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Abstract. There are three processes associated to a generalized Pólya urn model. First,
the process that represents the proportion of balls of each type in the urn. As in each
step a ball is drawn from the urn, its type is noted, and it is placed back in the urn, the
second process represents the proportion of balls of each type that have been drawn from
the urn. As the replacement policy consists in applying in each step one out ofK different
actions, the third process represents the proportion of times that each action (replacement)
has been applied. This third process has not attracted as much attention as the others in
the probabilistic literature. In this work we present conditions under which almost sure
convergence results and central limit theorems are obtained for it. We illustrate these
results with an application to adaptive clinical trials and random data structures.
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§1. Introduction

Generalized Pólya urn models constitute a powerful too to study the evolution of a wide
family of random data structures and to perform adaptive clinical trials (see, for instance, [5]
and [6]). In the following lines, we give a general framework to introduce generalized Pólya
urn models. We consider an urn with a total amount ofT0 balls ofL different types. The initial
proportion of each kind of ball is represented by the vectorX0 = (X01, . . . ,X0L)t . At each step
n, one out ofK different actions can be applied. If actioni is applied,rni j balls of type j,
j = 1, . . . ,L, are added to the urn (or extracted, ifrni j < 0). We assume that∑L

j=1 rni j > 0. All
these values are collected in a matrixRn = (rni j), i = 1, . . . ,K, j = 1, . . . ,L, which is called
replacement matrix. We denote byδn = (δn1, . . . ,δnK)t a K-dimensional vector of indicator
variables such that, if thei-th action is applied, thenδni = 1 and the rest of components are
equal to 0. The total number of balls in the urn after then-th replacement is denoted by
Tn. The process{Xn} represents the proportion of balls of each type in the urn, after each
replacementn and it takes values in the set∆L−1 ⊂ RL, where∆L−1 = {x : x1 + · · ·+ xL =
1, xi ≥ 0}. Throughout this paper the following assumptions are considered:

(A1) For eachn, Rn is a deterministic matrixR such thatR1 = s1, where1 represents the
column vector of ones ands> 0.



310 J. A. Moler, F. Plo, M. San Miguel and H. Urmeneta

(A2) There exists a continuous functionG : ∆L−1→ ∆K−1 with componentsGi , i = 1, . . . ,K,
such that

P(δn+1,i = 1|Fn) = Gi(Xn), i = 1, . . . ,K. (1)

(A3) The process can not get stuck for impossible removals, so that

Rt
δn +Tn−1Xn−1≥ 0.

The process{Un}= {(Xn,δn)}, n≥ 1, is a generalized Pólya urn model. We will consider
the natural filtration{Fn} whereFn = σ(Ui : i ≤ n), n≥ 1. The asymptotic behaviour of
the process{Xn} has been studied in many papers. See, for instance, [1] and [2], where this
study is made in the framework of stochastic approximation, and the references therein. In
this paper we focus on the establishment of conditions in a generalized Pólya urn model to
obtain almost sure convergence results and central limit theorems for the process{Zn}where,
for eachn, Zn = ∑n

k=1 δk/n. This process represents the proportion of times that each action
(replacement) has been applied up to then-th stage. As in each step a ball is drawn from the
urn, its type is noted, and it is placed back in the urn, we could be interested in the process,
say{Wn}, that represents the proportion of times that each type of ball has been drawn. We
define anL-dimensional vector of indicator variablesηn = (ηn1, . . . ,ηnL)t such that if thei-th
type of ball has been drawn in then-th step, thenηni = 1 and the rest of components are equal
to 0. We have then thatWn = ∑n

k=1 ηk/n for eachn. Observe that whenG(x) = x, thenK = L
andWn = Zn, for eachn. However, ifG(x) 6= x, the action applied could not coincide with
the type of ball drawn from the urn. See, for instance, Application 1 in Section 3, where the
processes{Wn} and{Zn} provide different information. The paper is organized as follows. In
the following section, we give theoretical results that establish conditions on the generalized
Pólya urn model to obtain almost sure convergence for the processes{Zn} and{Wn} and
central limit theorems for the process{Zn}. In the final section we illustrate the practical
interest of these processes in the framework of clinical trials and in the modelling of random
data structures.

§2. Theoretical results

The general procedure to obtain our results is to prove that the process of interest follows
a Robbins-Monro scheme and to check that the conditions that guarantee a strong law or a
central limit theorem for Robbins-Monro processes hold. We use the following notation. If
R is a matrix, then‖R‖= supi ∑ j |r i j |. If x∈ Rn, then‖x‖= ∑n

i=1 |xi | and the row vector will
be noted byxt . Column vectors of zeros will be noted by0.

Definition 1. Consider a stochastic process{Yn} that takes values in a borelian setΓ ⊆ Rd

and that is defined on a probability space(Ω, A , P) endowed with a filtrationG = (Gn). {Yn}
follows a Robbins-Monro scheme of stochastic approximation when

Yn+1 = Yn + γn(F(Yn)+ εn+1 +βββ n+1) (2)

In order to obtain asymptotic results for{Yn}, several conditions must be assumed. We
write down the usual ones:
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(C1) {γn} is a sequence of positive random variables such that a.s.:

∞

∑
n=1

γn = ∞,
∞

∑
n=1

γ
2
n < ∞

(C2) The sequence{εn} is adapted toG and for a positive constantM andb > 2:

E[εn+1 | Gn] = 0, E[‖εn+1‖b | Gn] < M, a.s.

(C3) The sequence{βββ n} converges to 0 a.s.

Consider a generalized Pólya urn model{Un} under hypotheses (A1)–(A3). The process
{Xn} satisfies the following recurrence equation:

Xn+1 =
TnXn +Rtδn+1

Tn+1
= Xn +

(I −Xn1t)Rtδn+1

Tn+1
, (3)

whereTn represents the total number of balls in the urn after then-th replacement andTn =
T0 +ns. From (3) we have:

Xn+1 = E[Xn+1 |Fn]+Xn+1−E[Xn+1 |Fn]

= Xn +
1

Tn+1
[(I −Xn1t)RtG(Xn)+(I −Xn1t)Rt(δn+1−G(Xn))]

= Xn +
1

Tn+1
[RtG(Xn)−sXn +Rt(δn+1−G(Xn))].

(4)

Then,{Xn} follows a Robbins-Monro scheme withΓ = ∆L−1 and, for eachn, γn = 1/(T0 +
ns), F(Xn) = RtG(Xn)−sXn, εn+1 = Rt(δn+1−G(Xn)) andβn+1 = 0. It is easy to check that
conditions (C1)–(C3) hold. Now, we focus on the processes{Zn} and{Wn}. In the following
result asymptotic results on the process{Xn} are assumed.

Theorem 1. Consider a generalized Pólya urn model{Un} under assumptions (A1)–(A3)
and assume that Xn→ u, a.s., where u∈ ∆L−1 and F(u) = 0. Then,

Zn→G(u), a.s.,

Wn→ u, a.s.

Besides, if
√

ns(Xn−u)→ N(0, V), [D], then

√
ns

Rt

s
(Zn−G(u))→ N(0,V), [D].

Proof. For eachn, E[ηn |Fn−1] = Xn−1, a.s., andE[δn |Fn−1] = G(Xn−1), a.s. From the
Lévy’s extension of the Borel-Cantelli’s Lemma, we have that{Wn} converges a.s. to the
same limit as∑n

k=1Xk−1/n, and that{Zn} converges a.s. to the same limit as∑n
k=1G(Xk−1)/n.

Then,Wn→ u, a.s. and, beingG continuous,Zn→ G(u), a.s. In order to prove the central
limit theorem, observe thatTnXn = T0X0 +∑n

k=1Rtδk, and then

Xn =
T0X0

Tn
+

n
Tn

RtZn. (5)
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As F(u) = 0, thenRtG(u) = su, so that

√
ns(Xn−u) =

√
ns

T0X0

Tn
+
√

ns
Rt

s

(nsZn

Tn
−Zn

)
+
√

ns
Rt

s
(Zn−G(u)). (6)

The first and the second addend in (6) converge a.s. to zero, and therefore the result follows.

Remark1. If in Theorem 1R is a non-singularL-square matrix, then

√
n(Zn−G(u))→ N(0,s(Rt)−1VR−1), [D].

In the following result we study directly the asymptotic behaviour of{Zn}, without as-
sumptions on the asymptotic behaviour of{Xn}.

Theorem 2. Consider a generalized Pólya urn model{Un} under assumptions (A1)–(A3).
Assume that G(Xn) = Xn, for each n. Then, the process{Zn} follows a Robbins-Monro scheme
and conditions (C1)–(C3) hold. Moreover, if s is a simple eigenvalue of R and the rest of
eigenvalues have real part strictly lesser than s, then

Zn→ u, a.s.,

where u is the unique vector in∆L−1 such that utR= sut . Besides, if s is a simple eigenvalue
of R and the rest of eigenvalues have real part strictly lesser than s/2, then

√
n(Zn−u)→ N(0,V), [D],

where V is a singular matrix such that(Rt

s
− 1

2
I
)
V +V

(Rt

s
− 1

2
I
)t

=−C,

and

C =


u1(1−u1) −u1u2 . . . −u1uL

−u1u2 u2(1−u2) . . . −u2uL
...

...
...

...
−u1uL −u2uL . . . uL(1−uL)

 . (7)

Proof. SinceZn+1 = Zn +(δn+1−Zn)/(n+1), takingεn+1 = δn+1−Xn, we obtain

Zn+1 = Zn +
1

n+1
[(Xn−Zn)+ εn+1]

= Zn +
1

n+1
[(

Rt

s
− I)Zn + εn+1 +βn+1],

(8)

where

βn+1 =
T0X0

Tn
+

Rt

s
Zn

(sn
Tn
−1
)

= o(n−ρ), a.s. for anyρ < 1. (9)
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Therefore,{Zn} fits a Robbins-Monro scheme that satisfies conditions (C1)–(C3) withF(x) =
(Rt/s− I)x. LetPbe the transformation matrix of the real canonical Jordan form of(Rt/s− I).
We can take1t as the first row ofP because it is a left eigenvector associated to the eigenvalue

1 of Rt/s. ConsiderP :=
(

1t

P̃

)
. Then, as1tZn = 1, 1tβn = 0 and1tεn = 0, we have from (8)

that the process{Z̃n} := {P̃Zn} satisfies

Z̃n+1 = Z̃n +
1

n+1
[J̃Z̃n + ε̃n+1 + β̃n+1], (10)

where

P
(Rt

s
− I
)

P−1 =
(

1 0t

0 J̃

)
, Pεn =

(
0
ε̃n

)
, Pβn =

(
0

β̃n

)
.

Observe that the ODE associated to the scheme (10) is ˙x = J̃x, and, from the assumptions, all
the eigenvalues of̃J are negative. So that, 0 is a globally asymptotically stable point for the
ODE. We invoke Theorem 5.2.3 in [3] to conclude that{Z̃n} converges a.s. tõPu= 0. And,
then,Zn→ u, a.s. On the other hand, observe that from (5) we deduce thatXn→ u, a.s. So
that, if Cn := E[εnε t

n |Fn−1], then it is easy to check thatCn→C, a.s., whereC is as in (7).
As all the extra-diagonal components of−C are positive, it follows from Theorem 2.6 in [8]
that 0 is a simple eigenvalue of C and the rest of eigenvalues have real part strictly positive.
Then, let

PCPt =
(

0 0t

0 C̃

)
,

it follows thatC̃ is positive definite. Moreover, we have thatJ̃+ 1
2I is a stable matrix. From the

previous discussion it follows that the conditions in Theorem 1 in [7] hold for the recurrence
scheme (10), and then √

n(Z̃n)→ N(0, Σ),

whereΣ is the unique solution of the Lyapunov equation:

(J̃+ 1
2I)Σ+Σ(J̃t + 1

2I) =−C̃ (11)

From the relations betweenZn andZ̃n, the result follows with

V = P−1
(

0 0t

0 Σ

)
P−1t .

§3. Applications

3.1. Application 1: A clinical trial

The randomized Play-The-Winner rule, introduced in [9], and its modifications have been
popular adaptive designs used in clinical trials (see, for instance, [6]). This rule is imple-
mented by using a randomized urn model that contains balls of two types (say, type 1 and
type 2). Each type is associated with a treatment. When a patient arrives, a ball is drawn.
The patient receives the treatment associated with the ball type, i, and the ball is replaced in
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the urn. It is assumed that the patient gives an immediate and dichotomous response. If the
treatment is successful,β balls of typei andα balls of the other type are added into the urn.
Otherwise,α balls of typei andβ balls of the other type are added into the urn. It is assumed
thatβ andα are non-negative integer numbers such thatβ > α ≥ 0, so that

R=
(

β α

α β

)
.

Let pi be the probability of treatmenti being a success,i = 1, 2, andqi = 1− pi . Let {Xn}=
{(Xn1, Xn2)} be the stochastic process that represents the proportions of balls of each type in
the urn at then-th stage of the experiment. It is well-known (see [9]) that

X1n→ u1 =
α p2 +βq2

α(p1 + p2)+β (q1 +q2)
, a.s. (12)

In this example, the processes{Zn} and{Wn} are not the same. Note that treatment 1 can be
rewarded, (that is, action 1 can be applied) even if treatment 2 has been applied. The process
{Zn} represents the proportion of times that we have applied each action (replacement) and
the process{Wn} represents the proportion of times that we have applied each treatment. As
δni = 1 if treatmenti has been applied, we can write

P(δn1 = 1 |Fn−1) = p1Xn1 +q2Xn2, P(δn2 = 1 |Fn−1) = q1Xn1 + p2Xn2.

And therefore

G(x) =
(

p1 q2

q1 p2

)
x := Bx, xt = (x1,x2).

As (A1)–(A3) hold, the process{Xn} follows a Robbins-Monro scheme and conditions (C1)–
(C3) hold. Note thatF(x) = Ax, where

A = (RtB− (α +β )I) =
(
−βq1−α p1 βq2 +α p2

βq1 +α p1 −βq2−α p2

)
. (13)

From (12) we know thatXn → u, a.s., and it is easy to check thatAu = 0. Then, from
Theorem 1 it follows that

Zn→ Bu=
(

q2 +(p1−q2)u1

q1 +(p2−q1)u2

)
.

From Corollary 3.1 in [2], it can be proved that, if 2β + (α − β )(p1 + p2) > 1/2, then√
ns(Xn−u)→ N(0,V). Therefore, applying Theorem 1 and Remak 1 we have that

√
n(Zn−G(u))→ N(0,(α +β )(Rt)−1VR−1), [D].

3.2. Application 2: Rotations in fringe-balanced binary trees

Rotation is a heuristic that reduces height and path in order to improve the speed of retrieval
in a binary search tree. In [4], a generalized Pólya urn model is proposed to model rotations.
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Three types of nodes are distinguished. When a node of type 3 is drawn, a rotation is made.
The replacement matrix is

R=

−2 1 2
4 −1 −2
4 −1 −2

 .

In [4] the asymptotic behaviour of the proportion of times that a node of type 3 has been
extracted is also obtained using martingale techniques. Studying this model in the setting of
this paper, we note thatG(x) = x, so thatZn = Wn for eachn, and we can apply Theorem 2.
The a.s. limit for the process{Zn} is u = (4/7, 1/7, 2/7), and the central limit theorem is:

√
n(Zn−u)→ N

0,

12/637 −4/637 −8/637
−4/637 62/637 −58/637
−8/637 −58/637 66/637

 .

The (singular) covariance matrix has been obtained following the procedure stated in the
proof of Theorem 2. First, ass= 1, we computeP andJ such thatP−1JP= Rt − I (whereJ
is the real canonical Jordan form ofRt − I ). We obtain:

P =

 1 1 1
881/1079 −749/688 −749/688

0 −1047/727 1402/1947

 and J =

0 0 0
0 −7 0
0 0 −1

 .

We compute the matricesC andC̃:

C =
1
49

12 −4 −8
−4 6 −2
−8 −2 10

 and, then, C̃ =
1
9

(
8 0
0 4

)
.

As the matrixJ̃+ 1
2I is stable, we obtain the unique solutionΣ of (11):

Σ =
∫ ∞

0
exp
(
(J̃+1/2)x

)
C̃exp

(
(J̃+1/2)tx)dx=

(
8/117 0

0 4/9

)
.

And finally, we obtain the matrixV stated above.
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