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ASYMPTOTIC RATES FOR RECORDS AND

δ -RECORDS

Raúl Gouet, F. Javier López and Gerardo Sanz

Abstract. We consider random variablesXn, n≥ 1, and their associated counting process
Nn of exceptional observations, such as records orδ -records. For most well know distri-
butions, martingale tools show their worth in dealing with questions such as the law of
large numbers and asymptotic normality.
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§1. Outstanding observations

Let {Xn, n≥ 1} be a sequence of real valued random variables. We say thatXn is an out-
standing observation if its value is exceptional, compared to previously observed ones. We
will adopt the generic name of record for these observations although it is normally used in
extreme value theory to designate values that are smallest or greatest.

Records can be identified by means of a sequence of indicators{In,n≥ 1}, with In = 1 if
Xn is a record,In = 0 otherwise, andI1 = 1 conventionally. SinceXn is declared exceptional
with respect to preceding ones, we assume theIn are adapted to the natural filtration of the
Xn, that is,In ∈Fn = σ(X1, . . . ,Xn), for n≥ 1. TimesTn at which successive records appear
are called record times and are defined byT1 = 1 andTn+1 = min{k > Tn | Ik = 1}, n≥ 1. On
the other hand, record values are defined asXTn, wheneverTn is finite.

The theory of records studies the behavior of the three sequences introduced above,
namely indicators, record times and record values. Usual records (exceptionally large or
small observations) have been a very active subject of research in extreme value theory, with
interesting theoretical and applied results. See, for example, [1] and [17].

The notion of record can be further extended to random elements with values in par-
tially ordered sets, using the following natural definition. ObservationXn is a record if
Xk 6≥ Xn, for all k = 1, . . . ,n−1.

1.1. Some examples

1.1.1. Strict records

This is by far the most studied case. Results have usually been obtained under the iid (in-
dependent and identically distributed) hypothesis and continuity of their common distribu-
tion F . The condition forXn to be a strict upper record isXn > Mn−1 := max{X1, . . . ,Xn−1}.
For lower records, it isXn < min{X1, . . . ,Xn−1}.
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1.1.2. Weak records

Weak record were introduced by Vervaat [19] in the context of integer valued random vari-
ables. Upper and lower weak records are obtained by relaxing the corresponding inequality of
strict records. For example, weak upper records satisfyXn ≥Mn−1. Of course, the definition
makes sense only if ties occur with positive probability.

1.1.3. k-records

An observationXn is defined to be ak-record if it has rankk amongX1,X2, . . . ,Xn. In terms of
indicators, the condition can we written as∑n

i=11{Xi≥Xn} = k. Note that the 1-record is simply
the strict upper record, while then-record is the strict lower record.

1.1.4.δ -records

The study of observations near the maximum or near-records, has attracted considerable at-
tention in recent years and several definitions have been proposed, see [12] and references
therein. A natural and tractable concept is that ofδ -record, defined as follows: for a fixed
δ ∈ R, Xn is said to be a (upper, additive)δ -record if Xn > δ + Mn−1. Is is also possible
to consider multiplicative versions, where the above condition is replaced byXn > δMn−1.
These are calledgeometric recordsin a recent publication of Eliazar [8].

1.1.5. Multivariate records

Records have also been considered in a multivariate setting. However, there is no obvi-
ous way to extend the usual notion of record. Goldie and Resnick [9] introduce and dis-
cuss the merits of several plausible definitions. For example, supposeXn hask real com-
ponentsXn,1,Xn,2, . . . ,Xn,k, then Xn is defined to be a (upper) record ifXn, j > Mn−1, j :=
max{X1, j , . . . ,Xn−1, j}, for all j = 1, . . .k, or, if Xn, j > Mn−1, j , for somej = 1, . . .k.

Another interesting multidimensional extension, related to maximal layers and Pareto
optima, was introduced by Devroye in [7]. Letf be a nonnegative and nondecreasing func-
tion on [0,1] andZi = (Xi ,Yi), 1≤ i ≤ n, bivariate random variables distributed in the set
{(x,y) | 0≤ x≤ 1, 0≤ y≤ f (x)}. ObservationZi is a defined to be a record ifYi = max{Yj |
Xj ≤ Xi}. Note that here the event{Zi is record} is notFi measurable. In fact, it depends on
the whole set of observations.

More generally along this line, Baryshnikov and Yukich [5] consider maximal points of a
finite set of random elementsX = {X1, . . . ,Xn}⊆Rd, related to a coneK ⊆Rd. Observation
Xi is said to be a record (maximal or Pareto optimal) if the coneK⊕Xi contains no other
points inX . That is,K⊕Xi ∩X = /0. The collection of maximal pointsM(X ) is called
the maximal layer. These outstanding points appear in pattern classification, multi-criteria
decision theory, networks, etc.

1.1.6. Records on rooted trees

In the context of more exotic structures, S. Janson [13] introduces a definition of record on a
rooted tree. It is related to the cutting down of trees, which consists in randomly pruning the
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tree until only the root is left. Real random variablesXv are attached to each vertexv of the
tree. The valueXv is said to be a record if it is the largest (or smallest) value in the path from
the root tov.

§2. Record rates

Among the many remarkable asymptotic properties of records, we focus in this paper on
record rates, which have to do with the asymptotic behavior of the counting process of
records. We will go into some details to show how martingale tools are useful in handling the
1-dimensional discrete case.

There are many applied instances where the counting process of record is relevant, espe-
cially in computer science. We can mention cost analysis of a simple sorting algorithm, best
choice problems, insurance claims, cost analysis of algorithms for computing the maximal
layer and cost analysis of skip lists.

The counting process of records associated to the sequence{Xn, n≥ 1} is defined in
terms of the indicatorsIn, asNn = ∑n

i=1 Ii . This definition applies to all forms of records
mentioned above but, it is important to note that in some instances, such as the maximal layer
model, the adaptability conditionIn ∈Fn = σ(X1, . . . ,Xn), n≥ 1, does not hold. The case of
rooted trees is different but it seems natural to defineNn as the number of records in a treeTn

of heightn, for example.
The asymptotic analysis ofNn is usually limited to the classical LLN (Law of Large

Numbers) and the CLT (Central Limit Theorem). However, researchers in computer science
pay significant attention to moments ofNn, obtaining very precise expansions with their tools
from singularity analysis of generating functions.

We shall take a brief look at some remarkable results before getting into the more detailed
analysis of the discrete case, which has nice features.

We begin with the simplest case of real iid random variablesXn, with common continuous
distributionF . Renyi and Dwass established long ago that indicatorsIn = 1{Xn>Mn−1} of usual
(strict, upper) records are independent withE(In) = 1/n. The LLN and the CLT are therefore
readily obtained forNn: asn→ ∞,

Nn

logn
a.s.−→ 1 and

Nn− logn√
logn

D−→ N(0,1),

where
D−→ and

a.s.−→ stand for convergence in distribution and almost sure, respectively.
An interesting and tractable departure from the iid continuous case is the Nevzorov-Yang

Fα model. Observations are independent but eachXn has distributionFαn, whereα1,α2, . . .
are positive constants andF is a fixed continuous distribution. As in the iid case, indicatorsIn
of usual records are independent withE(In) = αn/∑n

i=1 αi , and again, the LLN and the CLT
for Nn are easily obtained. See [17] for details.

Another nice extension of the iid case is the sequence with linear trend{Xn,n≥ 1}, de-
fined from an iid sequence{Yn,n≥ 1} by Xn = Yn + cn, with c > 0. When the common
distributionF of theYn’s is continuous andE(Y+

1 ) < ∞, Ballerini and Resnick [4] have es-
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tablished the following: asn→ ∞,

Nn

n
a.s.−→

∫ ∞

−∞

∞

∏
j=1

F(y+c j)F(dy).

2.1. The iid discrete case, strict upper records

We consider a sequence{Xn,n≥ 1} of iid random variables, taking nonnegative integer val-
ues, and its associated sequence of (strict, upper) records. That is,In = 1{Xn>Mn−1}, n≥ 1. The
situation here is not as simple as in the continuous model since the independence property
of indicators is lost. The case of geometric random variables received considerable atten-
tion since the early 1990’s because of its connection with data structures known as skip lists.
Using singularity analysis, Prodinger [18] obtained results such as

E(Nn) = p

(
− logn

log(1− p)
+

γ

log(1− p)
+

1
2
−δ

(
− logn

log(1− p)

))
+O

(1
n

)
, (1)

wherep is the parameter of the geometric distribution,γ is Euler’s constant andδ is a periodic
function. This type of expansion is still not available for other discrete models although the
first order was reported in Gouet et al. [11].

The following CLT is essentially contained in Vervaat’s paper [19] and was much later
studied by Bai et al. [2] and by Gouet et al. [11], as a particular case of their martingale
approach (in this case the processNn− pMn is shown to be a martingale).

(logn)−1/2
(

Nn +
plogn

log(1− p)

)
D−→ N

(
0,− p(1− p)

log(1− p)

)
.

The LLN was reported in Gouet et al. [10] and rediscovered by Key [15].

Nn

logn
a.s.−→− p

log(1− p)
.

Extensions of the LLN to other discrete distributions, are based on the following well-known
conditional Borel-Cantelli lemma.

Proposition 1. Let {In, n≥ 1} be a sequence of{0,1} valued random variables, adapted
to the sequence of increasingσ -fields{Fn, n≥ 1}. Then the events{∑n≥1 In < ∞} and
{∑n≥1E(In|Fn−1) < ∞} are a.s. equal and

n
∑

k=1
Ik

n
∑

k=1
E(Ik|Fk−1)

a.s.−→ 1, (2)

on the set{∑n≥1 In = ∞}.
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When the result above is applied to the indicators of upper records, from iid random
variables with common distributionF , we obtainE(In|Fn−1) = 1−F(Mn−1), whereMn is
maximum ofX1, . . . ,Xn andFn = σ(X1, . . . ,Xn). If sup{x≥ 0 | F(x) < 1} = ∞, then it is
easily seen that the total number of records is infinite, so that (2) applies and we obtain

Nn
n
∑

k=1
(1−F)(Mk−1)

a.s.−→ 1. (3)

Since 1−F is decreasing,(1−F)(Mk−1) is in fact the minimum of iid random variables
Y1, . . . ,Yk−1, whereYj = (1−F)(Xj), j ≥ 1 (M0 can be arbitrarily defined).

Fortunately, the asymptotic behavior of sums of partial minima of iid random variables
was studied long ago in contexts apparently not related to records. Deheuvels [6] gives
a very complete picture in terms of the LLN, the CLT and almost sure bounds forSn =
∑k≤nmin{Y1, . . . ,Yk}, where theYk, k≥ 1, are nonnegative iid, with common distributionG.
It is interesting but perhaps not surprising to see that the growth rate ofSn is ∑k≤nG−(1/k),
whereG−(y) = inf{x |G(x)≥ y}, for 0≤ y≤ 1, is the inverse ofG.

WhenF is continuous, theYj = (1−F)(Xj), j ≥ 1, are iid uniformly distributed in[0,1],
therefore the corresponding sum of minima has growth rate∑k≤n1/k. This yields with (3),

Nn/ logn
a.s.−→ 1, which is Renyi’s LLN. This proof is admittedly more complicated that the

original one based on the independence of the indicators. Once the continuity ofF is aban-
doned the power of Proposition 1 is fully appreciated.

2.1.1. Strong laws for discrete models

Let us consider nonnegative, integer-valued iid random variablesXn, with common distribu-
tion functionF . Fork∈Z+, let pk = P[Xn = k] > 0,yk = 1−F(k) andrk = pk/yk−1 = P[Xn =
k]/P[Xn≥ k]. Let alsomn = min{ j ∈ Z+ | y j < 1/n}.

It is shown in [10] that the sum of minima in the denominator of (3) has growth rate
essentially given by the cumulative discrete hazard function

θ(mn) = ∑
k≤mn

rk. (4)

This result implies the strong LLN for the number of strict recordsNn in a wide class
of discrete models, including the geometric and Poisson distributions. For instance, when
limk→∞ rk = 0 it is shown thatθ(mn) is asymptotically logarithmic and we have

Nn

logn
a.s.−→ 1,

as in the continuous case. The Zeta distribution, withpk = (k+1)−a/ζ (a), for k ∈ Z+ and
a > 1, is a classical example in this category.

Another important particular case, which includes the geometric and negative binomial
models, is when limk→∞ rk = r > 0. The rate is again logarithmic and we have

Nn

logn
a.s.−→ r
− log(1− r)

.
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Distributions with light tails (limk→∞ rk = 1) are harder to deal with. It is proved that if either
rk converges increasingly to 1 oryne−nK > 1, for a given constantK and sufficiently largen,
it holds

Nn

mn

a.s.−→ 1,

asn→∞, with mn defined above. The Poisson model has increasing hazard rates so the result
applies. Lighter tails should yield fewer records and this is the situation here, wheremn has
growth rate logn/ log logn.

Expansions for moments ofE[Nn] are appreciated in computer sciences. With a moderate
effort is shown in [11] that

E[Nn] = θ(mn)+o(b−1
n ),

wherebn is the normalizing sequence for the CLT. A general result but modest compared to
Prodinger’s expansion for the geometric distribution (1).

2.1.2. Asymptotic normality for discrete models

Building a martingale fromNn which is amenable to the classical CLT analysis is not dif-
ficult. It suffices to subtract the conditional expectation fromIn to obtain the martingale
Nn−∑k≤n(1−F)(Mk−1), k≥ 1. However there is no obvious way to replace the centering
process∑k≤n(1−F)(Mk−1) by a deterministic sequence so the resulting CLT is not really
satisfactory.

Another less obvious square-integrable martingale was introduced in [11] as

Nn−θ(Mn). (5)

Such a simple martingale, which remained apparently unnoticed in the literature, is the ba-
sis of our analysis. It should be pointed out that Deheuvels’ CLT for sums of minima in
[6], although interesting, is of no use here. However, his weak LLN is still essential in our
strategy.

A few words about the martingale CLT are in order. The version of the theorem we
use depends on two conditions on the martingale∑k≤n ξk. The first is convergence of the
conditional variances process

1
b2

n
∑
k≤n

E[ξ 2
k |Fk−1]

P−→ 1, (6)

and the second is the Lindeberg type hypothesis

1
b2

n
∑
k≤n

E[ξ 2
k 1{|ξk|>εbn}|Fk−1]

P−→ 0, (7)

for all ε > 0, where
P−→ denotes convergence in probability. Then∑k≤n ξk/bn

D−→ N(0,1).
Checking (6) and (7) turns out to be related again to sum of minima. This is so because

E[ξ 2
k |Fk−1] = ∑i>Mk−1

r iyi is a decreasing function ofMk−1 and this allows to write (6) as
sum of minima of iid random variables. Also, the sum in (7) can be bounded by sums of
minima so that Deheuvels’ weak convergence results are applicable. We have the general
result
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§3.δ -records

The notion ofδ -record is quite natural when one is interested in observations which are close
to being records. Counting such observations may be relevant, for instance, in insurance
applications. The study of observations near the maximum has drawn significant attention in
recent years. See for example [3], [14] and [16].

The formal definition of (upper)δ -records is as follows. Letδ ∈ R, an observationXn is
called aδ -record ifXn > Mn−1 +δ , that is, if it is greater than the previous maximum plus a
(negative or positive) fixed quantity. Forδ < 0, every record is aδ -record, while forδ > 0
this is not the case. Usual records are obtained by takingδ = 0 and, for integer-valued random
variables,δ = −1 yields weak records. We focus attention on the processNn counting the
number ofδ -records among the firstn observations.

In the most favourable setting of iid random variables with continuous distribution, the
main difficulty is that independence of indicators and distribution-freeness are lost. However
the Borel-Cantelli type result of Proposition 1 is still useful and probably the simplest way to
deal with the LLN. For the CLT it is not readily seen what martingale could be used instead
of (5).

Another particular feature ofδ -records, forδ > 0, is thatNn can have a finite limit even
though the support ofF is unbounded. As it will be seen below, well known light-tailed
distributions exhibit this behavior.

3.1. The iid integer valued case

We consider nonnegative, integer-valued iid random variablesXn,n≥ 1 with common distri-
butionF . Therefore,δ takes only integer values. The notation is that of Subsection 2.1.1.

3.1.1. Strong laws

Proposition 1 is applied to translate the problem fromNn to the sum of minima∑k≤n(1−
F)(Mk−1 + δ ). Although we cannot expect to have results as general as for usual records, it
is a conservative guess to expect a growth rate forδ -records similar to (4), with some kind of
correction allowing for more or for lessδ -records whenδ is negative or positive respectively.
It turns out to be

an = ∑
k≤mn

yk+δ

yk
rk. (9)

As with usual records, light-tailed distributions (rk→ 1) are more difficult to deal with. The
general result is as follows.

Theorem 3. If either

(a) δ ∈ Z and limsuprk < 1 or

(b) δ > 0, rk ≤ rk+1, for all sufficiently large k and rk→ 1 or

(c) δ < 0 and1− [(1− rk)/(1− rk−1)]−δ ≤ ck−α , for all sufficiently large k and constants
c > 0, α ∈ (1/2,1).
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Theorem 2. If ∑k≥0(1− rk) = ∞ and if eitherlimsuprk < 1 or liminf rk > 0 then

Nn−θ(mn)
bn

D−→ N(0,1), (8)

where b2n = ∑k≤mn zkrk/yk and zk = ∑i>k r iyi .

When tails are light enough to make∑k≥0(1− rk) < ∞, the martingaleNn−θ(Mn) con-
verges a.s. This fact can be shown to imply the following “tightness” property:(Nn−
mn)/cn

P−→ 0, for any sequencecn→ ∞, asn→ ∞. See [11] for proofs.
For illustration, consider the following examples.

1. Converging hazard rates rk→ 0, with ∑∞
k=1 r2

k < ∞. (Zeta distribution).

(logn)−1/2 (Nn− logn) D−→ N(0,1).

2. Converging hazard rates rk→ r, 0 < r < 1, with ∑n
i=1 |r i − r|/

√
n→ 0. (Geometric or

negative binomial distributions).

(logn)−1/2
(

Nn +
r logn

log(1− r)

)
D−→ N

(
0,− r(1− r)

log(1− r)

)
.

3. Alternating hazard rates. r2k = p andr2k+1 = q, 0< p < q < 1, k≥ 0.

(logn)−1/2
(

Nn +
(p+q) logn

log(1− p)(1−q)

)
D−→ N

(
0,− p(1− p)+q(1−q)

log(1− p)(1−q)

)
.

4. Poisson distribution with parameterλ (rk→ 1).

(log logn)−1/2 (Nn−mn +λ log(mn))
D−→ N(0,λ ),

with mn log logn/ logn→ 1.

Remark1. The results provided by Theorem 2 are quite complete. The only case not covered
is when hazard ratesrk have both 0 and 1 as accumulation points. Observe that unlike contin-
uous distributions, the CLT for integer random variables depends on the parent distributionF
via the hazard rates. Moreover, for distribution with very light tails (∑k≥0(1− rk) < ∞) Nn is
not asymptotically normal.

2.1.3. The discrete Nevzorov-Yang Fα model

When looking for tractable departures from the iid hypothesis, theFα model emerges as nat-
ural candidate. Up to the authors’ knowledge, the discreteFα model has not received any
attention from researchers in extreme value theory. Concerning the behavior ofNn, prelimi-
nary calculations show that a straightforward application of Proposition 1 leads to the analysis
of sum of minima for non iid random variables. No such extension of Deheuvels’ results is
yet available. In general, it appears that our martingale approach is not easily adaptable to
situations of nonstationary or dependent observations.
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Then
Nn

an

a.s.−→ 1.

A few examples follow.

1. For the Zeta distribution, withpk = (k+ 1)−a/ζ (a), for k ∈ Z+ anda > 1, it can be
shown thatNn/ logn

a.s.−→ 1, regardless of the value or sign ofδ .

2. The geometric distribution, withpk = p(1− p)k, yk = (1− p)k+1 andrk = p, for k≥ 0
andp∈ (0,1) yieldsNn/ logn

a.s.−→−p(1− p)δ / log(1− p).

3. The Poisson distribution. We recall that in this caserk → 1 Furthermore, it can be
shown thatyk+δ /yk is asymptotically equivalent to(λ/k)δ . This means thatNn con-
verges a.s to a finite limit forδ > 1. Otherwise, forδ = 1, Nn/ logmn

a.s.−→ λ and, if
δ < 0, Nn/m1−δ

n
a.s.−→ λ δ /(1−δ ).

3.1.2. Asymptotic normality

Given the previous results on the LLN, it is reasonable to think that only minor changes in
the strategy of 2.1.2 are needed to work out a CLT forδ -records. We will see that in fact,
the main ideas still apply but some difficulties and lengthy calculations are the prize to pay
for the greater generality. The first challenge is to properly generalize martingale (5). This is
done by introducing the concept ofδ -hazard rate as

sk =
pk+δ

yk−1
=

P[X1 = k+δ ]
P[X1≥ k]

.

The process

Nn−θ
δ (Mn)≡ Nn−

Mn

∑
k=0

sk, n≥ 1, (10)

is a square integrable martingale. Moreover, it is also cubic integrable depending on the sign
of δ and asymptotic properties of therk. This reinforced integrability is needed because we
have to replace the Lindeberg hypothesis (7) by the more tractable Lyapunov condition.

1
b3

n
∑
k≤n

E[|ξk|3|Fk−1]
P−→ 0. (11)

Evaluation of conditional expectations required to check either (6) or (11) is not a simple
task. And, to make matters worse, the process of conditional variances in (6) cannot always
be written as sums of minima, as required to use Deheuvels’ LLN. However, the following
general CLT is obtained. Versions for negative and positiveδ are presented separately; for
technical details and proofs, see [12].

Theorem 4. Let δ < 0 and zk = ∑i>k si(yi+δ +yi+δ−1−yi−1).
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(a) If limsuprk < 1, then
Nn−θ δ (mn)√

∑mn
k=0zkrk/yk

D−→ N(0,1). (12)

(b) If lim rk = 1 and lim(1− rk)/(1− rk−1) = 1, then

Nn−θ δ (mn)√
∑mn

k=0(1− rk)2δ

D−→ N(0,1). (13)

In the following central limit theorem forδ > 0, we restrict our attention to converging
rk.

Theorem 5. Let δ > 0 and limk→∞ rk = r ∈ [0,1].

(a) If r < 1 then
Nn−θ δ (mn)

σr
√

logn
D−→ N(0,1),

whereσ2
r =−r(1− r)δ ((1− r)δ+1− (1+2δ r)(1− r)δ +1)/ log(1− r) for r 6= 0 and

σ0 = 1.

(b) If r = 1 then, defining ek = (1− rk) · · ·(1− rk+δ−1),

Nn−θ δ (mn)√
∑mn

k=0ek

D−→ N(0,1),

whenever∑∞
k=0ek = ∞. If ∑∞

k=0ek < ∞ then Nn converges almost surely to a finite limit
.

Remark2. Observe that Theorem 5(a) is more restrictive than Theorem 4(a), concerning
the behavior of the failure ratesrk. This is because the process of conditional variances can
always be written as partial sums of minima only whenδ < 0. For positiveδ we were able
to analyze the case of convergingrk.

On the other hand, comparing results of Theorem 4(b) and Theorem 5(b), on light-tailed
models, we find more generality in the positive case since we do not impose any condition
on the rate of convergence ofrk to 1. This is not surprising in view of the structure of thesk,
with 1− rk’s in the denominator whenδ is negative.

Remark3. Whenδ > 0, unlike the negative case, it is not guaranteed that the number of
δ -records is infinite. Nevertheless, when this happens, this number is always asymptotically
normal in contrast to the situation of usual records, which can grow to infinity without having
a limiting normal distribution; see [11].

Examples of application of the above results to well-known distributions are given next.

1. Zeta distribution.
(logn)−1/2(Nn− logn) D−→ N(0,1).

Note that the normalizing sequences in this example do not depend on the value ofδ ,
positive or negative.
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2. Geometric distribution. Forδ < 0,

(logn)−1/2(Nn + pqδ logn/ logq) D−→ N
(

0,−pqδ (qδ+1 +qδ −1)/ logq
)

.

For δ =−1 (weak records)

(logn)−1/2(Nn +(p/q) logn/ logq) D−→ N
(
0,−(p/q2)/ logq

)
.

For positiveδ ,

(logn)−1/2(Nn + pqδ logn/ logq) D−→ N
(

0,−pqδ (qδ+1− (1+2δ p)qδ +1)/ logq
)

.

3. Poisson distribution. Forδ < 0,

mδ−1/2
n

(
Nn−λ

δ m1−δ
n /(1−δ )

)
D−→ N

(
0,λ 2δ /(1−2δ )

)
.

For δ = 1,
(log logn)−1/2(Nn−λ logmn)

D−→ N(0,λ ).

Finally, whenδ > 1, the number ofδ -records converges a.s. to a finite limit.

3.2. The iid continuous case

We consider nonnegative, iid random variablesXn,n≥ 1 with common continuous distribu-
tion F , such that sup{x≥ 0 | F(x) < 1}= ∞. Parameterδ can take any real value.

3.2.1. Strong laws

As mentioned at the beginning of Section 3, independence of indicatorsIn and distribution-
freeness are lost but Proposition 1 is applicable. Hazard ratesrk were a crucial element in our
analysis of the discrete case. In the continuous setting we have to turn to the classical hazard
measure. In order to simplify the presentation, we shall assume thatF is strictly increasing in
R+, with densityf , so that the hazard measure has density given byλ (x) = f (x)/(1−F(x)).

As in the discrete case, we have to find the growth rate of∑k≤n(1−F)(Mk−1 + δ ). It
turns out to be the exact continuous analog of (9) and is given by

an =
∫ mn

0

(1−F)(x+δ )
(1−F)(x)

λ (x)dx, (14)

wheremn = (1−F)−1(1/n).
Whenλ (x) is bounded, it can be shown thatan = O(logn). For example, the exponential

distribution with parameterµ has hazard rateλ (x) = µ and the following strong LLN holds:

Nn/ logn
a.s.−→ e−δ µ .

Another interesting case is the Pareto distribution 1− F(x) = (a/x)k, x ≥ a, k > 0, with
λ (x) = k/x. The LLN for δ -records (δ positive or negative) isNn/ logn

a.s.−→ 1.
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The continuous analog of the “difficult” discrete caserk→ 1 is λ (x)→ ∞. As before,
δ > 0 may lead to a finite number ofδ -records, and we don’t have to look far to find an
example. Take the standard normal distributionΦ. Using the well-known approximation for
the tail 1−Φ(x) ∼ Φ′(x)/x, asx→ ∞, we find that, for anyδ > 0, Nn converges a.s. to a
finite limit. However, forδ = 0 (usual records) the rate ofNn is logn, from Renyi’s classical
result. For negativeδ , we can only obtain a weak LLN from Deheuvels’ results, showing that

Nn√
2logn e−δ

√
2logn

P−→−e−δ 2/2

δ
.

3.2.2. Asymptotic normality

The question of asymptotic normality forδ -records in the continuous setting has not been
studied. However, a good starting point would be the process

Nn−
∫ Mn

0

f (x+δ )
1−F(x)

dx,

a martingale which is the continuous version of (10).
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