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NONLINEAR STABILITY NEAR A 1: 3
RESONANCE

V. Lanchares and A. I. Pascual

Abstract. In this paper we investigate the evolution of the stability domain for a two
degrees of freedom Hamiltonian system near a 1:3 resonance. In this way, it is proven that
the lost of stability takes place when the size of the stability domain goes to zero. In fact,
away of the 1:3 resonance, there always exists a stability domain which size diminishes
as we approach the exact value of the resonance.
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§1. Introduction

The question of nonlinear stability of equilibrium positions in Hamiltonian systems is a clas-
sical one, and it is an important piece in the study of problems arising in different scientific
branches, such as Classical Mechanics, Celestial Mechanics, Atomic Physics, etc. This prob-
lem is trivial for one degree of freedom Hamiltonian systems but it turns to be intricate for
more degrees of freedom. In this paper we focus in two degrees of freedom Hamiltonian
systems.

The starting point in the study of the stability consists of an expansion of the Hamiltonian
function around the equilibrium position (we suppose, without loss of generality, the origin).
We write

H = H2 +H3 + · · · ,

where eachHi is a homogeneous polynomial of degreei in coordinates and momenta. In
some cases, it is possible to deduce the stability or instability character from the analysis
of the eigenvalues of the quadratic term. In this way, if at least one of the eigenvalues has
nonzero real part, then the equilibrium position is nonlinear unstable. On the other hand, if
all eigenvalues are pure imaginary, the corresponding linear system is semisimple and the
quadratic formH2 sign defined, Dirichlet’s theorem [12] ensures nonlinear stability. Other-
wise, the study of the linear approximation is not sufficient to deduce the nonlinear stability
and specialized theorems, based on KAM theory, are required.

In this paper we study the general elliptic case which is characterized by the existence of
four different pure imaginary eigenvalues when the quadratic term is an undefined form. If
we denote the eigenvalues±iω1,±iω2 with ω1, ω2 > 0 andω1 6= ω2, the quadratic part can
be written as

H2 = ω1Ψ1−ω2Ψ2,

whereΨ1,Ψ2 stand for the Poincaré variables.
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All known results are based on the Birkhoff’s normal form [2] associated to the Hamil-
tonian. However, the normal form depends on the rational dependence of the frequenciesω1

andω2. In this sense we give the following definition.

Definition 1. We say thatω1 andω2 satisfy a resonance condition of orders if there existn
andm relatively prime integers such that

nω1−mω2 = 0, n+m= s.

This resonance is calledn:m resonance.

In absence of resonances, Arnold’s theorem [1, 10] assures the stability in the majority of
the situations. For the resonant cases, Markeev [9] and Sokolsky [13, 14] established suitable
theorems for particular resonances. These results were generalized by Cabral and Meyer [3],
Elipe et al. [7, 8] and Pascual [11] for any order of the resonance for non degenerate cases. In
particular, for the 1:3 resonance, the following stability criterion was established by Markeev
[9].

Theorem 1. Let us consider a Hamiltonian system under a 1:3 resonance whose normal
form is written in terms of the Poincaré variables as

H = 3ω2Ψ1−ω2Ψ2 +δΨ1/2
1 Ψ3/2

2 cos(ψ1 +3ψ2)+
1
2
(AΨ2

1 +2BΨ1Ψ2 +CΨ2
2)+H ,

whereH = H (Ψ1,Ψ2,ψ1,ψ2) = O((Ψ1 +Ψ2)5/2). If we denote D= A+6B+9C, then, if
6
√

3|δ |> |D|, the equilibrium is unstable and, if6
√

3|δ |< |D|, the equilibrium is stable.

Taking into account Theorem 1, it is possible to deduce the stability of the equilibrium
position, except for the case|D| = 6

√
3|δ | that is a degenerate one. Anyway, we observe

that both stability or instability are likely to happen. However, if we move away from the
resonance, Arnold’s theorem ensures the stability for the equilibrium position. The natural
question arising is how the transition between stability, outside the resonance, and instability,
when 6

√
3|δ |> |D| in the exact 1:3 resonance, takes place. To give an appropriate answer to

this question it is better to follow a geometrical approach. In this way, the geometric stability
criterion given by Elipe et al. [8] and Pascual [11] will help us to this purpose.

§2. Geometric criterion

The geometric criterion is based on the structure of the reduced phase space after the normal-
ization procedure. To this end, extended Lissajous variables [4, 5, 6] are preferable.

2.1. Extended Lissajous variables

Extended Lissajous variables constitute a set of variables suitable to handle resonant cases.
Usually they are denoted by(φ1,φ2,Φ1,Φ2), and for an:m resonance, they are given in terms
of Poincaré variables by

f : T2×{Φ1 > 0}×{|Φ2| ≤Φ1} 7→ R4

(φ1,φ2,Φ1,Φ2) 7→ (ψ1,ψ2,Ψ1,Ψ2)
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Ψ1 =
Φ1 +Φ2

2m
, ψ1 = m(φ1 +φ2),

Ψ2 =
Φ1−Φ2

2n
, ψ2 = n(φ1−φ2).

In this set of variables, the quadratic term of the normal form reduces to

H2 = ωΦ2,

where
ω =

ω1

m
=

ω2

n
.

Now, H2 is a formal integral of the normalized system and the normalization turns to be an
average procedure because the Poisson’s bracket is

(H2,H j) = ω
∂H j

∂φ2
.

It can be seen that every term in the normal form can be written as a function of the so
called invariants, we denote by(C,S,M1,M2). In terms of the extended Lissajous variables,
they are given by

M1 =
1
2

Φ1, C = 2−(m+n)/2(Φ1−Φ2)m/2(Φ1 +Φ2)n/2cos2nmφ1,

M2 =
1
2

Φ2, S= 2−(m+n)/2(Φ1−Φ2)m/2(Φ1 +Φ2)n/2sin2nmφ1,

where we highlight thatM2 is a formal integral. Using invariants, each term of the normal
form can be expressed as

H j = ∑
2(γ1+γ2)+(n+m)(γ3+γ4)= j

aγ1γ2γ3γ4Mγ1
1 Mγ2

2 Cγ3Sγ4.

2.2. The reduced phase space

The invariants are not independent and they satisfy the equation

C2 +S2 = (M1 +M2)n(M1−M2)m, (1)

together with the restriction
M1≥ |M2|. (2)

Note that the reduced phase space is given by the equation (1) and the restriction (2). SinceM2

is a constant, (1) is a surface of revolution with a vertex in the pointM1 = |M2|,C= S= 0. We
can see in Figure 1 the different situations for the reduced phase space for the 1:3 resonance
depending on the value ofM2.
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Figure 1: The reduced phase space of the 1:3 resonance forM2 = 0, M2 > 0 andM2 < 0
respectively.

2.3. The geometric criterion

Once the reduced phase space is determined, it is possible to know the flow of the normalized
system, when it is truncated to a prescribed order. Indeed, the flow results as the intersec-
tion of the normalized Hamiltonian function with the surface defined by (1). Based on this
consideration, the following stability result can be established (for more details, see [8, 11]).

Theorem 2. Let us assume that the Hamiltonian is normalized up to a certain order N≥ s,
beingHN the first term that does not vanish for M2 = 0. Let us consider the two surfaces

G1 = {(C,S,M1) ∈ R3;HN(C,S,M1,0) = 0},

and
G2 = {(C,S,M1) ∈ R3;C2 +S2 = Ms

1}.

If the origin is an isolated intersection point ofG1 andG2, then it is stable. If they intersect
each other transversely, then the origin is unstable.

§3. The 1:3 resonance

For the case of the 1:3 resonance, the normal form must be computed up to order 4. Without
loss of generality, it is expressed in terms of the invariants as

H4 = a4M2
1 +a2M1M2 + γS.

Now, the two surfacesG1 andG2 are given by

G1 = {(C,S,M1) ∈ R3 ; a4M2
1 + γS= 0},

and
G2 = {(C,S,M1) ∈ R3 ; C2 +S2 = M4

1}.



Nonlinear stability near a 1: 3 resonance 141

0.5 1 1.5 2 2.5 3

-15

-10

-5

5

10

S

G2

M 1

G1

G1

Figure 2: SurfacesG1 andG2 projected onto the planeC = 0 in two cases: stable (not dashed
line) and unstable (dashed line).

Figure 3: Orbits (and projections) in stable and unstable case respectively whenM2 = 0.

These two surfaces has the origin as the unique common point ifa2
4−γ2 > 0 and they intersect

transversely ifa2
4− γ2 < 0 as we can see in Figure 2. Therefore, the first case corresponds to

a stable situation whereas the second belongs to an unstable situation.
In Figure 3 we show the orbits in the reduced phase space and the respective projection

onto the planeM1 = 0 in both cases (stable and unstable) whenM2 = 0.

§4. Near the 1:3 resonance

In order to see how the instability takes place when passing from a stable configuration near
the 1:3 resonance, we introduce a suitable detunning parameterε. In this way, we write

ω1 = 3ω2 + ε,
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Figure 4: SurfacesG1 andG2 projected onto the planeC = 0 in two cases: stable (left) and
unstable (right) for different values ofε (ε → 0).

whereε � 1 is chosen to be of the appropriate order, in this caseO(M1).
Under this assumption, the quadratic term in the expansion of the Hamiltonian around the

equilibrium position becomes

H2 = 2ω2M2 +
2ε

3
(M1 +M2).

Due to the fact thatε = O(M1) we can regard2ε

3 (M1+M2) as a perturbation and consider
the problem as a perturbed Hamiltonian system under 1:3 resonance. Now,H4 in the normal
form expresses as

H4 = a4M2
1 +a2M1M2 + γS+

2ε

3
(M1 +M2),

where we have taken into account thatε = O(M1).
We note that the reduced phase space is the same corresponding to the 1:3 resonance, that

is, it is given by (1) and (2). However, the surfaceG1 in Theorem 2 is written now as

G1 = {(C,S,M1) ∈ R3 ; a4M2
1 + γS+

2ε

3
M1 = 0}.

It is worth to note thatG1 andG2 have the origin as an isolated intersection point if it is verified
thata2

4− γ2 > 0, whereas they intersect transversely ifa2
4− γ2 < 0. These are, precisely, the

conditions for stability or instability in the resonant case (ε = 0). In Figure 4 we can see
several projections of the intersection onto the planeC = 0 for several values ofε close to 0.

Whena2
4− γ2 > 0, there is only one equilibrium point and all orbits in the surface of

revolutionM2 = 0 are bounded surrounding the vertex. Whena2
4− γ2 < 0, it is worth to

note that the orbits in the surfaceM2 = 0 evolve from a stability (out of the 1:3 resonance) to
instability condition (in the 1:3 resonance). This evolution can be seen in Figure 5. Near the
1:3 resonance, there always exists a stability domain which size is reduced as we approach
the exact value of the resonance. The lost of stability takes place when the size of the stability
domain goes to zero.
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Figure 5: Evolution of the stability domain whena2
4− γ2 < 0.

§5. Conclusions

Arnold’s Theorem guarantees the stability of the origin in most situations when the frequen-
cies of the system are not in resonance. In the particular case of the 1:3 resonance, Markeev’s
Theorem gives the conditions for stability or instability. These conditions also can be de-
duced from a geometric criterion. The advantage of the geometric criterion is that it allows
to show how the stable situation, away the resonance, turns into instability for the resonant
situation. This is because the stability domain shrinks and it disappears at the resonance when
the parameters satisfy the instability condition.
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