914 h3 =−0.1294
h4 =−0.0228 h5 = 0.0119 h6 = 0.0004 h7 =−0.0002

Table 1: Coefficients for the two scale relation
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Figure 1: Scaling function (left) and wavelet function (right)

§5. Applications

We have consideredn = 8 to obtain the functions given by (9):

|m[8]
0 (ξ )|2 =

1
2208

cos2(ξ/2)×
(
−1666−1084cos(ξ )+495cos(2ξ )

+94cos(3ξ )−46cos(4ξ )−2cos(5ξ )+cos(6ξ )
)
.

We have obtained (see Remark 2) the coefficients in Table 1.
By Remark 1, we have obtained the scaling and wavelet functions plotted in Figure 1. We

have implemented (see [2, p. 258]) these functions in order to locate some collected mistaken
data in connection with the electrical consumption’s analysis represented in Figure 2.

By using the scaling and the wavelet functions, and taking into account (5), we have
obtained the projections off onto the approximation spaceV4 and the detail spacesW4, W3,
W2 andW1. The largest wavelet coefficients in the projections onto the detail spaces detect the
domain where the functionf is not regular or, which is the same thing, where the mistaken
data occur (see [5, p. 171]). Taking equal to zero the largest wavelet coefficients, it is
possible to define a new detail projections. From (5), the sum with the new detail projections
and the projection represented in Figure 3 (left) leads to the reconstruction of the original
electrical signal without the wrong data represented in Figure 4.

§6. Concluding remark

We have used the classical de la Vallée Poussin’s mean to define certain trigonometric poly-
nomial required to construct wavelet functions in the framework of a standard MRA scheme.
We have used the positivity of the mean and also an asymptotic formula in order to compute
the coefficientshn of (3) and to guarantee the localization-best approximation property. We
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Figure 2: Electrical consumption: Global representation (left) and the partial zoomf (right)
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Figure 3: Projection off ontoV4 (left) and ontoW1 (right)
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Figure 4: Reconstruction off without the wrong data
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present an explicit application to locate and remove the mistaken data of a given electrical
signal. The detailed proofs and some similar constructions by using another classical means
can be found in [6, 7]. We expect to promote the use of the classical approximation theory in
connection with the subject of wavelets.
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