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POSITIVITY-PRESERVING AND

ENTROPY-DECAYING IMEX METHODS

Inmaculada Higueras and Teo Roldán

Abstract. Ordinary differential equations containing additive terms with different stiff-
ness properties may arise when some time dependent partial differential equations are
discretized in space. IMEX Runge-Kutta methods are suitable to treat this kind of prob-
lems. Sometimes the solutions to these problems have qualitative properties (norm, en-
ergy, entropy, total variation, positivity, etc) that represent important physical features of
the problem. In this case, in order to preserve the physical meaning of the numerical
solution, it is important to maintain these properties with both the spatial discretization
and the time stepping method. IMEX Runge-Kutta methods methods can preserve some
qualitative properties of the exact solution under certain stepsize restrictions. In this paper
we review some results concerned to these preserving properties and show how they can
be used for some problems.
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§1. Introduction

In this paper we consider the numerical integration of additive Initial Value Problems (IVP)
of the form 

d
dt

u(t) = f (u(t))+ f̃ (u(t)), t ≥ t0,

u(t0) = u0,

(1)

where f and f̃ are Lipschitz continuous functions fromRm to Rm with different stiffness
properties. We assume that the IPV has unique solutionu : [t0,∞]→ Rm for each(t0,u0) ∈
R1+m. These kind of problems may arise from semi-discretizations of some evolutionary
partial differential equations (PDEs) by method of lines (MOL). In such case the functionsf
and f̃ often correspond to the spatial discretization of different type terms of the given PDE
(e. g. advection and diffusion [1, 2, 11, 15]).

We are interested in problems where there exists a norm or a seminorm or an entropy
function such that the solution satisfies the following monotonicity property

‖u(t)‖ ≤ ‖u(t0)‖ , ∀t ≥ t0. (2)

This question has already been considered by several authors (cf. [11, 12, 16, 17, 18, 19]).
We are also interested in systems whose solutions are non-negative, i. e.,

u0≥ 0 ⇒ u(t)≥ 0, ∀t ≥ t0, (3)
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where the vector inequalities must be understood component-wise. For example, problems
whose solutions are concentrations or densities of chemical species, must satisty this property.
These systems are usually called positive systems ([3, 5, 10]).

Norm monotonicity (2) and positiviy (3) are related to other monotonicity properties,
such as maximum principles or total variation diminishing ([4, 6, 11, 13, 16, 17, 18, 19]). In
order to obtain properties (2) and (3) for the solution, some conditions must be imposed on
the functionsf and f̃ . In this paper we assume that( f , f̃ ,‖·‖) satisfy

‖y+ τ f (y)‖ ≤ ‖y‖ ,
∥∥y+ τ̃ f̃ (y)

∥∥≤ ‖y‖ ∀ y∈ Rm, (4)

for some fixedτ, τ̃ > 0. In such case, it can be proved that the solution of the problem satisfies
the monotonicity property (2). We denote this class of problems byF (τ, τ̃).

We also assume that

y+σ f (y)≥ 0, y+ σ̃ f̃ (y)≥ 0 ∀ y∈ Rm, y≥ 0, (5)

for some fixedσ , σ̃ > 0. In such case, the solution of the problem satisfies (3). We denote
this class of positive problems byF+(σ , σ̃).

When f and f̃ have different stiffness properties, a common way to solve numerically
the IVP (1) is by means of Additive Runge-Kutta (ARK) methods. Ans-stage ARK method
(A, Ã) is defined by two(s+1)× (s+1) real matrices

A =
(

A 0
bt 0

)
, Ã =

( ˜A 0
b̃t 0

)
,

whereA and ˜A ares×s matrices, andb, b̃∈ Rs. The numerical solutionun+1 ≈ u(tn +∆t)
from un≈ u(tn) is given by

un+1 = un +∆t
s

∑
i=1

bi f (Un,i)+∆t
s

∑
i=1

b̃i f̃ (Un,i),

where the internal stagesUn,i are given by

Un,i = un +∆t
s

∑
j=1

ai j f (Un, j)+∆t
s

∑
j=1

ãi j f̃ (Un, j). (6)

The matricesA andÃ are chosen so that the problem (1) is integrated efficiently. If, for
instance,f corresponds to the convection term, andf̃ corresponds to the diffusion term, then
a suitable way to proceed consists in using an explicit method forf and an implicit one for̃f .
ARK methods combining implicit and explicit schemes are usually called IMplicit-EXplicit
(IMEX) Runge-Kutta methods ([1], [15]). Many IMEX Runge-Kutta methods satisfyA e=

˜A e, wheree denotes the vector with all ones. In this way, the abscissae of the method
ci = ∑s

j=1ai j and c̃i = ∑s
j=1 ãi j , i = 1, . . . ,s, coincide. This property simplifies to a great

extent the form of the order conditions of the method.
The internal stagesUn,i approximate the exact solutionu(t) at t = tn + ci∆t. For many

methods it holds thatci ≥ 0, and thereforetn+ci∆t ≥ tn. Consequently, a natural monotonicity
requirement for both the internal stages and the numerical solution is

‖Un,i‖ ≤ ‖un‖ , i = 1, . . . ,s, ‖un+1‖ ≤ ‖un‖ , (7)
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for all n≥ 0, probably under a stepsize restriction∆t ≤ ∆tmax. In some contexts methods pre-
serving this property (7) are called strong stability preserving (SSP) methods ([6], [7], [17]).
In the same way, if the solution satisfies the positivity condition (3), a natural requirement for
the numerical solution is

Un,i ≥ 0, i = 1, . . . ,s, un+1≥ 0, (8)

for all n≥ 0, probably under a stepsize restriction∆t ≤ ∆tmax.
The aim of this paper is to show how ARK methods must be used in order to preserve

monotonicity and positivity properties of the problem (1). The rest of the paper is organized as
follows. In §2 we review some results concerned to monotonicity and positivity properties. In
§3, we show three ARK methods. Two of these methods are used in §4, where the numerical
experiments confirm the results in §2.

§2. Monotonicity and positivity for ARK methods

Positivity and other monotonicity properties for Runge-Kutta methods have been studied by
different authors ([11], [12], [18]). In this context the concept of radius of absolute mono-
tonicity plays an important role. This concept was extended to ARK methods in [7].

Definition 1. [7] An s-stage ARK method(A, Ã) is said to be absolutely monotonic (a.m.)
at a given point(ξ , ξ̃ ) ∈ R2 if the matrixI −ξA− ξ̃ Ã is regular and

(I −ξA− ξ̃ Ã)−1A≥ 0,

(I −ξA− ξ̃ Ã)−1 Ã≥ 0,

(I −ξA− ξ̃ Ã)−1e≥ 0.

The additive method is said to be a.m. on a given setΩ ∈ R2 if it is a.m. at each point
(ξ , ξ̃ ) ∈ R2. The region of absolute monotonicity, denoted byR(A, Ã), is defined by

R(A, Ã) =
{

(r, r̃)
∣∣ r ≥ 0, r̃ ≥ 0 and(A, Ã) is a.m. on[−r,0]× [−r̃,0]

}
. (9)

For more details see [7].

Remark1. For Runge-Kutta methods the radius of absolute monotonicity is defined by

R(A) = sup{ r | r ≥ 0 andA is absolutely monotonic on[−r,0]}.

The analogous concept for ARK methods is the curve of absolute monotonicity∂R(A, Ã),
defined now by the frontier of the regionR(A, Ã) in (9), excluding the coordinate axis.

In the following Theorem from [7], monotonicity for an ARK method is ensured under
certain stepsize restrictions.

Theorem 1. Consider the IVP(1) with ( f , f̃ )∈F (τ, τ̃). Assume that the ARK method(A, Ã)
is a.m. at(−r,−r̃). Then for

∆t ≤ r τ, ∆t ≤ r̃ τ̃,

the internal stages and the numerical solution satisfy the monotonicity inequalities(7).
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Sufficient conditions to obtain positivity for the numerical solution of the ARK method
are given in the following result.

Theorem 2 ([9]). Consider the IVP(1) with ( f , f̃ ) ∈F+(σ , σ̃). Let Un,1, . . . ,Un,s,un+1, be
the internal stages and the numerical solution obtained with the ARK method(A, Ã) from un,
with un ≥ 0. Assume too that for∆t ≤ H, the system(6) has a unique solution U= U(h,un)
that depends continuously on h and un. If the ARK method is a.m. at(−r,−r̃) with r σ , r̃ σ̃ ≤
H, then, for

∆t ≤ r σ , ∆t ≤ r̃ σ̃ ,

the internal stages and the numerical solution satisfy the positivity inequalities(8).

Observe that in order to have∆t > 0 in Theorems 1 and 2, we require that the region of
a.m. contains values(r, r̃) with r 6= 0, r̃ 6= 0. An algebraic criteria to check this condition
is given in [7]. We remark that the fact thatR(A) ≥ 0, R(Ã) ≥ 0 does not imply the above
condition as some coupling conditions between both methods are required.

§3. Some ARK methods

Depending on the shape of the region of absolute monotonicityR(A, Ã), sharper stepsize
restrictions may occur to maintain monotonicity for the ARK method. In order to have a
good monotone ARK method, the Runge-Kutta methodsA andÃ not only must have large
radious of a.m. but also they must be properly coupled. Next we show three ARK methods.
More details and more ARK methods can be viewed in [1, 7].

Example 1. Here we show the forward-backward Euler method padded as an IMEX method
[1, 7].

0 0 0

1 1 0

A 1 0

0 0 0

1 0 1

Ã 0 1

(10)

For this ARK method,R(A) = 1, R(Ã) = +∞ and the region of absolute monotonicity
R(A, Ã) is the biggest one: the cartesian product of[0,R(A)] and[0,R(Ã)]

R(A, Ã) =
{

(r, r̃)
∣∣ 0≤ r ≤ 1,0≤ r̃

}
.

In this case the two Runge-Kutta methods are perfectly coupled.

Example 2. IMEX order 2 method (Pareshi & Russo [15])

0 0 0 0
3
2

3
2 0 0

1 2
3

1
3 0

A 2
3

1
3 0

0 0 0 0
3
2

5
4

1
4 0

1 5
9

1
9

1
3

Ã 5
9

1
9

1
3

(11)
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For this ARK methodR(A) = 2/3, R(Ã) = 4/5 and

R(A, Ã) =
{

(r, r̃)
∣∣ 0≤ r ≤ 2

3
, 0≤ r̃ ≤ 2

5
(2−3r)

}
.

Observe that in this case, although the two Runge-Kutta methods are not perfectly coupled,
R(A, Ã) contents points(r, r̃) with r 6= 0, r̃ 6= 0. With this ARK method there may be stepsize
restrictions to get monotonicity or positivity due to the restriction on the absolute monotonic-
ity region.

Example 3. IMEX SSP2 (Pareshi & Russo [15])

0 0 0 0
1
2

1
2 0 0

1 1
2

1
2 0

A 1
3

1
3

1
3

1
4

1
4 0 0

1
4 0 1

4 0

1 1
3

1
3

1
3

Ã 1
3

1
3

1
3

(12)

For this method we haveR(A) = 2, R(Ã) = 12/5, but∂R(A, Ã) = (0,0) and consequently
this is not a good method for monotone problems.

§4. Numerical experiments

In order to check the results shown in section 2 we have considered two problems: the Broad-
well model, a hyperbolic system with relaxation studied in [2], and a chemical reaction in-
volving eight reactants.

4.1. Broadwell model

In this section we consider the Broadwell model, a simple velocity kinetic model for a two-
dimensional gas [2], and show how the above results can be used to obtain monotonicity for
the entropy function. The discrete model after an upwind semmidiscretization in space is as
follows

∂t f j +
f j − f j−1

∆x
=

1
ε

(
h2

j − f jg j
)
,

∂th j =−1
ε

(
h2

j − f jg j
)
, (13)

∂tg j −
g j+1−g j

∆x
=

1
ε

(
h2

j − f jg j
)
.

For the continuous problem there exists an entropy function

H (t) =
∫

f (x, t) log f (x, t)+2h(x, t) logh(x, t)+g(x, t) logg(x, t)dx,
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Figure 1: Broadwell model. Graph of the discrete entropy in logarithm scale.

that is monotonically decreasing. This monotonicity property is also preserved for the dis-
crete entropy

H∆x(t) = ∆x ∑
j

(
f j(t) log f j(t)+2h j(t) logh j(t)+g j(t) logg j(t)

)
,

correspondig to the semidiscrete problem (13).
We have integrated the equation (13) with the ARK method (11), considering periodic

boundary conditions. For this method, Theorem 1 guarantees monotonicity for the discrete
entropy function under the stepsize restriction

∆t ≤ 4∆xε

5K0 +6ε
. (14)

whereK0 is a constant which depends on the initial values. For details see [8]. In Figure 1
we show the discrete entropy in logarithm scale for∆t = 0.005, ∆x = 0.01 andε = 0.001,
according to (14).

4.2. HIRES problem

This problem may be displayed in the form (1) withu∈ R8, andt ≥ 0. The HIRES problem
originates from plant physiology and describes how light is involved in morphogenesis. The
solution of the problem is positive (ui(t)≥ 0, i = 1, . . . ,8). For details see [14].

The linear part of the problem has been considered asf and the non-linear part as̃f .
We have integrated this problem with the ARK methods (10) and (12), considering different
positive initial values. For example, foru0 = (1,0,0,0,0,57,0,57), the problem is in the set
F+(σ , σ̃) with σ = 0.0997 andσ̃ = 6.3·10−5.
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Theorem 2 applied to thegoodmethod guarantees positivity for the numerical solution
under the stepsize restriction

∆t ≤min(r σ , r̃ σ̃) = 0.0997.

We have confirmed this sufficient condition numerically. The stepsize restriction is not too
sharp as we have obtained positivity for the numerical solution for∆t ≤ ∆tnum≈ 0.191.

It is not possible to obtain a sufficient condition for method (12). In this case Theo-
rem 2 gives min(r σ , r̃ σ̃) = 0. As we expected for thebadmethod, there is a severe stepsize
restriction to obtain positivity. This is only possible for∆t ≤ ∆tnum≈ 2.4E−4.
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