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Abstract. The aim of this work is to provide procedures to check if the theoretical semi-
variogram of an intrinsic and isotropic random process follows a parametric model. For
this purpose, several tests based on measurin;thiéstance between the parametric fit

and a nonparametric kernel semivariogram are proposed, which are proved to have normal
limit distributions.
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81. Introduction

An adequate estimation of the semivariogram is fundamental to perform inference on an
intrinsic random process; see, for instance, N. Cressie [1] and references therein. For the
sake of simplicity, we will restrict our attention to the isotropic semivariograms.

Definition 1. A random proces$Z(t) | tcDcRY} is defined as intrinsic with semivariogram
v if the following conditions are satisfied:

() E[Z(t21) —Z(t2)] =0, for all t1,t, € D.
(i) Var[Z(t1) —Z(t2)] = 2y(t1 —t2), for all ty,t, € D.

Definition 2. The intrinsic random process is said to be isotropic if hypothesis (ii) above is
replaced by the more restrictive condition:

(i) Var[Z(t1) —Z(t2)] = 2y(||ta — t2]|), for all tg,t, € D.

Suppose that dataZ(s;),...,Z(s), are collected atss.. ., S. A natural nonparametric
estimator ofy is the empirical semivariogram. An alternative may be that of considering the
Nadaraya-Watson (NW) estimator in this setting, defined as follows:

Zu 13- 1K<s llsi— SJH> Z(s)—Z(s)))
2zizlzjle(ths;u>

In P. Garcia-Soidan et al. [2], some propertiegigf) are established; in particular, that it is
asymptotically unbiased as well as consistent, under several conditions.
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The aim of this work is to provide procedures to check whether or not the theoretical
semivariogram of an intrinsic and isotropic random process follows a parametric model, by
carrying out the following contrast:

Ho:velg={10(-)| 8 € ©C RP} versus )
Hi: y¢Te.

For this purpose, several tests based on measuririgttistance between the parametric fit
and the Nadaraya-Watson semivariogram are proposed, which are proved to be asymptoti-
cally normal distributed.

82. Hypotheses

(S1) D = ADy, for someA = A, = 4+ and some bounded regi@y C RY containing a
sphere with positivel-dimensional volume.

(S2) Letfy be a density oiDg. Then,fg is bounded and strictly positive dy.

(S3) $=Au, for 1<i<n,where y,..., U, represents a realization of a random sample of
sizen drawn fromfp, which will be denoted by ..., U,.

(S4) Denote byf; the density of U; — Uy, ..., U1 — Uj;1). Then, f1(0) > 0 andf; is con-
tinuously differentiable in a neighborhood of Ofor all i < 7.

(S5) K is a compactly supported, symmetric and bounded density function.
(S6) {h+ (nh)1+A9n"14n22-2dh} 2%, 0, Moreover, lim,_...h°n?A 9 = ¢ > 0.

(S7) {Z(t) | te DcRY} is an intrinsic and isotropic random process with semivariogyam
satisfying that EZ(t)8] < oo, for all te D.

(S8) y admits three continuous derivatives in a neighborhoas] fafr all s (0,y).
(S9) Vai(Z(t1) — Z(t2))?] = 9(||ts — t2||), for all ty,t, € D and somey: R — R.
(S10) g admits two continuous derivatives in a neighborhood, éér all s€ (0,y).

(S11) Assuming a parametric modep = {ys(:) | 8 € © C RP} for y and given a set
{s}}(:l with s > 0, we will ask that, for ang > 0, there exists @ > 0 such that:

k
inf{Z(Yel(S) —Y0,(s))?

161 — 62| > e} > 3.

(S12) vy is bounded and-times continuously differentiable with respecté&o

(S13) V() is a positive definité x k matrix, which iss-times continuously differentiable on
©, with sup{ [V (8)[|+|[V(8) 72| | 6 € O} < .
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§3. Main results

Theorem 1. Assume that conditions (S1)—(S9) are satisfied. It follows that

()2 (122 % [ (u(9) - 19)2ds- miy) ) - N(0.D)

with
v 2 *
miy) = LD g Zfl(*jfgd yfﬁds
_ cfgZK()dz 1Y Y'(s)?9(s) K+ KxK*K(0
Rl e = e / 20

7 2 d-2 d-3
AQd:/ / / (sin61)%2 (sin62)% 3. sinBy_»d6: - --dOy_»dy_1,
JO JO JO

where constant c is given in condition (S6) andenotes convolution.

Proof. From Theorems 3.1 and 3.2 in P. Garcia-Soidan et al. [2], it is straightforward to
check that

nz/l‘dh/oy(ﬂq(s)fy(s))zds

L 2K(2d2)* v, W-92hY2 [ 2K (21 dz Yo' (g) -l 1
:W(/O V'(s)2ds+ & fl(o)ﬁi,d (2 2/0 g(j) $ x,(9ds

i=1j=1+1

PA=h v/ nl o N2 y
+(f1(0)A07d) /(sd I Z“ZHX',J(S)) ds+op(h'/?),
where
Xl =K (W) [(z(xui)fzuuj))zfzy(lHUi7UJM'

Then, Theorem 1 would be proved if we checked that

nl—d/zhl/z n-1 n
{ ()’A‘Odgj ! ZJZA

converges to a gaussian procéxss) | s (0,y)}, with zero mean and covariance function
given by

Xi,j(s)

se (O,y)}

(s+1)97 1K «K (55) g(55})
20f1(0) Aggs9-1td-1
For the latter purpose, it would be enough to establish the asymptotic normality of

Cov[X(s),X(t)] =

S—ni- d/zhl/zzﬁ 21 ” (§)=ni- d/2p1/2 ZQZ

j= |+1
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for any set of positive distancgsand real parametef$, B # 0, with 1<| <mandme N,
where

i—1 m
Z =nA~9/2pt/2 BiXii(s).
I JZU; %i(8)

Bear in mind that Z; /U4, ..., U;j_1] = 0 and that the random variablgs,. . ., Z, may be
considered as differences of the marting@gs. ., S,, given by

S=25, S=2+23,..., =L+ + 2.

After some algebra, we might see thalt , z2| and E[3!" , Z] are of the respective exact
orders 1 anah 2A9h~1.

From the relations above, it follows the Lyapunov condition and, therefore, the Lindeberg
condition. Then, Corollary (2.13) in D. L. McLeish [4] allows to state the normal limit
distribution ofS. O

Remarkl. Note thatj,(s) is not well-defined for largs; therefore, the integral considered

in Theorem 1,3 (#h(s) — ¥(s))%ds cannot be extended to the case- . In the covari-

ance estimation setting, the latter extension may be easily obtained by introducing a weight
function, since the covariance function is usually assumed to tend to zero as the distance in-
creases. However, this is not the point when the variogram estimation is considered; on the
contrary, the variogram is typically required to have a positive sill which, in addition, should
be estimated in practice.

Remark2. The second part of condition (S6) is introduced in order to guarantee that the
bandwidthh considered in Theorem 1 is of the optimal order; see P. Garcia-Soidan et al. [2]
for details.

Remark3. For a gaussian process, one has tifaj = 8y(s)?. Thus, as an application of
Theorem 1, we can test:

Ho: Y= 7vp versus

Hi:v# %
for a fixed & € RP and a gaussian process, at an approximate levefFor the latter pur-
pose, writemy andvg for those functions obtained by substitutipg and 8}/5 for y andg,
respectively, imm andv. We will reject when

[ (9~ 10(9)? ds= m 2% % (ma(y) + 2 (0 (1))

wherezg denotes thgg-quantile of theN(0,1) distribution.

Bear in mind that our interest is to test the general contrast given in (1). The latter requires
the choice of an estimat®é, of the true parametel, under the null hypothesidg. This issue
will be addressed by applying the least squares criteria, which will guarantee an appropriate
rate of convergence d,.

Definition 3. Given a parametric family g, a set{s}}‘=1 with 5 > 0 and a positive definite
k x k matrixV (0), the least squares estimatrwill be defined as

6, — arg min{ G-7)" (V(6) G- 7) ’ BecoC Rp},
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where? = (fh(s1),---. Th(S0) T, o = (o(S1),-- -, 70 (0))T andye € To.

Theorem 2. Assume the conditions required in Theorem 1 and that (S11)—(S13) hold for
r =s=1. Then, it follows thaf|6, — 6o = op(n~1A9/2), wherefy denotes the true parame-
ter under the null hypothesis in (1).

Proof. This result follows from Theorem 3.2 in S. Lahiri et al. [3]. O

Theorem 3. Under the assumptions of Theorem 2, if (S12) holds fer3; then

(05, 0) (12 [ (5~ 35,9 "ds—m, ) ) - N(O.D)

with my and v obtained by replacing by y; in m and v given in Theorem 1.

Proof. We may apply Theorem 2 and Taylor expand al@ub yield that

Yo, (S) — Yao(S) = 0p(n"1A%/2),
Mg, (¥) — Mgy (y) = op(n~2%/2),
Vg, (¥) — Voo (y) = 0p(n~*A%/2),

for all s€ (0,y). Consequently, Theorem 3 follows by combining the latter relations and
Theorem 1. O

Remark4. An immediate consequence of Theorem 3 is that we can test the contrast given
in (1) for a gaussian process, at an approximate levélrom Theorem 3, the rejection region
would be given by

| /0 y(?h(s) —%,(9)%ds>n"2A%1 (mén ) +21-a (g () 2) .

Recall that our aim is to provide a procedure to check the contrast (1) for a general intrin-
sic random process (not necessarily gaussian). Then, furgptmust be estimated in practice,
since the form of this function is in general unknown. With this idea, we may consider the
NW estimator ofg(s), given by

2
st 55K (53l ((s) - z(s))2 - 2 (s - )
IEPYEELN (S_Hsh_Sj")

Theorem 4. Suppose that conditions (S1)—(S10) hold. Then, foral(8,y), one has:

E[Gn(9)] = (5) + O(1?),
n(8)] = O(n 2A%h 2 4-h)

>0.

3 -

Gn(s) =

Var(§

Proof. To derive this proof, we might proceed similarly as in the proofs of Theorems 3.1
and 3.2 in P. Garcia-Soidan et al. [2]. O
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Theorem 5. Assume the conditions required in Theorem 3 together with hypothesis (S10).
Then, one has

(h\”/én(y))*l/Z <n2/1—dh/0y(}7h(s) 7'}/én(s))2d37 Oén(y)> LN N(0,1),

with rﬁén and\‘/én obtained by substituting, for g in mg, and Y, defined in Theorem 3.
Proof. This result follows straightforwardly from Theorems 3 and 4. O

Remarks. For a general random process, we can test the contrast given in (1), at an approx-
imate levelo. From Theorem 5, we will reject when:

/O " (3h(9) — 7, (8))2ds> n-2A%h -2 (15, + 21 (075, () %),

Remark6. For small sample sizes, the unsatisfactory behavior near endpoints may affect
the performance of the NW estimator or, even, the asymptotic distributions achieved may
be inappropriate to approximate the critical values. To avoid the first problem, a boundary
kernel might be used instead of a symmetric kernel in the NW semivariogram; a solution for
the second one could be based on the use of the Bootstrap techniques.

References

[1] CREssIE N. Statistics for spatial datawiley, New York, 1993.

[2] GARCIA-SOIDAN, P., FEBRERO-BANDE, M., AND GONZALEZ-MANTEIGA, W. Non-
parametric kernel estimation of an isotropic semivariogrdmornal of Statistical Plan-
ning and Inference 1211 (2004), 65-92.

[3] LAHIRI, S., LEE, Y., AND CRESSIE N. On asymptotic distribution and asymptotic effi-
ciency of least squares estimators of spatial variogram paramétersal of Statistical
Planning and Inference 10@2002), 65—85.

[4] McLEIsH, D. L. Dependent central limit theorems and invariance princiglesals of
Probability 2(1974), 620-628.

Pilar Garcia-Soidan Carmen Iglesias-Pérez

Fac. CC. Sociales y de la Comunicacién E.U. Ingenieria Técnica Forestal
Universidad de Vigo Universidad de Vigo

Campus A Xunqueira Campus A Xunqueira

36005 Pontevedra, Spain 36005 Pontevedra, Spain

pgarcia@uvigo.es mcigles@uvigo.es



