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CONIC STATIONARY SOLUTIONS OF ONE
RESTRICTED THREE-BODY PROBLEM
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Abstract. The equations of motion of one three-body problem composed of a dumb-bell
(two masses at fixed distance) moving around a central mass under gravitational effects
have been stablished. Conic stationary solutions of these equations have been studied and
sufficient conditions for stability has been found in term of Lyapunov's stability functions.
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81. Introduction

The interest of the study of the motion of a system composed of three material ldgifis

andMjs interacting by Newtonian law, in the assumption that the distance bet¥gemd

M3 is constant, i.e., the pointgl, and M3 form a dumb-bell, derives from the fact that it

is the simplest problem about traslational-rotary motion of a satellite in a gravitational field
and gives the generic conections between the solution of this restricted three body problem
and the classical one [2]. Particular cases of this problem can be equivalent to the classical
restricted three bodies problem or to the generalized two fixed centres [1]. Not far from this is
the problem of the motion of a point in the gravitational field created by a massic segment as
an approximation to an elongate body [7, 8], as it is the case in some asteroids. The purpose
of this paper is the study of the so call conic stationary solutions of the problem for arbitrary
masses of the bodies and arbitrary size of the dumbell. Other particular cases as the linear and
isosceles cases have already been studied by the authors [4]. The conic motions is a solutions
in which the dumb-bell axis describes a conic circular surface with axis orthogonally disposed
with respect to the papallel planes in which the points move around. The constant semiangle
6 of the conic surface is the same as the angle between axis of the dumb-bell @mhitis,

G being the center of mases; the distandgetween the planes in which the motion\{

and the center of masses of the dumb-bell is performed remains constant. The vaues of
and@ are not independent and result from the roots of an algebraic equation. These solutions
describe the effect of the displacement of the center of masses with respect to the andle

other parameters of the problem. We also give sufficient conditions for stability [6].

§2. Formulation of the problem

The system of study is composed of three material pdihtsM, andMs, of massesm, mp
andmg, mutually attracted by the Newtonian gravitational forces. It will be assumed that
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Figure 1: The reference frames

the pointsM, andMs are rigidly connected by a segment of constant lehgthd negligible
mass, i.e., they form a dumb-bell.

Let C be the center of masses of the dumb-bell Bndk the distances fronvl, and M3
toC.

The simplest way to study the problem of motion of that system is to consider it referred
to an inertial heliocentric frame”(My, s1,,s3) and to use Hamiltonian formulation [4].
The center of masses of the dumb-bell is defined by the cilindrical coordirrazes)(and
the attitude of the dumb-bell it is given by two angles, namely nutatiérand precession
¢ (see the figure 1).

We can define an orthonormal rotating fraf bl,bz,t[;g) (see figure 1) made of the
S3 X D3

|Sg X bg‘ '
In these heliocentric coordinates, the Hamiltonian may be expressed as (see [9, 4])

principal axes of inertia, where cs= s3 - bz andb; =

1 Po — Py)? 1( P
A= <P,2+<‘°r2"’)+P22> +ox (singe +P92> +U(r,z y,0),

where the potential function is

my m)
ro riz)’

U=-9m ( +—
the mutual distancesgj, for j = 2,3, are
12 =r2+Z2+12— (-1)l 2] {zcosOJrrsinGsin(q) fl)]
and

W:q)fz’a PV/:P(Dv

andmandA are the following constants:

_ mu(me+me) o, MM o
my + Mz + g My + Mg
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With this election of variables the problem is reduced to four degrees of freedom. Since
anglew is cyclic, its conjugate momem, is an integral of the motion. The Hamiltonian
itself is another integral.

Then the equations of motion are

. R . (Po—Py)2 oU
r= ] PT = 73 5,
m mr ar
. P : ouU
= — P e —
e z 0z’ @
5 P 5 Picosd U
A °7 Asite 06’
. Py — Py Py . U
=- + , Py=—=—,
v mr2 Asir?0 YT oy
and equilibria are found by zeroing this system. Thus, there results that
mr?
P=P,=Py=0, P,—P,=———P,,
rTrem e @7V psite
and
aiU __ M e 87U -0
ar  A?sinfe ¥’ dz
JdU _ Asin6 cost JU au 0
00 mr ar’ oy
Defining the shorcuts
mg Ny mglz  mplz
F:gml(l3+r3), ngm1<r3—r3>7 (2)
13 12 13 12
the partial derivatives of the potentldimay be put as
Ju L Ju
3 r+Gsinésiny, 37 z+Gcoso,
33 = G(—2zsinb +rcosb siny), 9LIIJ’ = Gsinb cosy,
and equations for equilibria reduce to
Asir o
— _ 3
Y mr4+Asirke ? @)
Fr+Gsinsiny — — 1 p2 4)
V= it v
Fz+Gcosd =0, 5)
Asin6 cos (Fr + Gsin@ siny) —mrG(—zsin6 +r cosf siny) = 0, (6)

Gr sind cosy = 0. @)
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Figure 2: Conic solution: general case

The finding of general solution of this system is rather complicated, hence, we will only look
for conic solutions, i.e., verifying cosd £ 0. Cases = 0 and6 = 0 will be excluded since

they correspond to singularities of the problem. Other solutions as linear and isosceles cases
have already been studied by the authors [4].

83. Conic stationary motion

3.1. Existence of conic motions

We will consider here not plane stationary solutions of equations (3)—(7) that satisfy
zcosO # 0.

One particular solution to the equation (7) correspondg te £/2 or 3t /2. In this case
(see figure 2), the three bodikk, M2 andMj3 lay on the same plard; M,s3, and the axis of
the dumb-bell describes a conic surface around theMxés with semiangle at the apek
the line passing throughl; andC also describes a conic surface of semi-aifigleos = z/r.
Hence, we can call it conic solution.

All the bodies must move arour@ds; axis (G being the center of masses of the whole
system) along circles in planes orthogonal to it with frequency of rotaiand radius given,
respectively, by

My 4 Mg m m

=———1, =—————r+1,sin0, =——— 1 —I3sind.
My + My + Ma P2 2 P3 3

p1 My + My + Mg My + Mg+ Mg

Let us note that foz = 0 and6 # /2, from (5), it must beG = 0, it is to say,r12 = ris,

and again (from (6)p = x/2, in contradiction with the hypotesis. So, we will study conic
stationary solutions witk # 0 and6 # /2. Let us deduce the existence of these equilibria
studying the rest of equations. Writieg= siny = +1, equations (5) and (6) become:

Fz+Gcoso =0, (8)
Asin@ cos Fr + (¢ Asir? 6 cosd — mr(—zsing + ercosd))G =0, 9)
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Figure 3: Conic solution. (a) Cased = +1, (b) Case llg = -1

These equations compose an indeterminate compatible linear system in the vétiaBles
(defined by (2) ) if its determinant vanishes, it is to say, if

(mrz+ eAsin6 cosh) (er cosb — zsinf) =0,

what gives us two interesting particular solutions:

ry=eztang, (20)
eA |

=———sin20. 11

ro 2mzsm (12)

3.2. Case lir = gztanf

Conditions of equilibria are now written as

Asir? 6
= P, 12
Y mr2+Asirke ? (12)

mr mr

Fr4+eGsing = —— 2 = : 5 13
Azsite ¥ (mr2+Asirfg)2 (13)
zF+Gcosf =0, (14)
e€rcosh —zsind = 0. (15)

The frequency of the motion is given by

5 P2 _ Fr+eGsing _

B F z+ Gcoso _0
(mr2+Asir? 9)2 mr

€tand

It means that the three bodies are situated at fixed positions on a straight line. It must be
P» = 0, hence, condition (13) reduces to condition (14).
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Now, takingn as the distanckl; to C andv = mg/mp, condition (14) is transformed into

| vl

3010 M) — 3 2_ 2
(M +le)*(2—m) =v(la=n)*(ls+n), or (n+-—) =V -1
that provides the following solutions:
—1+vyv
A A (16)
(14 v)(1++/V)
1+vyv
n2=1 Vv . a7)
(14 v)(—1++/V)
eAsin2
3.3.Casellir = ———
2mz
Conditions of equilibria are now written as
Asir? 6
=———P,, 18
Y mrzrAsike (18)
mr mr
Fr+eGsing = 2 2. 19
Azsite ¥ (mr2+Asirfg)2 (19
zF+Gcosf =0, (20)
—mrz+gAsin6 cosf = 0. (21)
The frequency of the motion is given by
s P2 Fr+&Gsino
= N = ZO’
(mr2 4+ Asir? 9)2 mr

hence, taking into account (20),
0<Fr+eGsind =F (r —eztan) =>r > gztanf < sind < e.

Introducing the variablé = z/(I cosf), condition (20) can be written in the following
form:

33[v-C(1+v)] =13, [v+v(1+v)E],
wherer, andriz are now written as
A2sirP®  2Avsirte
Zmés2  m(l+v)¢’

AZsiPO  2Asirte
Zme2 Tmi+v) ¢

2, 12] vZ  2v{cog
12 (1+v)2 1+v

1 +2Cc0526
(1+v)? 1+v

+¢%cos 0] +

3 =12 +¢2co 6] +

In this way, the equation (20) is equivalent to a polynomical one of degree thirteen in the
variable{ with coefficients known function of constants of the problem.
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84, Sufficient conditions for stability of the conic solutions.

The stationary solutions are defined by the following found values:
PO —pl0 Péo) -0, p‘glo)7 r@, 20 O 9O,

Introducing the vectow = (y1,Y2,VYs, VY4, X1,X2,X3,X4) Of variations of the coordinates and
momenta

y1:PI’7 yZZPZ7 y3:PW_P<O)7 Y4:P97
x=r—1% x=2-729 x3=y-yO x=6-60,

the Hamiltonian of the linearized perturbed problem [2] is, formaly, the same as the non-
linearized, but with coefficients evaluated at the equilibrium solution. Consequently, the
guadratic part of the Hamiltonian of the linearized perturbed problem is the sum of a positive
defined part, the kinetic energy, and the Hessian of the potential energy. This last part is
1 4
%:E.Z Vij Xi X}, (22)
i,]=1

whereVj; are the following second derivatives of the potential evaluated at the equilibrium
solution. We will use this function as a Lyapunov function for our analysis of the statibility.
In this way, the Lyapunov’s stability of the stationary solutions follows (taking into account
the Dirichlet theorem) from the fact that the quadratic form (22) be positively defined, i.e.,
in agreement with the Jacobi’s criterium, if all the principal minors of the matrix which
elements are\f;) have positive value. In the case of conic solutions, the m&¥i¥ has
V13 = Vo3 = Va4 = 0, hence, the conditions of Jacobi’s criterium become:

Vi1 >0, ViiVeo—VH >0, Vaz>0, (23)
Vii Vio Vi

det|Vi2 Voo Vos| > 0. (24)
Via Voa Vs

These conditions, in the case |, reduce to

Vll:F—ngl |:::T5]2 (n—|2>2+%
1

12

ViV, —V5 =F (F —39my “22 (n—12)%+ % (n?- @)D >0,
12 13

(n?— |§)} sif 6 > 0,
3

Vaz = e Gsirt 6 > 0.
Analogously, we should procede in the case Il.

85. Conclusions

The equations of motion of one three-body problem composed of a dumb-bell (two masses at
fixed distance) moving around a central mass have been stablished. Conic stationary solutions
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of these equations have studied and sufficient conditions for stability has been found in term
of Lyapunov’s stability functions. It seems that this could be a good approximation for the
study of the motion of a body around to a massic segment and, one more general situation,
the motion of two solid bodies under a gravitational field.
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