
Monografías del Seminario Matemático García de Galdeano33, 419–424 (2006)
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Abstract. In this paper we present a reformulation of the poroelasticity system and a de-
coupled algorithm for the numerical solution. This reformulation enables us to construct
a highly efficient multigrid method, confirmed by a realistic experiment.
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§1. Introduction

The quasi–static Biot model for soil consolidation [1] can be formulated as a system of
partial differential equations for the displacements of the medium and the pressure of the
fluid. One assumes the material’s solid structure to be linearly elastic, initially homogeneous
and isotropic, the strains imposed within the material are small. We denote byu = (u,v, p)T

the solution vector, consisting of the displacement vectoru = (u,v)T and pore pressure of the
fluid p. The governing equations read

−µ∆̃u− (λ + µ)graddivu+α gradp = 0, x ∈Ω, (1)

α
∂

∂ t
(divu)− κ

η
∆p = f (x, t), 0 < t ≤ T , (2)

whereλ andµ are the Lamé coefficients,κ is the permeability of the porous medium,η the
viscosity of the fluid,α is the Biot-Willis constant (which we will take equal to one) and
∆̃ represents the vectorial Laplace operator. The quantity divu(x, t) is the dilatation, i.e. the
volume increase rate of the system, a measure of the change in porosity of the soil. The source
term f (x, t) represents a forced fluid extraction or injection process, respectively, see [1].

For simplicity, we assume here that∂Ω is rigid (zero displacements) and permeable (free
drainage), so that we have homogeneous Dirichlet boundary conditions,

u(x, t) = 0, p(x, t) = 0, x ∈ ∂Ω, t ∈ (0,T]. (3)

Before fluid starts to flow and due to the incompressibility of the solid and fluid phases, the
initial state satisfies

divu(x,0) = 0, x ∈Ω. (4)

Physically, when a load is applied in a poroelastic medium, the pressure suddenly in-
creases and a boundary layer appears in the early stages of the time-dependent process. In
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the case of an unstable discretization, unphysical oscillations can occur in the first time steps
of the solution. After this phase, the solution shows a much smoother behaviour. In this paper
we present a reformulated version of the system of poroelasticity equations. We show that
problem (1)-(4) can be brought in a form which is favourable for (almost) decoupled iterative
solution. Besides, working with the reformulated system, stable numerical solutions are ob-
tained on a standard collocated grid [2]. A numerical 2D experiment confirms the stability,
accuracy and the efficient multigrid treatment of the resulting transformed system.

The paper is organised as follows, the transformation of the poroelastic system plus a
corresponding algorithm are presented in Section 2. In Section 3 a numerical poroelastic
experiment, using a multigrid method, is presented indicating the efficiency of the solution
algorithm.

§2. Transformed Problem

Let us rewrite problem (1)-(4) as

A
∂u
∂ t

+grad
∂ p
∂ t

= 0, in Ω, t ∈ (0,T], (5)

div
∂u
∂ t
− κ

η
∆p = f , in Ω, t ∈ (0,T], (6)

u = 0, p = 0, on ∂Ω, t ∈ (0,T], (7)

divu(x,0) = 0, x ∈Ω, (8)

whereA =−µ∆̃− (λ + µ)graddiv.
We transform problem (5)-(8) to an equivalent problem. Firstly, applying the divergence

operator to (5) and the operator(λ +2µ)∆ to (6), adding the resulting equations and taking
into account the equality

−(λ +2µ)∆ div = divA,

we obtain

−∆
∂ p
∂ t

+(λ +2µ)
κ

η
∆2p =−(λ +2µ)∆ f . (9)

Secondly, by applying operator(λ +µ)grad to (6) and by adding the resulting equation to (5)
we get

−µ∆̃
∂u
∂ t

+grad
∂ p
∂ t
− (λ + µ)

κ

η
grad∆p = (λ + µ)gradf .

With the new variablesq =−∆p andv = ∂u
∂ t , we deal with the transformed system:

−µ∆̃v+grad
∂ p
∂ t

+(λ + µ)
κ

η
gradq = (λ + µ)gradf , (10)

q+∆p = 0, (11)

∂q
∂ t
− (λ +2µ)

κ

η
∆q =−(λ +2µ)∆ f , (12)

v = 0, p = 0, divv+
κ

η
q = f , on ∂Ω, (13)
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plus initial conditions. We have shown the following result:

Proposition 1. If (u, p) is a solution of problem (5)-(8) then(v, p,q) is solution of problem
(10)-(13).

In the following proposition we prove that both problems really are equivalent.

Proposition 2. If (v, p,q) is solution of problem (10)-(13), then(u, p) is solution of problem
(5)-(8).

Proof. By applying the divergence operator to (10) and the use of equality div∆̃ = ∆div, we
find

−µ∆divv− ∂q
∂ t

+(λ + µ)
κ

η
∆q = (λ + µ)∆ f . (14)

Adding (14) and (12), we obtain

µ∆
(

divv+
κ

η
q− f

)
= 0, in Ω.

By using boundary conditions (13) we deduce equation (6). Equation (5) is obtained by
applying the operator(λ + µ)grad to (6) and using (10).

Note that problem (10)-(13) is coupled over the boundary of the domain. Let us consider
a semi-discretization in time with step timeτ = T/M with M a positive integer. For 1≤
m≤ M−1 and assuming thatvm, pm andqm are known, the following iterative scheme is
proposed.

Algorithm 1.

1. Solve
(

qm+1−qm

τ

)
− (λ +2µ)

κ

η
∆qm+1 =−(λ +2µ)∆ f m+1, in Ω,

divvm+
κ

η
qm+1 = f m+1, on ∂Ω.

2. Solve{
−∆pm+1 = qm+1, in Ω,

pm+1 = 0, on ∂Ω.

3. Solve:−µ∆̃vm+1 = grad

(
(λ + µ) f m+1− pm+1− pm

τ
− (λ + µ)

κ

η
qm+1

)
, in Ω,

vm+1 = 0, on ∂Ω.
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Figure 1: Computational domain for the footing problem

Notice that the boundary condition in step 1 is lagging behind one time step. Without
additional iteration the scheme presented here will therefore be ofO(τ).

First of all, when working with the reformulated system stable numerical solutions are ob-
tained on a standardcollocatedgrid. Secondly, the operators to be inverted in the algorithm
above are only scalar Laplace type operators, for which standard multigrid for scalar equa-
tions works extremely well. In particular, multigrid method with highest efficiency, based
on a red-black point-wise Gauss-Seidel smoother, GS-RB, and well-known choices for the
remaining multigrid components [4] can be used for all choices ofλ , µ, andκ. These include
the direct coarse grid discretization of the PDE, full weighting and bilinear interpolation, as
the restriction and prolongation operators, respectively.

§3. Numerical Experiment

The example considered here is a true 2d footing problem (see also [3]). The simulation
domain is a 100 by 100 meters block of porous soil, as in Figure 1.

At the base of this domain the soil is assumed to be fixed while at some upper part of the
domain a uniform load of intensityσ0 is applied in a strip of length 40m. The whole domain
is assumed free to drain. Therefore, the boundary data is given as follows:

p = 0, on ∂Ω,

σxy = 0, σyy =−σ0, on Γ1 = {(x,y) ∈ ∂Ω | |x| ≤ 20, y = 100},
σxy = 0, σyy = 0, on Γ2 = {(x,y) ∈ ∂Ω | |x|> 20, y = 100},
u = 0, on ∂Ω\ (Γ1∪Γ2).

(15)

The material properties of the porous medium are given in Table 1, whereλ andµ are related
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Property Value Unit

Young’s modulus 3×104 N/m2

Poisson’s ratio 0.2 –

Permeability 10−7 m2

Fluid viscosity 10−3 Pas

Table 1: Material parameters for the poroelastic problem.

to the Young’s modulusE and the Poisson’s ratioν by the following expressions

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

.

The uniform load is taken asσ0 = 104N/m2.
In Figure 2 the solution of the pressure is presented. The unphysical oscillations for small

t that were present in the numerical results in [3], do not occur here with this new formulation.
Finally, the multigrid convergence factor for the decoupled system is found to be 0.06

for the equations forp andq, while for the other two equations, with the stress boundary
condition, it is found to be 0.12. The corresponding CPU times on a Pentium IV 2.6 Ghz are
1′′ on a 1282-grid and 4′′ per time step on a 2562-grid.

§4. Conclusion

In this paper we provide a fast and accurate numerical solver for the incompressible variant of
the poroelasticity equations. The system is transformed so that a stable discretization can be
obtained on a collocated grid. A multigrid iteration has been defined based on the decoupled
version of the poroelasticity system after the transformation. It is sufficient to choose a highly
efficient multigrid method for a scalar Poisson type equation for the overall solution of the
problem. With standard geometric transfer operators, a direct coarse grid discretization and a
point-wise red-black Gauss-Seidel smoother, an efficient multigrid method is developed for
all relevant choices of the problem parameters.
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