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ASYMPTOTICS FOR THE NUMBER OF
REPLACEMENTS IN A
GENERALIZED POLYA URN MODEL
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Abstract. There are three processes associated to a generalized Pdlya urn model. First,
the process that represents the proportion of balls of each type in the urn. As in each
step a ball is drawn from the urn, its type is noted, and it is placed back in the urn, the
second process represents the proportion of balls of each type that have been drawn from
the urn. As the replacement policy consists in applying in each step one Kuifiérent

actions, the third process represents the proportion of times that each action (replacement)
has been applied. This third process has not attracted as much attention as the others in
the probabilistic literature. In this work we present conditions under which almost sure
convergence results and central limit theorems are obtained for it. We illustrate these
results with an application to adaptive clinical trials and random data structures.
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81. Introduction

Generalized Polya urn models constitute a powerful too to study the evolution of a wide
family of random data structures and to perform adaptive clinical trials (see, for instance, [5]
and [6]). In the following lines, we give a general framework to introduce generalized Pélya
urn models. We consider an urn with a total amourfydfalls ofL different types. The initial
proportion of each kind of ball is represented by the ve¥tor (Xo, ..., XoL)t. At each step

n, one out ofK different actions can be applied. If actioms applied,ryj balls of typej,
j=1,...,L, are added to the urn (or extracted;qf < 0). We assume thzg'j-zlrmj > 0. All

these values are collected in a matRix= (rnjj), i =1,...,K, j=1,...,L, which is called
replacement matrix. We denote By = (3n1, ..., 8n)' @ K-dimensional vector of indicator
variables such that, if thieth action is applied, thefi,; = 1 and the rest of components are
equal to 0. The total number of balls in the urn after tiatlh replacement is denoted by

Th. The procesgX,} represents the proportion of balls of each type in the urn, after each
replacemenh and it takes values in the sAt_1 c R', whereA 1 = {Xixg+-+x =

1, x; > 0}. Throughout this paper the following assumptions are considered:

(Al) For eachn, R, is a deterministic matriR such thatR1l = s1, wherel represents the
column vector of ones argt> 0.
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(A2) There exists a continuous functi@x A 1 — Ag_1 with componentss;, i =1,... K,
such that
P(6n+1’i :1|yn):G|()(n)7 | :177K (1)

(A3) The process can not get stuck for impossible removals, so that

R&n+Th-1%n-1 > 0.

The procesgUn} = {(Xn,6n)}, N> 1, is a generalized Pdlya urn model. We will consider
the natural filtration{.#,} where. %, = o(U; : i <n), n> 1. The asymptotic behaviour of
the procesgX,} has been studied in many papers. See, for instance, [1] and [2], where this
study is made in the framework of stochastic approximation, and the references therein. In
this paper we focus on the establishment of conditions in a generalized Pélya urn model to
obtain almost sure convergence results and central limit theorems for the pfdgkseere,
for eachn, Z, = S|_; &/n. This process represents the proportion of times that each action
(replacement) has been applied up tortkté stage. As in each step a ball is drawn from the
urn, its type is noted, and it is placed back in the urn, we could be interested in the process,
say{Wh}, that represents the proportion of times that each type of ball has been drawn. We
define arlL-dimensional vector of indicator variablgg = (11, . .., nL )t such that if the-th
type of ball has been drawn in theth step, thempni = 1 and the rest of components are equal
to 0. We have then th&th, = S_, nk/n for eachn. Observe that whe®(x) = x, thenK =L
andW, = Z,, for eachn. However, ifG(X) # X, the action applied could not coincide with
the type of ball drawn from the urn. See, for instance, Application 1 in Section 3, where the
processe$W, } and{Z,} provide different information. The paper is organized as follows. In
the following section, we give theoretical results that establish conditions on the generalized
Polya urn model to obtain almost sure convergence for the procégsgsand {W,} and
central limit theorems for the proce¢Z,}. In the final section we illustrate the practical
interest of these processes in the framework of clinical trials and in the modelling of random
data structures.

82. Theoretical results

The general procedure to obtain our results is to prove that the process of interest follows
a Robbins-Monro scheme and to check that the conditions that guarantee a strong law or a
central limit theorem for Robbins-Monro processes hold. We use the following notation. If
Ris a matrix, therj|R|| = sup 3 j [rij|. If x € R", then||x|| = $_; [x/| and the row vector will

be noted by'. Column vectors of zeros will be noted By

Definition 1. Consider a stochastic procefé,} that takes values in a borelian setz R4
and that is defined on a probability spd€k <7, P) endowed with a filtratio¥ = (4,). {Yn}
follows a Robbins-Monro scheme of stochastic approximation when

Yors = Yo+ %(F(Ya) + &1 +Bni1) (2

In order to obtain asymptotic results fo¥,}, several conditions must be assumed. We
write down the usual ones:
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(C1) {m} is a sequence of positive random variables such that a.s.:

[oe] [ee]
ZYn:°°7 z%%<°°
n=1 n=1

(C2) The sequencge,} is adapted t& and for a positive constai andb > 2:
Elens1 | %] =0,  E[|lenal®| %] <M, as.

(C3) The sequencfB,} convergesto 0 a.s.

Consider a generalized Pdlya urn modé}} under hypotheses (A1)—(A3). The process
{Xn} satisfies the following recurrence equation:
TnXn +RSn11 X+ (I *ant)Rt(SnJrl?

Thia Thi1

Xny1 = €)

whereT, represents the total number of balls in the urn aftenttie replacement and, =
To+ ns From (3) we have:

Xnr1 = EXny1 | Fn] +Xnrr — EXnr1 | T

Xt = (1= XeTYRG(Xn) + (1 — Xl YR (S — G%)
Tn+l (4)
— Yot = [RG(X,) — 8%+ R (81— G(Xo))]

Tn+1

Then,{X,} follows a Robbins-Monro scheme with= A, _; and, for eachm, 1, = 1/(To +
ns), F(Xn) = RG(Xy) — $X, &nr1 = R (Sn+1 — G(Xy)) and By, 1 = 0. Itis easy to check that
conditions (C1)—(C3) hold. Now, we focus on the proce§@a$ and{W,}. In the following
result asymptotic results on the procé¥s} are assumed.

Theorem 1. Consider a generalized Polya urn mod@J,} under assumptions (A1)—(A3)
and assume thaty— u, a.s., where & A _; and F(u) = 0. Then,

Zy,— G(u), as,
W, —u, as.

Besides, if,/ns(X, —u) — N(0, V), [D], then
Vs 2~ 6w) - NEV), (D]

Proof. For eachn, E[nn | #n-1] = Xn-1, &.S., ancE[d, | F#n-1] = G(Xn-1), a.s. From the
Lévy’'s extension of the Borel-Cantelli's Lemma, we have thiaf} converges a.s. to the
same limitasy|_; X_1/n, and thaf{ Z,} converges a.s. to the same limitgs ; G(Xx_1)/n.
Then,W, — u, a.s. and, bein continuousZ, — G(u), a.s. In order to prove the central
limit theorem, observe tha@hX, = ToXo+ Sk_; RSy, and then

ToXo Nz (5)

A A
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As F(u) =0, thenR'G(u) = sy, so that

ViRt = Vs 00 R (%R 7)) wRz,ew).  ®

The first and the second addend in (6) converge a.s. to zero, and therefore the result follows.
O

Remarkl. If in Theorem 1Ris a non-singulat-square matrix, then
VN(Zh—G(u)) = N(O,s(R)"'VR™), [D].

In the following result we study directly the asymptotic behaviouf 4{}, without as-
sumptions on the asymptotic behaviour{&§, }.

Theorem 2. Consider a generalized Polya urn modé),} under assumptions (A1)—(A3).
Assume that X,) = X,, for each n. Then, the proce&&,} follows a Robbins-Monro scheme
and conditions (C1)—(C3) hold. Moreover, if s is a simple eigenvalue of R and the rest of
eigenvalues have real part strictly lesser than s, then

Zy—u, as,

where u is the unique vector i__; such that tR= su. Besides, if s is a simple eigenvalue
of R and the rest of eigenvalues have real part strictly lesser thantisen

\m(zn —u)— N(07V)7 [DL

where V is a singular matrix such that

(G- gpv(E-3) -

2 2
and
ul(lful) —UqU2 —UrUp
—UqUy w(l-uw) ... —UpUL
C= . . _ . : (7)
—UuuL —UpU v U (l—w)

Proof. SinceZ, 1 = Zn+ (6ny1—2Zn)/(n+1), takingeni1 = 8n1 — Xn, We obtain

1
Zn+l Zn + ? [(xn Zn) + £n+l]
1 (8

R
:Zn"’n_'_l[( —1)Zn+ €ny1+ Brials

where

_ b | WA
Bri1= T T sZ”(Tn 1) o(n?), as foranyp < 1. (9)
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Therefore{Z,} fits a Robbins-Monro scheme that satisfies conditions (C1)—(C3ikh=
(R /s—1)x. LetP be the transformation matrix of the real canonical Jordan for(Rofs—1).
We can takd! as the first row oP because it is a left eigenvector associated to the eigenvalue

1 of R/s. ConsiderP := (15) Then, asl'Z, = 1, 1!, = 0 andl'g, = 0, we have from (8)
that the proceséZ,} := {PZ,} satisfies

~ ~ 1 — . ~
Zny1=2n+ P [IZn + &nt1+ Brral, (10)

+1

o3 9) (). oh(3)

Observe that the ODE associated to the scheme (¥3}i3x and, from the assumptions, all

the eigenvalues of are negative. So that, 0 is a globally asymptotically stable point for the
ODE. We invoke Theorem 5.2.3 in [3] to conclude ttﬁiﬁ} converges a.s. tBu= 0. And,
then,Z, — u, a.s. On the other hand, observe that from (5) we deduce{that u, a.s. So

that, if C, := E[engl, | #n_1), then it is easy to check th@, — C, a.s., where€ is as in (7).

As all the extra-diagonal components-e€ are positive, it follows from Theorem 2.6 in [8]

that 0 is a simple eigenvalue of C and the rest of eigenvalues have real part strictly positive.

Then, let
0 O
PCP = (o 6> :

it follows thatC is positive definite. Moreover, we have tiat %I is a stable matrix. From the
previous discussion it follows that the conditions in Theorem 1 in [7] hold for the recurrence
scheme (10), and then

where

\m(zn) - N(Oa Z),
wherez is the unique solution of the Lyapunov equation:
J+inz+z 3 +in=-C (11)

From the relations betweéty andZ,, the result follows with

t
vzpl(g 2)Ph. O

83. Applications
3.1. Application 1: A clinical trial

The randomized Play-The-Winner rule, introduced in [9], and its modifications have been
popular adaptive designs used in clinical trials (see, for instance, [6]). This rule is imple-
mented by using a randomized urn model that contains balls of two types (say, type 1 and
type 2). Each type is associated with a treatment. When a patient arrives, a ball is drawn.
The patient receives the treatment associated with the ball type, i, and the ball is replaced in
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the urn. It is assumed that the patient gives an immediate and dichotomous response. If the
treatment is successfi, balls of typei anda balls of the other type are added into the urn.
Otherwise o balls of typei andf balls of the other type are added into the urn. It is assumed
that8 ando are non-negative integer numbers such fhat « > 0, so that

()

Let p; be the probability of treatmembeing a success=1, 2, andg, = 1— p;. Let{X,} =
{(Xn1, Xn2) } be the stochastic process that represents the proportions of balls of each type in
the urn at then-th stage of the experiment. It is well-known (see [9]) that

ap2+ Baz
a(pr+p2) +B(a+a)’

In this example, the processgs, } and{W,} are not the same. Note that treatment 1 can be
rewarded, (that is, action 1 can be applied) even if treatment 2 has been applied. The process
{Z,} represents the proportion of times that we have applied each action (replacement) and
the procesgWy } represents the proportion of times that we have applied each treatment. As
oni = 1 if treatment has been applied, we can write

Xln — Uy = (12)

P(6n1 = 1| Zn_1) = p1Xn1 + GXn2, P(0n2 = 1| Fn_1) = i Xn1 + P2Xn2.

And therefore

G(x) = <qpi g;) x:=Bx X =(xg,X).

As (A1)—(A3) hold, the procesgX, } follows a Robbins-Monro scheme and conditions (C1)—
(C3) hold. Note thaF (x) = Ax, where

A= (RB—(a+p)l)= (%%qltaaplzl ﬁ[gé;’“ap&) : (13)

From (12) we know thak, — u, a.s., and it is easy to check thati= 0. Then, from
Theorem 1 it follows that

02+ (p1—O2)ur
Z Bu= .
n— = @me—mwg

From Corollary 3.1 in [2], it can be proved that, iB2- (o — B)(p1+ p2) > 1/2, then
v/nNs(X, —u) — N(O,V). Therefore, applying Theorem 1 and Remak 1 we have that

VN(Zy = G(u)) = N(O, (a+B)(R) *'VR™), [D].

3.2. Application 2: Rotations in fringe-balanced binary trees

Rotation is a heuristic that reduces height and path in order to improve the speed of retrieval
in a binary search tree. In [4], a generalized P6lya urn model is proposed to model rotations.
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Three types of nodes are distinguished. When a node of type 3 is drawn, a rotation is made.
The replacement matrix is
-2 1 2
R=14 -1 -2].
4 -1 -2

In [4] the asymptotic behaviour of the proportion of times that a node of type 3 has been
extracted is also obtained using martingale techniques. Studying this model in the setting of
this paper, we note th&(x) = x, so thatz, = W, for eachn, and we can apply Theorem 2.

The a.s. limit for the procesZ, } isu= (4/7,1/7,2/7), and the central limit theorem is:

12/637 —4/637 —8/637
VN(Zo—u) — N (o, (—4/637 62/637 —58/637) ) .
—8/637 —58/637 66637

The (singular) covariance matrix has been obtained following the procedure stated in the
proof of Theorem 2. First, as= 1, we computd® andJ such thaP~1JP=R — | (whereJ
is the real canonical Jordan form@f— I). We obtain:

1 1 1 0 0 O
P=|881/1079 -749/688 —749/688 and J=(0 -7 0 ].
0 —1047/727 14021947 0 0 -1
We compute the matric€sandC:
12 -4 -8
C:4—19 -4 6 -2 and, then, 6:;(3 2)
-8 -2 10
As the matrixJ + %I is stable, we obtain the unique solutibrof (11):

s = /Ow exp((J+1/2)x)Cexp((J +1/2)'x) dx= (8/317 4;)9> .

And finally, we obtain the matri¥ stated above.
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