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PHI-DIVERGENCE TEST STATISTICS IN

MULTINOMIAL SAMPLING FOR HIERARCHICAL

SEQUENCES OF LOGLINEAR MODELS WITH

LINEAR CONSTRAINTS

Nirian Martín and Leandro Pardo

Abstract. We consider nested sequences of hierarchical loglinear models when expected
frequencies are subject to linear constraints and we study the problem of finding the model
in the the nested sequence that is able to explain more clearly the given data. It will be
necessary to give a method to estimate the parameters of the loglinear models and also a
procedure to choose the best model among the models considered in the nested sequence
under study. These two problems will be solved using theφ -divergence measures. We
estimate the unknown parameters using the minimumφ -divergence estimator (Martín
and Pardo [8]) which can be considered as a generalization of the maximum likelihood
estimator (Haber and Brown [5]) and we consider aφ -divergence test statistic (Martín [7])
that generalize the likelihood ratio test as well as the chi-square test statistic, for testing
two nested loglinear models.
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§1. Introduction

Loglinear models define a multiplicative structure on the expected cell frequencies of a con-
tingency table. We shall assume that we havek cells (if k = I × J we get a two-way contin-
gency table) and we denote them byC1, . . . ,Ck. Given a random sampleY1,Y2, . . . ,Yn with
realizations fromY = {C1, . . . ,Ck} we denote bŷp = (p̂1, . . . , p̂k)

T with

p̂ j =
Nj

n
and Nj =

n

∑
i=1

I{Cj} (Yi) , j = 1, . . . ,k. (1)

Assuming multinomial sampling and denoting byp j(θθθ 0) = Pr(Cj), j = 1, . . . ,k, the statistic
(N1, . . . ,Nk) is obviously sufficient for the statistical model under consideration and is multi-
nomially distributed with parametersn andp(θθθ 0) = (p1(θθθ 0), . . . , pk(θθθ 0)). We shall denote,

mj(θθθ 0)≡ E (Nj) = npj(θθθ 0), j = 1, . . . ,k, (2)

andm(θθθ 0) = (m1(θθθ 0), . . . ,mk(θθθ 0))
T .
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Given ak× (t +1) matrixX and rank(X) = t +1, the set

C(X) = {logm(θθθ) ∈ Rk : logm(θθθ) = Xθθθ , θθθ ∈ Rt+1} (3)

represents the class of the loglinear models associated withX. We suppose, in the following,

thatJ =
(

1, . . .(k . . . ,1
)T
∈C(X). Taking into account (2), the parameter space is defined by

Θ′ = {θθθ ∈Rt+1 : logm(θθθ) = Xθθθ and JTm(θθθ) = n}. Now in addition to the previous model
we shall assume that we haver−1 < t linear constrains defined by

CTm(θθθ) = d∗, (4)

whereC andd∗ arek×(r−1) and(r−1)×1 matrices, respectively. If we consider the linear
constraintJTm(θθθ) = n, associated to the multinomial sampling, we can write the parameter
space for this new model by

Θ∗ = {θθθ ∈ Rt+1 : logm(θθθ) = Xθθθ and LTm(θθθ) = d},

whereL = (J,C), d =
(
n,(d∗)T

)T
and rank(L) = rank(LT ,d) = r.

The problem that has motivated our research involves a nested sequence of hypotheses

Hl : p = p(θθθ), θθθ ∈Θ(l)
0 , l = 1, . . . ,m, m≤ t < k−1, (5)

whereΘ(1)
0 ⊃Θ(2)

0 ⊃ ·· · ⊃Θ(m)
0 with dim(Θ(l)

0 ) = tl +1, rank(L l ) = r l , l = 1, . . . ,m, such that

tl+1≤ tl and r l+1≥ r l , l = 1, . . . ,m−1, (6)

where at least one of both inequalities is a strict inequality. In this framework, there is an
integerm∗ (1≤m∗ ≤m) for whichHm∗ is true butHm∗+1 is not true. A common strategy for
making inference onm∗ (e.g., Cressie and Read [2, p. 42]) is to test successively,

HNull : Hl+1 againstHAlt : Hl , l = 1, . . . ,m−1, (7)

where we continue to test as long as the null hypothesis is accepted, and we inferm∗ to be
the firstl for whichHl+1 is rejected as a null hypothesis. The full operating characteristics of
this sequence of tests of nested hypotheses are not known. Our goal in this paper is to present
φ -divergence test statistics for testing a sequence of nested hypotheses as given in (5).

§2. Minimum φ -divergence estimator

Since the parameter values in{Θ(l)
0 : l = 1, . . . ,m} are generally unknown, most tests require

their estimation. In this context the maximum likelihood estimator, under the linear constrains
given in (4) is defined by

θ̂θθ
(r)

= arg max
θθθ∈Θ∗

hT
θθθ ,
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wherehT = (n∗)T X andn∗ is an observation from(N1, . . . ,Nk). It is a simple exercise to

establish that equivalentlŷθθθ
(r)

can be defined by

θ̂θθ
(r)

= arg min
θθθ∈Θ∗

DKullback(p̂,p(θθθ)) , (8)

whereDKullback(p̂,p(θθθ)) is the Kullback-Leibler (see Kullback [6]) divergence between the
probability vectorŝp andp(θθθ),

DKullback(p̂,p(θθθ)) =
k

∑
j=1

p̂ j log
p̂ j

p j(θθθ)
.

The definition (8) hints at a much more general inference framework based on divergence
measures, which was investigated by Martín and Pardo [8]. In the next several paragraphs,
we give the essential details of the framework for estimation and hypothesis testing there.

Consider theφ−divergence defined by Csiszár [3] and Ali and Silvey [1]

Dφ (p,q)≡
k

∑
j=1

q jφ

(
p j

q j

)
, φ ∈Φ∗, (9)

whereΦ∗ is the class of all convex functionsφ (x), x > 0, such that atx = 1, φ(1) = 0,
φ ′′(1) > 0, and atx= 0, 0φ(0/0) = 0 and 0φ(p/0) = p limu→∞ φ(u)/u. For everyφ ∈Φ∗ that
is differentiable atx = 1, the functionψ (x)≡ φ (x)−φ ′ (1)(x−1) also belongs toΦ∗. Then
we haveDψ (p,q) = Dφ (p,q), andψ has the additional property thatψ ′ (1) = 0. Because
the two divergence measures are equivalent, we can consider the setΦ∗ to be equivalent to
the setΦ≡Φ∗∩{φ : φ ′ (1) = 0}. In what follows, we give our theoretical results forφ ∈Φ,
but we often apply them to choices of functions inΦ∗. For more details aboutφ -divergences
see Pardo[10].

Based in (8) and (9), in the cited paper of Martín and Pardo, was considered the mini-
mumφ -divergence estimator in loglinear models when we have some linear constraints and

multinomial sampling,̂θθθ
(r)
φ , is given by

θ̂θθ
(r)
φ = arg min

θθθ∈Θ∗
Dφ (p̂,p(θθθ)). (10)

In the next section we shall use this estimator to define a family of test statistics for testing
the nested hypotheses{Hl : l = 1, . . . ,m} given in (5).

§3. Phi-divergence test statistics

In this section for testing nested hypotheses{Hl : l = 1, . . . ,m} given in (5), we test

HNull : Hl+1 againstHAlt : Hl , l = 1, . . . ,m−1,

using the family of test statistics

T(l)
φ1,φ2

=
2n

φ ′′1 (1)
Dφ1

(
p
(
θ̂θθ

(r),φ2
l

)
,p
(
θ̂θθ

(r),φ2
l+1

))
, (11)



304 Nirian Martín and Leandro Pardo

whereθ̂θθ
(r),φ2
l andθ̂θθ

(r),φ2
l+1 are defined by (10). WhenT(l)

φ1,φ2
> c, we rejectHNull in (7), wherec

is specified so that the size of the test isα:

Pr
(
T(l)

φ1,φ2
> c

∣∣ Hl+1
)

= α, α ∈ (0,1) . (12)

In the next theorem we establish that, underHNull : Hl+1, the test statisticT(l)
φ1,φ2

converges
in distribution to a chi-squared distribution withtl − tl+1− r l + r l+1 degrees of freedom
(χ2

tl−tl+1−r l +r l+1
), l = 1, . . . ,m− 1. Thus,c could be chosen as the(1−α)-th quantile of

a χ2
tl−tl+1−r l +r l+1

distribution,

c = χ
2
tl−tl+1−r l +r l+1

(1−α) , (13)

where Pr(χ2
f ≤ χ2

f (p)) = p. Notice that, whenφ1 (x) = φ2 (x) = xlogx− x+ 1, we obtain

the usual likelihood-ratio test, and that, whenφ1 (x) = 1
2 (x−1)2 andφ2 = xlogx−x+1, we

obtain the Pearson test statistic (e.g. Haber and Brown [5]).

Theorem 1. Suppose that data(N1, . . . ,Nk) are multinomially distributed according to the
loglinear model (3). Consider the nested sequence of hypotheses given in (5) and (6). Choose
functionsφ1 and φ2 ∈ Φ. Then for testing HNull : Hl+1 against HAlt : Hl , the asymptotic

null distribution of theφ -divergence test statistic T(l)
φ1,φ2

is a chi-squared distribution with
tl − tl+1− r l + r l+1 degrees of freedom.

Proof. Based on Theorem 2 in Martín and Pardo [8], it is not difficult to establish that

√
n

(
p
(

θ̂θθ
(r),φ2
i

)
−p(θθθ 0)

)
= Ri
√

n(p̂−p(θθθ 0))+oP(1),

with Ri = Dp(θθθ0)X iH i(θθθ 0)XT
i , i = l , l +1, where

H i(θθθ 0) = (XT
i Dp(θθθ0)X i)−1− (XT

i Dp(θθθ0)X i)−1XT
i Dp(θθθ0)L i

×
(

LT
i Dp(θθθ0)X i (XT

i Dp(θθθ0)X i)−1XT
i Dp(θθθ0)L i

)−1

×LT
i Dp(θθθ0)X i (XT

i Dp(θθθ0)X i)−1, i = l , l +1.

Therefore,T(l)
φ1,φ2

= ZT
l Z l+oP(1), being

Z l = D−1/2
p(θθθ0)

√
n

(
p
(

θ̂θθ
(r),φ2
l

)
−p
(

θ̂θθ
(r),φ2
l+1

))
= D−1/2

p(θθθ0)

√
n

(
p
(

θ̂θθ
(r),φ2
l

)
−p(θθθ 0)

)
−D−1/2

p(θθθ0)

√
n

(
p
(

θ̂θθ
(r),φ2
l+1

)
−p(θθθ 0)

)
= D−1/2

p(θθθ0)(Rl −Rl+1)
√

n(p̂−p(θθθ 0))+oP(1).

The asymptotic distribution of theφ -divergence test statistic (11) will be a chi-squared iff

the matrixΣΣΣZl = D−1/2
p(θθθ0)(Rl −Rl+1)ΣΣΣp(θθθ0)(Rl −Rl+1)TD−1/2

p(θθθ0), where the matrixΣΣΣp(θθθ0) =
Dp(θθθ0)−p(θθθ 0)p(θθθ 0)T is idempotent and symmetric.
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It is clear that

RiΣΣΣp(θθθ0) = Dp(θθθ0)X iH i(θθθ 0)XT
i

(
Dp(θθθ0)−p(θθθ 0)p(θθθ 0)T)

= Dp(θθθ0)X iH i(θθθ 0)XT
i Dp(θθθ0), i = l , l +1,

andK i = D−1/2
p(θθθ0)RiD

1/2
p(θθθ0) = D1/2

p(θθθ0)X iH i(θθθ 0)XT
i D1/2

p(θθθ0) is a symmetric matrix. Therefore to

establish thatΣΣΣZl = (K l −K l+1)(K l −K l+1) is an idempotent matrix will be enough to see
thatK l −K l+1 is an idempotent matrix (ΣΣΣZl = K l −K l+1). We establish that

i) K iK i = K i , i = l , l +1,

ii) K l K l+1 = K l+1.

Part i) follows becauseH i(θθθ 0)XT
i Dp(θθθ0)X iH i(θθθ 0) = H i(θθθ 0), i = l , l + 1. Part ii) follows

taking into account thatX l+1 is a submatrix ofX l . There exists a matrixB such thatX l+1 =
X l B and

X l H l (θθθ 0)XT
l Dp(θθθ0)X l+1 = X l B−X l

(
XT

l Dp(θθθ0)X l

)−1
XT

l Dp(θθθ0)L l

×
(

LT
l Dp(θθθ0)X l

(
XT

l Dp(θθθ0)X l

)−1
XT

l Dp(θθθ0)L l

)−1

×LT
l Dp(θθθ0)X l B.

Multiplying on the right side byH l+1(θθθ 0), the last term is zero becauseL l is a submatrix of
L l+1 andH l+1(θθθ 0)Bl+1(θθθ 0) = 0(tl+1+1)×r l+1

, therefore,LT
l Dp(θθθ0)X l BH l+1(θθθ 0) = 0r l×(tl +1).

The degrees of freedom ofT(l)
φ1,φ2

coincides with the trace of the matrixΣΣΣZl . It is not
difficult to establish that

tr(K i) = t i +1− r i , i = l , l +1,

therefore
tr(K l −K l+1) = tl − tl+1− r l + r l+1.

To test the nested sequence of hypotheses{Hl : l = 1, . . . ,m} referred previously, we need

an asymptotic independence result for the sequence of test statisticsT(1)
φ1,φ2

, T(2)
φ1,φ2

, . . . ,T(m∗)
φ1,φ2

,
wherem∗ is the integer 1≤m∗ ≤m for which Hm∗ is true butHm∗+1 is not true. This result
is given in the theorem below.

Theorem 2. Suppose that data(N1, . . . ,Nk) are multinomially distributed according to the
loglinear model (3). We first test HNull : Hl against HAlt : Hl−1, followed by HNull : Hl+1 against

HAlt : Hl . Then, under the hypothesis Hl+1, the statistics T(l−1)
φ1,φ2

and T(l)
φ1,φ2

are asymptotically
independent.

Proof. The statisticT(l)
φ1,φ2

can be written in the way,

T(l)
φ1,φ2

=
√

n(p̂−p(θθθ 0))
T MT

l M l
√

n(p̂−p(θθθ 0))+oP(1), (14)
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where

M l = D−1/2
p(θθθ0) (Rl −Rl+1) and Ri = Dp(θθθ0)X iH i(θθθ 0)XT

i , i = l , l +1.

Similarly,

T(l−1)
φ1,φ2

=
√

n(p̂−p(θθθ 0))
T MT

l−1M l−1
√

n(p̂−p(θθθ 0))+oP(1).

By Theorem 4 in Searle [11], the quadratic formsT(l)
φ1,φ2

andT(l−1)
φ1,φ2

are asymptotically inde-

pendent ifMT
l M lΣΣΣp(θθθ0)MT

l−1M l−1 = 0k×k. We have

MT
l M lΣΣΣp(θθθ0)M

T
l−1M l−1 = MT

l D−1/2
p(θθθ0)(Rl −Rl+1)ΣΣΣp(θθθ0)(Rl−1−Rl )D

−1/2
p(θθθ0)M

T
l−1,

and sinceH l (θθθ 0)Rl (θθθ 0) = 0(tl +1)×r l
, we haveMT

l M lΣΣΣp(θθθ0)MT
l−1M l−1 = 0k×k, because,

M lΣΣΣp(θθθ0)M
T
l−1 = K l −K l+1K l−1−K l +K l+1K l = 0k×k.

In general, theoretical results for the test statisticT(l)
φ1,φ2

under alternative hypotheses are
not easy to obtain. An exception to this is when there is a contiguous sequence of alternatives
that approach the null hypothesisHl+1 at the rate ofO

(
n−1/2

)
.

Consider the multinomial probability vector

pn≡ p(θθθ 0)+
s√
n
, θθθ 0 ∈Θl+1 and θθθ 0 unknown, (15)

wheres≡ (s1, . . . ,sk)
T is a fixedk×1 vector such that∑k

j=1sj = 0, andn is the total-count
parameter of the multinomial distribution. Asn→ ∞, the sequence of multinomial proba-
bilities {pn}n∈N converges to a multinomial probability inHl+1 at the rate ofO

(
n−1/2

)
. We

call
Hl+1,n : pn = p(θθθ 0)+

s√
n
, θθθ 0 ∈Θl+1 and θθθ 0 unknown, (16)

a sequence ofcontiguous alternative hypotheses, here contiguous to the null hypothesisHl+1.

Now consider testingHNull : Hl+1 againstHAlt : Hl+1,n, using the test statisticT(l)
φ1,φ2

given

by (11). The power of this test isπ(l)
n ≡ Pr

(
T(l)

φ1,φ2
> c

∣∣ Hl+1,n
)
. In what is to follow, we

show that under the alternativeHl+1,n, and asn→ ∞, T(l)
φ1,φ2

converges in distribution to a
non-central chi-squared random variable with non-centrality parameterµ, whereµ is given
in Theorem3, andtl − tl+1− r l + r l+1 degrees of freedom

(
χ2

tl−tl+1−r l +r l+1,µ

)
. Consequently,

asn→ ∞,
π

(l)
n → Pr

(
χ

2
tl−tl+1−r l +r l+1,µ > c

)
. (17)

Theorem 3. Suppose that(N1, . . . ,Nk) is multinomially distributed according to the loglinear

model (3). The asymptotic distribution of the statistic T(l)
φ1,φ2

, under the contiguous alternative
hypotheses (16), is chi-squared with tl−tl+1−r l +r l+1 degrees of freedom and non-centrality
parameter

µ = sT (X l H l (θθθ 0)XT
l −X l+1H l+1(θθθ 0)XT

l+1

)
s.
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Proof. By (14), we haveT(l)
φ1,φ2

= ZT
l Z l+oP(1), where

Z l = D−1/2
p(θθθ0) (Rl −Rl+1)

√
n(p̂−p(θθθ 0)) = (K l −K l+1)D−1/2

p(θθθ0)

√
n(p̂−p(θθθ 0))

andZ l
L−−−→

n→∞
N
(

µµµ
(l)
s ,ΣΣΣ(l)

s

)
, being

µµµ
(l)
s = D−1/2

p(θθθ0) (Rl −Rl+1)s= (K l −K l+1)D−1/2
p(θθθ0)s

and
ΣΣΣ(l)

s = D−1/2
ppp(θθθ0) (Rl −Rl+1)ΣΣΣp(θθθ0) (Rl −Rl+1)D−1/2

p(θθθ0) = K l −K l+1.

The matrixΣΣΣ(l)
s (see i) and ii) in the previous theorem) is idempotent and symmetric and its

trace istl − tl+1− r l + r l+1.

We apply a lemma by Ferguson (cf. [4, p. 63]): “Suppose thatZ l is N (µµµ(l)
s ,ΣΣΣ(l)

s ).
If ΣΣΣ(l)

s is idempotent andΣΣΣ(l)
s µµµ

(l)
s = µµµ

(l)
s , the distribution ofZT

l Z l is noncentral chi-square

with degrees of freedom equal to rank of the matrixΣΣΣ(l)
s and noncentrality parameterµ =

(µµµ(l)
s )Tµµµ

(l)
s ”. Therefore, the result follows if we establish thatΣΣΣ(l)

s µµµ
(l)
s = µµµ

(l)
s . Applying that

K l −K l+1 is an idempotent matrix, we have

ΣΣΣ(l)
s µµµ

(l)
s = (K l −K l+1)(K l −K l+1)D−1/2

p(θθθ0)s= (K l −K l+1)D−1/2
p(θθθ0)s.

Now we are going to get the noncentrality parameter,

(µµµ(l)
s )T

µµµ
(l)
s = sT (X l H l (θθθ 0)XT

l −X l+1H l+1(θθθ 0)XT
l+1

)
s.

Now the result follows.

Remark1. Theorem 3 can be used to obtain an approximation to the power function of (7),
as follows. Write

p
(

θ̂
(r),φ2
l

)
= p

(
θ̂

(r),φ2
l+1

)
+

1√
n

(√
n
(

p
(

θ̂
(r),φ2
l

)
−p
(

θ̂
(r),φ2
l+1

)))
and definepn≡ p

(
θ̂

(r),φ2
l+1

)
+ 1√

ns, where

s=
√

n
(

p
(

θ̂
(r),φ2
l

)
−p
(

θ̂
(r),φ2
l+1

))
.

Then substitutes into the definition ofµ and, finally,µ into the right side of (17).
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