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Abstract. We consider random variabl&g, n > 1, and their associated counting process
Nn of exceptional observations, such as record§-oecords. For most well know distri-
butions, martingale tools show their worth in dealing with questions such as the law of
large numbers and asymptotic normality.

Keywords:Extreme, record, martingale.
AMS classification60G70, 60G42.

81. Outstanding observations

Let {Xn, n > 1} be a sequence of real valued random variables. We sayghatan out-
standing observation if its value is exceptional, compared to previously observed ones. We
will adopt the generic name of record for these observations although it is normally used in
extreme value theory to designate values that are smallest or greatest.

Records can be identified by means of a sequence of indicgtgrs> 1}, with I, = 1 if
X is a record], = 0 otherwise, andh = 1 conventionally. Since, is declared exceptional
with respect to preceding ones, we assumel ttare adapted to the natural filtration of the
Xn, thatis, Iy € % = 0(Xg,..., %), forn > 1. TimesT, at which successive records appear
are called record times and are definediby= 1 andT, ;1 = min{k > T, | [k=1},n>1. On
the other hand, record values are definedgswheneveiT, is finite.

The theory of records studies the behavior of the three sequences introduced above,
namely indicators, record times and record values. Usual records (exceptionally large or
small observations) have been a very active subject of research in extreme value theory, with
interesting theoretical and applied results. See, for example, [1] and [17].

The notion of record can be further extended to random elements with values in par-
tially ordered sets, using the following natural definition. Observa¥grs a record if
Xq 2 X, forallk=1,... n—1.

1.1. Some examples
1.1.1. Strict records

This is by far the most studied case. Results have usually been obtained under the iid (in-
dependent and identically distributed) hypothesis and continuity of their common distribu-
tion F. The condition forX, to be a strict upper record ¥§, > Mp_1 := max{Xy,...,Xn-1}.

For lower records, it i < min{Xy,..., Xy-1}.
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1.1.2. Weak records

Weak record were introduced by Vervaat [19] in the context of integer valued random vari-
ables. Upper and lower weak records are obtained by relaxing the corresponding inequality of
strict records. For example, weak upper records sa¥sty M,_1. Of course, the definition
makes sense only if ties occur with positive probability.

1.1.3. k-records

An observatiork, is defined to be &-record if it has rank amongXz, Xo, ..., Xs. Interms of
indicators, the condition can we written 88 ; 1/x.>x,; = k. Note that the 1-record is simply
the strict upper record, while threrecord is the strict lower record.

1.1.4.6-records

The study of observations near the maximum or near-records, has attracted considerable at-
tention in recent years and several definitions have been proposed, see [12] and references
therein. A natural and tractable concept is thabakcord, defined as follows: for a fixed

0 € R, X, is said to be a (upper, additivéyrecord if X, > 6 + Mp_1. Is is also possible

to consider multiplicative versions, where the above condition is replace¢ byoM,_i.

These are calledeometric record#n a recent publication of Eliazar [8].

1.1.5. Multivariate records

Records have also been considered in a multivariate setting. However, there is no obvi-
ous way to extend the usual notion of record. Goldie and Resnick [9] introduce and dis-
cuss the merits of several plausible definitions. For example, supfyokask real com-
ponentsXn1,Xn2,..., Xk thenX, is defined to be a (upper) recordX§,; > My_1j =
max{Xyj,...,Xn-1j}, forall j=1,...k, or, if Xq ; > Mn_q j, for somej =1,.. k.

Another interesting multidimensional extension, related to maximal layers and Pareto
optima, was introduced by Devroye in [7]. Létbe a nonnegative and nondecreasing func-
tion on[0,1] andZ = (X,Y;), 1 <i < n, bivariate random variables distributed in the set
{(xy)|0<x<1, 0<y< f(x)}. Observatiory; is a defined to be a record¥f = max{Y; |
Xj < X}. Note that here the evefiZ; is record is not.% measurable. In fact, it depends on
the whole set of observations.

More generally along this line, Baryshnikov and Yukich [5] consider maximal points of a
finite set of random element®” = {Xy,..., Xy} C RY, related to a conk C RY. Observation
X; is said to be a record (maximal or Pareto optimal) if the ckire X; contains no other
points inZ". Thatis,K ® X N2 = 0. The collection of maximal points!(Z") is called
the maximal layer. These outstanding points appear in pattern classification, multi-criteria
decision theory, networks, etc.

1.1.6. Records on rooted trees

In the context of more exotic structures, S. Janson [13] introduces a definition of record on a
rooted tree. It is related to the cutting down of trees, which consists in randomly pruning the
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tree until only the root is left. Real random variabMsare attached to each vertexf the
tree. The valu&, is said to be a record if it is the largest (or smallest) value in the path from
the root tov.

82. Record rates

Among the many remarkable asymptotic properties of records, we focus in this paper on
record rates, which have to do with the asymptotic behavior of the counting process of
records. We will go into some details to show how martingale tools are useful in handling the
1-dimensional discrete case.

There are many applied instances where the counting process of record is relevant, espe-
cially in computer science. We can mention cost analysis of a simple sorting algorithm, best
choice problems, insurance claims, cost analysis of algorithms for computing the maximal
layer and cost analysis of skip lists.

The counting process of records associated to the seqyéficen > 1} is defined in
terms of the indicator$,, asN, = ¥ ;1. This definition applies to all forms of records
mentioned above but, it is important to note that in some instances, such as the maximal layer
model, the adaptability conditidp € .%, = 6(X1,...,X%a), n > 1, does not hold. The case of
rooted trees is different but it seems natural to deffipas the number of records in a trée
of heightn, for example.

The asymptotic analysis dfl; is usually limited to the classical LLN (Law of Large
Numbers) and the CLT (Central Limit Theorem). However, researchers in computer science
pay significant attention to momentsigf, obtaining very precise expansions with their tools
from singularity analysis of generating functions.

We shall take a brief look at some remarkable results before getting into the more detailed
analysis of the discrete case, which has nice features.

We begin with the simplest case of real iid random variallgsvith common continuous
distributionF. Renyi and Dwass established long ago that indicdtorslx -\, ,; of usual
(strict, upper) records are independent vitti,) = 1/n. The LLN and the CLT are therefore
readily obtained foN,: asn — oo,

Nh as Nn—logn p
-1 d ———— — N(0,1
logn an V/logn (0.1),

where-2 and 2% stand for convergence in distribution and almost sure, respectively.
An interesting and tractable departure from the iid continuous case is the Nevzorov-Yang
F% model. Observations are independent but egchas distributiorF %, whereoy, o, . ..
are positive constants aidis a fixed continuous distribution. As in the iid case, indicatgrs
of usual records are independent withl,) = an/ 31, &, and again, the LLN and the CLT
for N, are easily obtained. See [17] for detalls.
Another nice extension of the iid case is the sequence with linear {Pénd > 1}, de-
fined from an iid sequencgYy,n > 1} by X, =Y, +cn, with ¢ > 0. When the common
distributionF of theYy’s is continuous and(Y;") < , Ballerini and Resnick [4] have es-
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tablished the following: ag — oo,

Nn as /°° hd .
— = F(y+cj)F(dy).
2N

2.1. The iid discrete case, strict upper records

We consider a sequené&,,n > 1} of iid random variables, taking nonnegative integer val-
ues, and its associated sequence of (strict, upper) records. Tijat tyx,~m, ,}, N> 1. The
situation here is not as simple as in the continuous model since the independence property
of indicators is lost. The case of geometric random variables received considerable atten-
tion since the early 1990’s because of its connection with data structures known as skip lists.
Using singularity analysis, Prodinger [18] obtained results such as

! !
Et) = <_Iog(olgn p) Iog(lyf P) +;_5(_Iog(iwm>> o) o

wherepis the parameter of the geometric distributigiis Euler’s constant andlis a periodic
function. This type of expansion is still not available for other discrete models although the
first order was reported in Gouet et al. [11].

The following CLT is essentially contained in Vervaat's paper [19] and was much later
studied by Bai et al. [2] and by Gouet et al. [11], as a particular case of their martingale
approach (in this case the procéés— pM, is shown to be a martingale).

_ plogn D p(1-p)
(logn)+* (N”+ log(1— p)) —N (0’_Iog(1— p)> '

The LLN was reported in Gouet et al. [10] and rediscovered by Key [15].

Nn as P
logn log(1—p)’

Extensions of the LLN to other discrete distributions, are based on the following well-known
conditional Borel-Cantelli lemma.

Proposition 1. Let {l,, n> 1} be a sequence d0,1} valued random variables, adapted
to the sequence of increasingfields {.-7,, n > 1}. Then the event$y .1, < } and
{Snh>1E(In|-#n-1) < o} are a.s. equal and

Y )

S E(lk|Fk-1)
=]

onthe sefy -1 Iy = o}.
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When the result above is applied to the indicators of upper records, from iid random
variables with common distributioR, we obtainE(lp|-#n_1) = 1 — F(Mq_1), whereM, is
maximum ofXy, ..., X, and %, = 6(X1,...,Xn). If sup{x> 0| F(x) < 1} = oo, then it is
easily seen that the total number of records is infinite, so that (2) applies and we obtain

Nn a.s.

f — 1 (3)
> (1-F)(Mk-1)
k=1

Since 1- F is decreasing(1— F)(M_1) is in fact the minimum of iid random variables
Y1,...,Yk—1, whereY; = (1-F)(X]), j > 1 (Mo can be arbitrarily defined).

Fortunately, the asymptotic behavior of sums of partial minima of iid random variables
was studied long ago in contexts apparently not related to records. Deheuvels [6] gives
a very complete picture in terms of the LLN, the CLT and almost sure boundS,fer
SkenMin{Y1, ..., Yk}, where they,, k > 1, are nonnegative iid, with common distributiGn
It is interesting but perhaps not surprising to see that the growth r&eisfy ., G~ (1/k),
whereG™ (y) = inf{x| G(x) >y}, for 0 <y < 1, is the inverse of.

WhenF is continuous, th&; = (1—-F)(X;j), j > 1, are iid uniformly distributed if0, 1],
therefore the corresponding sum of minima has growth yate 1/k. This yields with (3),
Nn/logn 22 1, which is Renyi’s LLN. This proof is admittedly more complicated that the
original one based on the independence of the indicators. Once the continHitg aban-
doned the power of Proposition 1 is fully appreciated.

2.1.1. Strong laws for discrete models

Let us consider nonnegative, integer-valued iid random variafesith common distribu-
tion functionF. Forke Z.,, let px = P[Xn = k] > 0, yk = 1— F (k) andry = p«/Yk-1 = P[Xn =
Kl/P[Xn > K]. Let alsom, =min{j € Z; | y; < 1/n}.

It is shown in [10] that the sum of minima in the denominator of (3) has growth rate
essentially given by the cumulative discrete hazard function

Q(mn)z z k. 4)

This result implies the strong LLN for the number of strict recoMisin a wide class
of discrete models, including the geometric and Poisson distributions. For instance, when
limy_..rx =0 itis shown thab (m,) is asymptotically logarithmic and we have

Nn as
—
logn

)

as in the continuous case. The Zeta distribution, with= (k+1)~2/{(a), fork € Z, and
a> 1, is a classical example in this category.

Another important particular case, which includes the geometric and negative binomial
models, is when lin.. ry = > 0. The rate is again logarithmic and we have

Nn as r
logn —log(1—r)’
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Distributions with light tails (lim_. rx = 1) are harder to deal with. It is proved that if either
r, converges increasingly to 1 gre "k > 1, for a given constari and sufficiently largen,
it holds

Mo as g
ash — oo, with m, defined above. The Poisson model has increasing hazard rates so the result
applies. Lighter tails should yield fewer records and this is the situation here, whdras
growth rate logn/loglogn.
Expansions for moments &[N,] are appreciated in computer sciences. With a moderate
effort is shown in [11] that
E[N] = 6(mh) +0(by ),
whereb, is the normalizing sequence for the CLT. A general result but modest compared to
Prodinger’s expansion for the geometric distribution (1).

2.1.2. Asymptotic normality for discrete models

Building a martingale fronN,, which is amenable to the classical CLT analysis is not dif-
ficult. It suffices to subtract the conditional expectation friyrio obtain the martingale
Nn — Sk<n(1—F)(Mk_1), k> 1. However there is no obvious way to replace the centering
processy (1 —F)(Mk_1) by a deterministic sequence so the resulting CLT is not really
satisfactory.

Another less obvious square-integrable martingale was introduced in [11] as

N — 6(Mn). (5)

Such a simple martingale, which remained apparently unnoticed in the literature, is the ba-
sis of our analysis. It should be pointed out that Deheuvels’ CLT for sums of minima in
[6], although interesting, is of no use here. However, his weak LLN is still essential in our
strategy.

A few words about the martingale CLT are in order. The version of the theorem we
use depends on two conditions on the martingale, &«. The first is convergence of the
conditional variances process

1
022

N k<n

E[E2|Fica] — 1, 6)

and the second is the Lindeberg type hypothesis

1 P
8 2 L6 e | Fical =0, )

forall e > 0, where—"- denotes convergence in probability. Thgg., &k /bn D, N(0,1).
Checking (6) and (7) turns out to be related again to sum of minima. This is so because

E[E2| Fi-1) = Yi>m, 4 liYi is a decreasing function dfl,_; and this allows to write (6) as

sum of minima of iid random variables. Also, the sum in (7) can be bounded by sums of

minima so that Deheuvels’ weak convergence results are applicable. We have the general

result
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83. 5-records

The notion ofd-record is quite natural when one is interested in observations which are close
to being records. Counting such observations may be relevant, for instance, in insurance
applications. The study of observations near the maximum has drawn significant attention in
recent years. See for example [3], [14] and [16].

The formal definition of (upperd-records is as follows. Lal € R, an observatioX; is
called ad-record ifX, > Mn_1 + 6, that is, if it is greater than the previous maximum plus a
(negative or positive) fixed quantity. Fér< 0, every record is &-record, while ford > 0
thisis not the case. Usual records are obtained by takia® and, for integer-valued random
variables,0 = —1 yields weak records. We focus attention on the probgssounting the
number ofé-records among the firstobservations.

In the most favourable setting of iid random variables with continuous distribution, the
main difficulty is that independence of indicators and distribution-freeness are lost. However
the Borel-Cantelli type result of Proposition 1 is still useful and probably the simplest way to
deal with the LLN. For the CLT it is not readily seen what martingale could be used instead
of (5).

Another particular feature a¥-records, foré > 0, is thatN,, can have a finite limit even
though the support of is unbounded. As it will be seen below, well known light-tailed
distributions exhibit this behavior.

3.1. The iid integer valued case

We consider nonnegative, integer-valued iid random variaXes> 1 with common distri-
butionF. Therefore 6 takes only integer values. The notation is that of Subsection 2.1.1.

3.1.1. Strong laws

Proposition 1 is applied to translate the problem fridmto the sum of minimay (1 —
F)(My_1+ 8). Although we cannot expect to have results as general as for usual records, it
is a conservative guess to expect a growth ratéfoecords similar to (4), with some kind of
correction allowing for more or for lessrecords wher is negative or positive respectively.
It turns out to be

an= y Mn ©)

k<mn Yk

As with usual records, light-tailed distributiong (— 1) are more difficult to deal with. The
general result is as follows.

Theorem 3. If either
(&) 6 € Z andlimsupry < 1or
(b) & > 0, r¢ <ry,1, for all sufficiently large k andy— 1 or

(c) 8§ <0andl—[(1—ry)/(1—rk 1)]~% < ck ¢, for all sufficiently large k and constants
c>0ae(1/21).
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Theorem 2. If -o(1—rk) = o and if eitherlimsupr, < 1 or liminfr, > O then

No=8(M) 0, \01), (8)
bn
where f = S, Zdk/Yk and Z = Sk liVi.

When tails are light enough to mal§g..o(1—rg) < o, the martingalé\, — 6(Mp) con-
verges a.s. This fact can be shown to imply the following “tightness” propeiis —

My)/Cn 2.0, for any sequence, — , asn — o, See [11] for proofs.
For illustration, consider the following examples.

1. Converging hazard rategF— 0, with S, 12 < oo. (Zeta distribution).
(logn) Y2 (N, — logn) = N(0,1).

2. Converging hazard ratesrr, 0 <r < 1, with 3" ; |ri —r|/y/n — 0. (Geometric or
negative binomial distributions).

_ rlogn D r(l—r)
(ogm (N”+ log(l—r)> N (0’_Iog<1—r)> /

3. Alternating hazard rates.,k = pandry,1=0,0< p<q<1,k>0.

(p+q)logn D p(1-p)+q(l-q)
Iog(l—p)(l—q)) _>N<O’_ log(1— p)(1—q) )

(logn)~ Y2 (Nn i

4. Poisson distribution with parametér (ry — 1).

(loglogn) /2 (Ny — my + A log(my)) —2 N(0, 2),
with m,loglogn/logn — 1.

Remarkl. The results provided by Theorem 2 are quite complete. The only case not covered
is when hazard rateg have both 0 and 1 as accumulation points. Observe that unlike contin-
uous distributions, the CLT for integer random variables depends on the parent distribution
via the hazard rates. Moreover, for distribution with very light tajig.(5(1 —rx) < o) Ny is

not asymptotically normal.

2.1.3. The discrete Nevzorov-Yanfj model

When looking for tractable departures from the iid hypothesisFthenodel emerges as nat-

ural candidate. Up to the authors’ knowledge, the disdfétenodel has not received any
attention from researchers in extreme value theory. Concerning the behaiNgrelimi-

nary calculations show that a straightforward application of Proposition 1 leads to the analysis
of sum of minima for non iid random variables. No such extension of Deheuvels’ results is
yet available. In general, it appears that our martingale approach is not easily adaptable to
situations of nonstationary or dependent observations.
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Then
Nn a.s.
— = 1.

A few examples follow.

1. For the Zeta distribution, witly, = (k+1)~23/{(a), for k € Z, anda > 1, it can be
shown thatN,/logn 2s, 1, regardless of the value or sign®f

2. The geometric distribution, with = p(1— p)%, yk = (1— p)*** andry = p, fork > 0
andp e (0,1) yieldsN,/logn 2% —p(1—p)?/log(1— p).

3. The Poisson distribution. We recall that in this cagse~ 1 Furthermore, it can be
shown thaty,. 5 /yk is asymptotically equivalent toA /k)®. This means thalil, con-

verges a.s to a finite limit fo§ > 1. Otherwise, fos = 1, N,/logm, 2> A and, if
8 < 0,Np/mi3 22,26 /(1 §).

3.1.2. Asymptotic normality

Given the previous results on the LLN, it is reasonable to think that only minor changes in
the strategy of 2.1.2 are needed to work out a CLT&aecords. We will see that in fact,

the main ideas still apply but some difficulties and lengthy calculations are the prize to pay
for the greater generality. The first challenge is to properly generalize martingale (5). This is
done by introducing the concept 8fhazard rate as

_ Pr+-s _ P[Xl =k+ 5}
Yk-1 P[X1 > K

The process
Mn
Np— 6% (Mp) = Ny — Z)sk n>1, (10)
k=

is a square integrable martingale. Moreover, it is also cubic integrable depending on the sign
of 6 and asymptotic properties of thg This reinforced integrability is needed because we
have to replace the Lindeberg hypothesis (7) by the more tractable Lyapunov condition.

o 3 El&F1Fc] 2o (1)

N k<n

Evaluation of conditional expectations required to check either (6) or (11) is not a simple
task. And, to make matters worse, the process of conditional variances in (6) cannot always
be written as sums of minima, as required to use Deheuvels’ LLN. However, the following
general CLT is obtained. Versions for negative and posidivage presented separately; for
technical details and proofs, see [12].

Theorem 4. Letd <O0and z = Si-kS(Yits +Yiss-1— Yi-1)-
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(a) Iflimsuprg < 1, then
Nn — 6%(my)

TR0 A/ Yi
(b) Iflimry=21andlim(1—ry)/(1—r¢_1) =1, then

2. N(0, ). (12)

N (Mh)

h—0°

\/ Zﬂio(l— )2
In the following central limit theorem fod > 0, we restrict our attention to converging

k.

-2, N(0,1). (13)

Theorem 5. Let > O andlimy_.rx =1 € [0,1].
(a) Ifr <1then

No—6°(m) b
o /logn — N(0,1),
wherec? = —r(1—r)%((1—r)®*1 — (1428r)(1—r)% +1)/log(1—r) for r # 0 and

oo=1
(b) Ifr =1then, defininge= (1—ry) - (L—rrp5-1),
Nn — 6% (my)

\/ Tko&

wheneveiyp jec = . If 3P 6 < o then N, converges almost surely to a finite limit

2. N(0,),

Remark2. Observe that Theorem 5(a) is more restrictive than Theorem 4(a), concerning

the behavior of the failure rateg. This is because the process of conditional variances can
always be written as partial sums of minima only wher: 0. For positived we were able
to analyze the case of converging

On the other hand, comparing results of Theorem 4(b) and Theorem 5(b), on light-tailed
models, we find more generality in the positive case since we do not impose any condition

on the rate of convergence gfto 1. This is not surprising in view of the structure of te
with 1 —ry’s in the denominator whed is negative.

Remark3. Whend > 0, unlike the negative case, it is not guaranteed that the number of
d-records is infinite. Nevertheless, when this happens, this number is always asymptotically

normal in contrast to the situation of usual records, which can grow to infinity without having
a limiting normal distribution; see [11].

Examples of application of the above results to well-known distributions are given next.
1. Zeta distribution. 5
(logn)~Y2(N, — logn) — N(0,1).

Note that the normalizing sequences in this example do not depend on the vélue of
positive or negative.
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2. Geometric distribution. Fa¥ < 0,
(logn) ~*/2(Na+ pef logn logg) = N (0,—pef (¢ * +° — 1)/ loga) .
Foré = —1 (weak records)

(logn)~*2(Nn + (p/q) logn/logq) — N (0, (p/c?)/loga) .

For positived,
(logn) ~*/2(Nn+ pef logn/ loga) = N (0.—pef (¢ — (1+25p)q” + 1)/ logq) .

3. Paisson distribution. Faf < 0,
my /2 (Nn A8/ 5)) LN (0,123/(& 25)) .
Foré =1,
(loglogn)~/2(N, — A logmy,) — N(0, 1).
Finally, whend > 1, the number o6-records converges a.s. to a finite limit.

3.2. The iid continuous case

We consider nonnegative, iid random variabigsn > 1 with common continuous distribu-
tion F, such that sufx > 0| F(X) < 1} = ». Parameted can take any real value.

3.2.1. Strong laws

As mentioned at the beginning of Section 3, independence of indidatargl distribution-
freeness are lost but Proposition 1 is applicable. Hazard matesre a crucial element in our
analysis of the discrete case. In the continuous setting we have to turn to the classical hazard
measure. In order to simplify the presentation, we shall assume tisattrictly increasing in
R, with densityf, so that the hazard measure has density giveh(lsy= f(x)/(1—F(x)).

As in the discrete case, we have to find the growth ratg,0f,(1 — F)(Mx_1 +6). It
turns out to be the exact continuous analog of (9) and is given by

- / X+5)7L(x)d>g (14)

wherem, = (1—F)~(1/n).
WhenA (x) is bounded, it can be shown tret= O(logn). For example, the exponential
distribution with parameten has hazard raté(x) = u and the following strong LLN holds:

Nn/logn &S, gou,

Another interesting case is the Pareto distribution B(x) = (a/x)¥, x > a, k > 0, with
A(x) = k/x. The LLN for 5-records § positive or negative) i8l,/logn 251,
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The continuous analog of the “difficult” discrete cage— 1 is A(x) — . As before,
6 > 0 may lead to a finite number @&-records, and we don't have to look far to find an
example. Take the standard normal distributienUsing the well-known approximation for
the tail 1— ®(x) ~ ®'(x)/x, asx — oo, we find that, for anys > 0, N, converges a.s. to a
finite limit. However, foré = 0 (usual records) the rate bf, is logn, from Renyi’s classical
result. For negativé, we can only obtain a weak LLN from Deheuvels’ results, showing that

Ni p e %2
5
/2logn eﬁﬁ\/ZIogn 6

3.2.2. Asymptotic normality

The question of asymptotic normality férrecords in the continuous setting has not been
studied. However, a good starting point would be the process

Mn £ (x+ )

N“__o 1-F(x)

a martingale which is the continuous version of (10).
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