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GOODNESS OF FIT TESTS FOR ISOTROPIC

VARIOGRAM MODELS

Pilar García-Soidán and Carmen Iglesias-Pérez

Abstract. The aim of this work is to provide procedures to check if the theoretical semi-
variogram of an intrinsic and isotropic random process follows a parametric model. For
this purpose, several tests based on measuring theL2 distance between the parametric fit
and a nonparametric kernel semivariogram are proposed, which are proved to have normal
limit distributions.
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§1. Introduction

An adequate estimation of the semivariogram is fundamental to perform inference on an
intrinsic random process; see, for instance, N. Cressie [1] and references therein. For the
sake of simplicity, we will restrict our attention to the isotropic semivariograms.

Definition 1. A random process{Z(t) | t∈D⊂Rd} is defined as intrinsic with semivariogram
γ if the following conditions are satisfied:

(i) E[Z(t1)−Z(t2)] = 0, for all t1, t2∈D.

(ii) Var[Z(t1)−Z(t2)] = 2γ(t1− t2), for all t1, t2 ∈ D.

Definition 2. The intrinsic random process is said to be isotropic if hypothesis (ii) above is
replaced by the more restrictive condition:

(ii’) Var [Z(t1)−Z(t2)] = 2γ(‖t1− t2‖), for all t1, t2 ∈ D.

Suppose thatn dataZ(s1),. . . , Z(sn), are collected at s1,. . . , sn. A natural nonparametric
estimator ofγ is the empirical semivariogram. An alternative may be that of considering the
Nadaraya-Watson (NW) estimator in this setting, defined as follows:

γ̂h(s) =
∑n

i=1 ∑n
j=1K

(
s−‖si−sj‖

h

)
(Z(si)−Z(sj))

2

2 ∑n
i=1 ∑n

j=1K
(

s−‖si−sj‖
h

) , s≥ 0.

In P. García-Soidán et al. [2], some properties ofγ̂h(s) are established; in particular, that it is
asymptotically unbiased as well as consistent, under several conditions.



254 Pilar García-Soidán and Carmen Iglesias-Pérez

The aim of this work is to provide procedures to check whether or not the theoretical
semivariogram of an intrinsic and isotropic random process follows a parametric model, by
carrying out the following contrast:

H0 : γ ∈ Γθ = {γθ (·) | θ ∈Θ⊂ Rp} versus
H1 : γ /∈ Γθ .

(1)

For this purpose, several tests based on measuring theL2 distance between the parametric fit
and the Nadaraya-Watson semivariogram are proposed, which are proved to be asymptoti-
cally normal distributed.

§2. Hypotheses

(S1) D = λD0, for someλ = λn
n→∞−−−→+∞ and some bounded regionD0⊂Rd containing a

sphere with positived-dimensional volume.

(S2) Let f0 be a density onD0. Then, f0 is bounded and strictly positive onD0.

(S3) si = λ ui , for 1≤ i ≤ n, where u1,. . . , un represents a realization of a random sample of
sizen drawn from f0, which will be denoted by U1,. . . , Un.

(S4) Denote byfi the density of(U1−U2, . . . ,U1−Ui+1). Then, f1(0) > 0 and fi is con-
tinuously differentiable in a neighborhood of 0+, for all i ≤ 7.

(S5) K is a compactly supported, symmetric and bounded density function.

(S6) {h+(nh)−1 +λ dn−1 +n2λ−2dh} n→∞−−−→ 0. Moreover, limn→∞ h5n2λ−d = c≥ 0.

(S7) {Z(t) | t∈D⊂Rd} is an intrinsic and isotropic random process with semivariogramγ,
satisfying that E[Z(t)8] < ∞, for all t∈D.

(S8) γ admits three continuous derivatives in a neighborhood ofs, for all s∈ (0,y).

(S9) Var[(Z(t1)−Z(t2))2] = g(‖t1− t2‖), for all t1, t2 ∈ D and someg : R→ R.

(S10) g admits two continuous derivatives in a neighborhood ofs, for all s∈ (0,y).

(S11) Assuming a parametric modelΓθ = {γθ (·) | θ ∈ Θ ⊂ Rp} for γ and given a set
{si}ki=1 with si > 0, we will ask that, for anyε > 0, there exists aδ > 0 such that:

inf

{ k

∑
i=1

(γθ1(si)− γθ2(si))2

∣∣∣∣ ‖θ1−θ2‖ ≥ ε

}
> δ .

(S12) γθ is bounded andr-times continuously differentiable with respect toθ .

(S13) V(θ) is a positive definitek×k matrix, which iss-times continuously differentiable on
Θ, with sup

{
‖V(θ)‖+

∥∥V(θ)−1
∥∥ ∣∣ θ ∈Θ

}
< ∞.
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§3. Main results

Theorem 1. Assume that conditions (S1)–(S9) are satisfied. It follows that

(hv(y))−1/2
(

n2
λ
−dh

∫ y

0
(γ̂h(s)− γ(s))2ds−m(y)

)
d−→ N(0,1),

with

m(y) =
c
(∫

R z2K(z)dz
)2

4

∫ y

0
γ
′′(s)2ds+

K ∗K(0)
2 f1(0)A0,d

∫ y

0

g(s)
sd−1 ds,

v(y) =
c
∫
R z2K(z)dz
f1(0)A0,d

∫ y

0

γ ′′(s)2g(s)
sd−1 ds+

K ∗K ∗K ∗K(0)

2
(

f1(0)A0,d
)2

∫ y

0

g(s)2

s2(d−1) ds,

A0,d =
∫

π

0
· · ·
∫

π

0

∫ 2π

0
(sinθ1)

d−2 (sinθ2)
d−3 · · · sinθd−2dθ1 · · ·dθd−2dθd−1,

where constant c is given in condition (S6) and∗ denotes convolution.

Proof. From Theorems 3.1 and 3.2 in P. García-Soidán et al. [2], it is straightforward to
check that

n2
λ
−dh

∫ y

0

(
γ̂h(s)− γ(s)

)2
ds

=
c
(∫

R z2K(z)dz
)2

4

∫ y

0
γ
′′(s)2ds+

cnλ−d/2h1/2∫
R z2K(z)dz

f1(0)A0,d

∫ y

0

γ ′′(s)
sd−1

n−1

∑
i=1

n

∑
j=i+1

Xi, j(s)ds

+
n2λ−dh(

f1(0)A0,d
)2

∫ y

0

(
1

sd−1

n−1

∑
i=1

n

∑
j=i+1

Xi, j(s)
)2

ds+oP
(
h1/2),

where

Xi, j(s) = K

(
s−λ

∥∥Ui−U j
∥∥

h

)[
(Z(λUi)−Z(λU j))

2−2γ
(
λ
∥∥Ui−U j

∥∥)] .
Then, Theorem 1 would be proved if we checked that{

nλ−d/2h1/2

f1(0)A0,d sd−1

n−1

∑
i=1

n

∑
j=i+1

Xi, j(s)
∣∣∣∣ s∈ (0,y)

}
converges to a gaussian process{X(s) | s∈ (0,y)}, with zero mean and covariance function
given by

Cov[X(s),X(t)] =
(s+ t)d−1K ∗K

(
t−s
h

)
g
(

s+t
2

)
2d f1(0)A0,d sd−1 td−1 .

For the latter purpose, it would be enough to establish the asymptotic normality of

S= nλ
−d/2h1/2

m

∑
l=1

βl

n−1

∑
i=1

n

∑
j=i+1

Xi, j (sl ) = nλ
−d/2h1/2

n

∑
i=2

Zi
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for any set of positive distancessl and real parametersβl , βl 6= 0, with 1≤ l ≤mandm∈ N,
where

Zi = nλ
−d/2h1/2

i−1

∑
j=1

m

∑
l=1

βl Xi, j(sl ).

Bear in mind that E[Zi/U1, . . . ,Ui−1] = 0 and that the random variablesZ2,. . . ,Zn may be
considered as differences of the martingalesS2,. . . ,Sn, given by

S2 = Z2, S3 = Z2 +Z3, . . . , Sn = Z2 + · · ·+Zn.

After some algebra, we might see that E
[
∑n

i=2Z2
i

]
and E

[
∑n

i=2Z4
i

]
are of the respective exact

orders 1 andn−2λ dh−1.
From the relations above, it follows the Lyapunov condition and, therefore, the Lindeberg

condition. Then, Corollary (2.13) in D. L. McLeish [4] allows to state the normal limit
distribution ofS.

Remark1. Note thatγ̂h(s) is not well-defined for larges; therefore, the integral considered
in Theorem 1,

∫ y
0 (γ̂h(s)− γ(s))2ds, cannot be extended to the casey = ∞. In the covari-

ance estimation setting, the latter extension may be easily obtained by introducing a weight
function, since the covariance function is usually assumed to tend to zero as the distance in-
creases. However, this is not the point when the variogram estimation is considered; on the
contrary, the variogram is typically required to have a positive sill which, in addition, should
be estimated in practice.

Remark2. The second part of condition (S6) is introduced in order to guarantee that the
bandwidthh considered in Theorem 1 is of the optimal order; see P. García-Soidán et al. [2]
for details.

Remark3. For a gaussian process, one has thatg(s) = 8γ(s)2. Thus, as an application of
Theorem 1, we can test:

H0 : γ = γθ versus
H1 : γ 6= γθ

for a fixedθ ∈ Rp and a gaussian process, at an approximate levelα. For the latter pur-
pose, writemθ andvθ for those functions obtained by substitutingγθ and 8γ2

θ
for γ andg,

respectively, inmandv. We will reject when∫ y

0
(γ̂h(s)− γθ (s))2 ds≥ n−2

λ
dh−1

(
mθ (y)+z1−α (hvθ (y))1/2

)
,

wherezβ denotes theβ -quantile of theN(0,1) distribution.

Bear in mind that our interest is to test the general contrast given in (1). The latter requires
the choice of an estimator̂θn of the true parameterθ0, under the null hypothesisH0. This issue
will be addressed by applying the least squares criteria, which will guarantee an appropriate
rate of convergence of̂θn.

Definition 3. Given a parametric familyΓθ , a set{si}ki=1 with si > 0 and a positive definite
k×k matrixV(θ), the least squares estimatorθ̂n will be defined as

θ̂n = argmin
{(

~̂γ− ~γθ

)T(V(θ))−1(~̂γ− ~γθ

) ∣∣∣ θ ∈Θ⊂ Rp
}

,
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where~̂γ = (γ̂h(s1), . . . , γ̂h(sk))T , ~γθ = (γθ (s1), . . . ,γθ (sk))T andγθ ∈ Γθ .

Theorem 2. Assume the conditions required in Theorem 1 and that (S11)–(S13) hold for
r = s= 1. Then, it follows that‖θ̂n−θ0‖= oP(n−1λ d/2), whereθ0 denotes the true parame-
ter under the null hypothesis in (1).

Proof. This result follows from Theorem 3.2 in S. Lahiri et al. [3].

Theorem 3. Under the assumptions of Theorem 2, if (S12) holds for r= 3, then

(
hv

θ̂n
(y)
)−1/2

(
n2

λ
−dh

∫ y

0

(
γ̂h(s)− γ

θ̂n
(s)
)2

ds−m
θ̂n

(y)
)

d−→ N(0,1),

with m
θ̂n

and v̂
θn

obtained by replacingγ by γ
θ̂n

in m and v given in Theorem 1.

Proof. We may apply Theorem 2 and Taylor expand aboutθ0 to yield that

γ
θ̂n

(s)− γθ0(s) = oP(n−1
λ

d/2),

m
θ̂n

(y)−mθ0(y) = oP(n−1
λ

d/2),

v
θ̂n

(y)−vθ0(y) = oP(n−1
λ

d/2),

for all s∈ (0,y). Consequently, Theorem 3 follows by combining the latter relations and
Theorem 1.

Remark4. An immediate consequence of Theorem 3 is that we can test the contrast given
in (1) for a gaussian process, at an approximate levelα. From Theorem 3, the rejection region
would be given by∫ y

0

(
γ̂h(s)− γ

θ̂n
(s)
)2

ds≥ n−2
λ

dh−1
(

m
θ̂n

(y)+z1−α

(
hv

θ̂n
(y)
)1/2

)
.

Recall that our aim is to provide a procedure to check the contrast (1) for a general intrin-
sic random process (not necessarily gaussian). Then, functiong must be estimated in practice,
since the form of this function is in general unknown. With this idea, we may consider the
NW estimator ofg(s), given by

ĝh(s) =
∑n

i=1 ∑n
j=1K

(
s−‖si−sj‖

h

) (
(Z(si)−Z(sj))

2−2γ̂h
(∥∥si−sj

∥∥))2

∑n
i=1 ∑n

j=1K

(
s−‖si−sj‖

h

) , s≥ 0.

Theorem 4. Suppose that conditions (S1)–(S10) hold. Then, for all s∈ (0,y), one has:

E[ĝh(s)] = g(s)+O(h2),

Var[ĝh(s)] = O(n−2
λ

dh−1 +h4).

Proof. To derive this proof, we might proceed similarly as in the proofs of Theorems 3.1
and 3.2 in P. García-Soidán et al. [2].
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Theorem 5. Assume the conditions required in Theorem 3 together with hypothesis (S10).
Then, one has

(
hv̂

θ̂n
(y)
)−1/2

(
n2

λ
−dh

∫ y

0

(
γ̂h(s)− γ

θ̂n
(s)
)2

ds− v̂
θ̂n

(y)
)

d−→ N(0,1),

with m̂
θ̂n

andv̂
θ̂n

obtained by substitutinĝgh for g in m
θ̂n

and v̂
θn

defined in Theorem 3.

Proof. This result follows straightforwardly from Theorems 3 and 4.

Remark5. For a general random process, we can test the contrast given in (1), at an approx-
imate levelα. From Theorem 5, we will reject when:∫ y

0

(
γ̂h(s)− γ

θ̂n
(s)
)2

ds≥ n−2
λ

dh−1
(

m̂
θ̂n

(y)+z1−α

(
hv̂

θ̂n
(y)
)1/2

)
.

Remark6. For small sample sizes, the unsatisfactory behavior near endpoints may affect
the performance of the NW estimator or, even, the asymptotic distributions achieved may
be inappropriate to approximate the critical values. To avoid the first problem, a boundary
kernel might be used instead of a symmetric kernel in the NW semivariogram; a solution for
the second one could be based on the use of the Bootstrap techniques.
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