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A GENERALIZATION OF THE GOMPERTZ

DIFFUSION MODEL: STATISTICAL INFERENCE

AND APPLICATION

R. Gutiérrez, A. Nafidi and R. Gutiérrez-Sánchez

Abstract. The aim of this work is to study a non-homogenous extension of the Gompertz
diffusion process (cf. [1], [8]), based on the fact that only the deceleration factor in the
drift is a time-dependent function (this version can be considered as a Gompertz diffusion
with exogenous factors). A particular case of this model has been considered (cf. [4])
in the study of the first passage time problem in the non-homogeneous diffusion process.
The proposed extended non-homogeneous model is studied by the methodology based
on Kolmogorov equations, whereas in [1, 8], the homogeneous process is studied by a
methodology using Ito’s equations. Firstly, we obtain the probability density function
(p.d.f.) of the process and its trend functions (non conditional and conditional). Then, the
statistical inference in the model is achieved, estimating the parameters by the maximum
likelihood method using discrete sampling, and obtaining the distributions of the resulting
estimators and the confidence intervals of the parameters. Finally, the proposed model is
applied to real data for electricity consumption in Morocco.
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§1. Introduction

In recent decades, various diffusion-type stochastic models have been developed, and these
have been successfully applied to the fitting and prediction of phenomena in diverse fields,
such as biology, physics, medicine, economics and finance. These models include stochastic
diffusion processes such as lognormal [5] and [16]; Bass [15]; Rayleigh [9]; Gompertz [8];
and Logistic [3]. From the point of view of stochastic differential equations, the homoge-
neous Gompertz stochastic diffusion process (SGDP) was introduced by Ricciardi [14] in a
theoretical form, and subsequently applied by Ferrante et al. [1] (growth of cancer cells) and
by Gutiérrez et al. [8] (consumption of natural gas in Spain). From the perspective of the
Kolmogorov equations, the model was defined by Nafidi [12] in a general form, and later
applied by Gutiérrez et al. [6] in a study of the stock of motor vehicles in Spain. The non-
homogeneous form of the process (with exogenous factors) has been addressed by Nafidi
[12] in a very general context. Later, Gutiérrez et al. [7, 10] studied the case in which only
the growth rate in the drift is affected by exogenous factors in a linear way, and applied this
both to the growth in the price of new housing in Spain and to the consumption of electricity
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in Morocco. Finally, Ferrante et al. [2] considered a non-homogeneous version in which the
growth rate is the sum of two exponential functions that are exogenous factors. The case in
which the deceleration factor is affected by exogenous factors has not been addressed to date,
and the study of a model with such a hypothesis is the prime concern of the present paper.

Thus, in the present article we discuss a non-homogeneous version of the Gompertz dif-
fusion process based on the fundamental fact that the deceleration coefficient is a function of
the time. The paper is structured as follows: firstly we obtain the p.d.f. of the process and its
trend functions (non conditional and conditional). Then, the statistical inference in the model
is addressed, estimating the parameters by the maximum likelihood method using discrete
sampling, and obtaining the distributions of the resulting estimators and the confidence inter-
vals of the parameters. Finally, a particular case of the proposed model is applied to the real
case of the electricity consumption in Morocco.

§2. A generalization of the SGDP

2.1. Formulation of the model

The homogeneous SGDP model has been studied by Ricciardi [14], by Ferrante et al. [1] and
by Gutiérrez et al. [8], and it is defined as the solution to Ito’s SDE:

dx(t) = (αx(t)−βx(t) log(x(t)))dt+σx(t)dw(t).

Theα constant is theintrinsic growth rate; theβ constant is thedeceleration factorand
theσ constant is thediffusion coefficient.

It is well known (see, for example [8]) that, by means of the transformy(t) = eβ t log(x),
the homogeneous SGDP can be transformed into a Wiener process. On the basis of this fact,
to define the required generalization of this process, let us consider the SDE in a general
form:

dx(t) = a(t,x(t))dt+σx(t)dw(t), t ∈ [t0,T],

and seek the condition that satisfies the drifta(t,x(t)) so that the above SDE is derived for
a Wiener-type process. For this purpose, let us consider a functiong(t) that is derivable in
[t0,T]. Then, by applying Ito’s formula to the transformy(t) = g(t) log(x) we obtain

dy(t) = g(t)
[

g′(t)
g(t)

log(x(t))+
a(t,x(t))

x(t)
− σ2

2

]
dt+σg(t)dw(t).

The condition fory(t) to be a Wiener process is that the right-hand term in the above SDE
should be a function that depends solely on the time, such that

g′(t)
g(t)

log(x(t))+
a(t,x(t))

x(t)
= k(t).

From this, we obtain a non-homogeneous version of the SGDP in the intrinsic growth rate
and in the deceleration factor:

dx(t) =
(

k(t)x(t)− g′(t)
g(t)

x(t) log(x(t))
)

dt+σx(t)dw(t).
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This latter model in the particular case in whichg′(t)
g(t) is constant has been studied by

Gutiérrez et al. [7, 10] (the case in whichk(t) is linear in the exogenous factors), and in
another particular case by Ferrante et al. [2] (the case in whichk(t) is the sum of two ex-
ponential functions as exogenous factors). In these studies, estimation of the parameters
requires the use of numerical approximation methods, and then it is not possible to deter-
mine, theoretically, the qualities of the estimators. In order to carry out a complete inferential
study (estimation, distribution of the estimators and confidence intervals), we shall here con-
centrate on the case in which only the deceleration parameter is dependent on the time, that is
k(t) = a∈ R. In this case, the generalization to be considered is the family of diffusion pro-
cesses{x(t), t ∈ [t0,T]} with values in(0,∞) and with infinitesimal moments that are given
by

A1(t,x) = ax(t)− g′(t)
g(t)

x(t) log(x(t)), A2(t,x) = σ
2x2(t). (1)

Remark1.

• If g(t) is constant, the process is lognormal homogeneous (Tintner et al. [16]).

• If g(t) = eβ t , the process is Gompertz homogeneous (Gutiérrez et al. [8] ).

• If g(t) = t, the process is Gompertz non-homogeneous (Gutiérrez et al. [4]).

2.2. The p.d.f. of the process

Let us takef (y, t | x,s) to denote the p.d.f. of the model being considered (1). This function
complies with the Kolmogorov equations, and so, for example, the forwards equation is:

∂ f
∂ t

=−∂ [a(t,y) f ]
∂y

+
1
2

∂ 2[b(t,y) f ]
∂y2 .

The infinitesimal moments of the process (1) fulfil the necessary and sufficient condition
of the theorem of Ricciardi [13] on the transformation of a diffusion process into a Wiener
process. The relevant transform in this case is as follows:

Φ(t) =
∫ t

g2(θ)dθ , Ψ(t,x) =
g(t)
σ

log(x)− a−σ2/2
σ

∫ t
g(θ)dθ .

Therefore, the p.d.f. of the resulting process is

f (y, t | x,s) =
[
2πσ

2
ν

2(s, t)
]1/2 1

y
exp

(
− [log(y)−µ(s, t,x)]2

2σ2ν2(s, t)

)
, (2)

which is the density of a lognormal distributionΛ1
(
µ(s, t,x),σ2ν2(s, t)

)
, with

µ(s, t,x) =
g(s)
g(t)

log(x)+
a−σ2/2

g(t)

∫ t

s
g(θ)dθ and ν

2(s, t) =
1

g2(t)

∫ t

s
g2(θ)dθ .
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2.3. Trends of the process

Taking into account that the random variablex(t) | x(s) = xs ∼ Λ1
(
µ(s, t,xs),σ2ν2(s, t)

)
and bearing in mind the properties of this distribution, the conditional trend function of the
process is

E(x(t) | x(s)) = exp

(
g(s)
g(t)

log(x(s)+
a−σ2/2

g(t)

∫ t

s
g(θ)dθ +

σ2

2g2(t)

∫ t

s
g2(θ)dθ

)
. (3)

Assuming the initial condition P(x(t1) = x1) = 1, the trend function of the process is

E(x(t)) = exp

(
g(t1)
g(t)

log(xt1)+
a−σ2/2

g(t)

∫ t

t1
g(θ)dθ +

σ2

2g2(t)

∫ t

t1
g2(θ)dθ

)
. (4)

2.4. Statistical inference in the model

2.4.1. Parameter estimation

Let us consider a discrete sample of the process(x1, . . . ,xn) at the instants of time(t1, . . . , tn),
under the initial condition P(x(t1) = x1) = 1, and let us assume, moreover, thatg(t) depends
solely on the time; the likelihood function associated with the process is then

L(x1, . . . ,xn,α,σ2) =
n

∏
j=2

f (x j , t j | x j−1, t j−1).

From (2), the above expression can be rewritten as

L(x1, . . . ,xn,α,γ) =
n

∏
j=2

[
2πσ

2
ν

2(t j−1, t j)
]1/2

× 1
x j

exp

(
−
[
log(x j)−µ(t j−1, t j ,x j−1)

]2
2σ2ν2(t j−1, t j)

)
.

In order to work with a known likelihood function and to calculate the estimators in the
simplest possible way, the discrete sampling is transformed as follows: forj = 2, . . . ,n,

u j =
ν
−1
j

g(t j)

∫ t j

t j−1

g(θ)dθ , v j = ν
−1
j

(
log(x j)−

g(t j−1)
g(t j)

log(x j−1)
)

.

and thus, the likelihood function can be written as

Lv2,...,vn(a,σ2) =
[
2πσ

2]−(n−1)/2
exp
(
− 1

2σ2 (v−aU′)′(v−aU′)
)
.

wherea= a−σ2/2,v = (v2, . . . ,vn)′, ν j = ν(t j−1, t j) andU = (u2, . . . ,un). By differentiating
the log-likelihood function with respect toa andσ2 and after some algebraic rearrangement,
the likelihood estimators yield

â = (UU′)−1UV, (5)

(n−1)σ̂2 = V′(In−1−U′(UU′)−1U)V. (6)
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2.4.2. Confidence intervals of the parameters

The distribution of the above estimators is

â∼N1
(
a,σ2(UU′)−1) and (n−1)σ̂2/σ

2∼ χ
2
n−2.

It can thus be shown that(â, σ̂2) are conjointly sufficient and complete for(a,σ2), and

so the estimatorŝa and (n−1)
n−2 σ̂2 are the UMVUE fora andσ2, respectively.

A (1-α)% confidence interval fora andσ2 are given respectively by[
â− σ̂ .tα/2,n−1/

√
n−1, â+ σ̂ .tα/2,n−1/

√
n−1

]
, (7)[

(n−1)σ̂2/χ
2
α/2,n−1,(n−1)σ̂2/χ

2
1−α/2,n−1

]
, (8)

whereχ2
α,n andtα,n are the upper 100α per cent points of the chi squared distribution and the

Student distribution, respectively, with n degrees of freedom.

§3. Application to electricity consumption in Morocco

The model examined in this study was applied to real data for the total consumption of elec-
tricity in Morocco (expressed in 109 Kwh) during the period 1980 to 2002 (including distribu-
tion and transport losses). These data correspond to sales by ONE, the Moroccan authority,
and can be consulted at [11]. The methodology can be summarised in the following two
phases:

• Step1: Use the first 20 data in the series of observations considered to estimate the
parameters of the model, using expressions (5) and (6). Then, determine the corre-
sponding confidence intervals using equations (7) and (8).

• Step2: For the years 2000, 2001 and 2002, predict the corresponding values for electric-
ity consumption in Morocco using the estimated trend function (ETF) and the estimated
conditional trend function (ECTF), obtained by replacing the parameters with their es-
timators in expressions (3) and (4), and compare the results with the corresponding
observed data for the same years.

A Matlab program was implemented to carry out the calculations required for this study.
Considering, for example, the functiong(t) = t−4, the values of the corresponding estimators
and the confidence intervals are:â = 0.061645 andσ̂2 = 1.793344.10−4 with confidence
intervals(0.055215;0.068076) and(1.037172;3.825685).10−4. Table 1 summarises the pre-
diction results, i.e. the observed data, the values predicted by ETF and ECTF and the lower
and upper limits of these functions, denoted by LL-ETF, UL-ETF and LL-ECTF and UL-
ECTF, respectively.

Figure 1 shows the fits and the predictions made using the ETF and the ECTF.
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Times Data ETF LL-ETF UL-ETF ECTF LL-ECTF UL-ECTF

2000 12.8380 12.9886 11.4420 14.7624 12.9599 12.8764 13.0448

2001 13.4520 13.7442 12.0327 15.7193 13.5852 13.4977 13.6741

2002 14.0850 14.5421 12.6526 16.7362 14.2336 14.1420 14.3268

Table 1: Forecasting based on ETF and ECTF
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Figure 1: Fits and predictions made using the ETF (above) and the ECTF (below)
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