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A REFLECTED FBM LIMIT FOR

ASYMPTOTICALLY BALANCED FLUID MODELS

WITH HEAVY TAILED ON/OFF SOURCES

Rosario Delgado

Abstract. We consider a family of non-deterministic fluid models similar to that intro-
duced by Harrison in [3] as the deterministic fluid analog for an open multiclass net-
work, but with the difference that we suppose the process of external arrivals to be a non-
deterministic aggregated cumulative packet process generated by a large enough number
of heavy tailed ON/OFF sources,N. Scaling in time by a factorr and in state space con-
veniently, and lettingN andr approach infinity (in this order) we prove that the scaled
immediate workload processconverges to areflected fractional Brownian motion (rfBm)
under heavy traffic.
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§1. Introduction

The presence of long-range dependence in broadband network traffic and that of self-simila-
rity in modern high-speed network traffic lead to the question of finding adequate traffic
models for these situations. One simple physical explanation for this kind of phenomenon
is the superposition of many ON/OFF sources with strictly alternating ON- and OFF-periods
and whose ON- or OFF-periods have high variability. Taqqu et al. prove in [4, Theorem 1]
the convergence of the aggregate cumulative packet process to the fBm (a self-similar and
long-range dependent process). It is known (see [2]) that this convergence carries over to the
stationary buffer content process: the scaled workload process converges to the fBm, reflected
appropriately to be non-negative, for fluid models with only one server or station and only
one fluid class, without reentering.

In this work we deal with the same question in a more general setting. Specifically,
we consider a fluid model for a network withJ stations andK fluid classes (withK ≥ J),
with a single server and an infinite buffer at each station, feedback and FIFO (first-in-first-
out) discipline. We suppose (and this gives the difference with the model considered by
Harrison) that the process of external arrivals is a non-deterministic aggregated cumulative
packet process generated by a large enough number of heavy tailed ON/OFF sources. We
prove, by following the methodology of Williams in [6], that after adequate scaling, the
immediate workload process converges to areflected fractional Brownian process W(rather
than to a reflected Brownian model), by generalizing the result of [2].



216 Rosario Delgado

The paper is organized as follows. In Section 2 some preliminares, notations and defini-
tions are introduced. The fluid model that we consider in this work is introduced in Section 3.
In Section 4 the main result of the paper is given. That result is a statement about the asymp-
totic behavior of the fluid model in which we give sufficient conditions for the convergence
of the scaled immediate workload process, under asymptotic balancing (heavy-traffic), to a
reflected fractional Brownian motion.

§2. Preliminares, notations and definitions

D –limn→∞ Xn = X denotes theconvergence in distributionon C d of stochasticd-dim. pro-
cessesXn to X and P –limn→∞ Xn = X its convergence in probability(unif. on compacts).
We will use ˜lim to denote the limit in the sense of the convergence of the finite-dimensional
distributions. We now introduce a process known asreflected fractional Brownian motion
(rfBm), that starts and behaves like a fractional brownian motion inside the positive orthant,
but that is not allowed to exit it because of instantaneous “reflection” at the boundary given
by faces. Its precise definition is as follows:

Definition 1. A rfBm on S= RJ
+ associated with data(x, H, θ , Γ, R), wherex, θ ∈ S, H ∈

(1/2, 1) andΓ andR areJ×J matrices, beingΓ a positive definite one, is aJ−dimensional
processW = {W(t), t ≥ 0} such that

(i) W has continuous paths andW(t) ∈ S= RJ
+ for all t ≥ 0, a.s.,

(ii) W = X + RY, a.s., withX andY two J−dimensional processes defined on the same
probability space asX, verifying:

(iii) X is a fBm with associated data(x, H, θ , Γ) (that is, it is a Gaussian process with
E
(
X(t)

)
= x+θ t and Cov

(
X(t), X(s)

)
= 1

2

(
t2H +s2H −|t−s|2H

)
Γ ),

(iv) Y has continuous and non-decreasing paths, and for eachj a.s.,Yj(0) = 0 andYj only
increases whenW is on faceFj = {y∈ S= RJ

+ : y j = 0} (i.e.
∫ ∞

0 1{Wj (s)>0}dYj(s) = 0).

A pair (W,Y) verifying (i), (ii) and (iv) is called asolution of the R-regularization prob-
lem of X. Proposition 4.2 of [5] shows that under condition (HR) onR (that implies the
completely-S condition) we have strong pathwise uniqueness of the solution of theR-regu-
larization problem ofX, being

(HR) Assumption on matrix R: R can be expressed asIJ + Θ with Θ a J× J matrix such
that|Θ|, that is the matrix obtained fromΘ by replacing all its entries by their absolute
value, has spectral radius less than 1.

§3. The fluid model

Let a network composed byJ stations with a single server and an infinite buffer at each one,
that processes continuous fluid. We distinguish among fluid of classes 1, . . . , K, with K ≥ J.
The many-to-one mapping for fluid classes to stations is described by theJ×K constituency
matrix C. For eachk let s(k) denote the station at which classk fluid is served. By following
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the ideas of [4], first of all suppose that there is only one external source of classk fluid
that arrives to the network, and that the source can be ON or OFF. This source generates a
stationary binary time series{Uk(t), t ≥ 0} whereUk(t) = 1 means that at timet the source is
ON (and it is sending fluid to the network, at a traffic rateαk > 0), andUk(t) = 0 means that it
is OFF. Assume that, independently ofk, the length of the ON-periods are i.i.d., those of the
OFF-periods are i.i.d., and the lengths of ON- and OFF-periods are independent. The ON-
and OFF-periods lengths may have different distributions. Denote the distribution functions,
the mean values and the variances of the ON- and OFF-periods, respectively, byF1 andF2, µ̃1

andµ̃2, σ2
1 andσ2

2 . Assume that asx→∞, 1−F1(x)∼ x−β1 L1(x) and 1−F2(x)∼ x−β2 L2(x)
for someβ1 andβ2 in (1, 2), andL1, L2 > 0 slowly varying functions at infinity.

Suppose now that for each classk fluid there areN i.i.d. sources, each one with its own

binary time series{U (n)
k (t), t ≥ 0}, n = 1, . . . ,N, and that they are all independent. If all

sources where ON, classk fluid would arrive at deterministic rateαN
k > 0, and the cumulative

external fluid trafficup to timet would be deterministic and equal toαN
k t (this is the case for

the fluid model introduced by Harrison in [3]). Let

EN
k (t) def= α

N
k

∫ t

0

1
N

( N

∑
n=1

U (n)
k (u)

)
du (1)

be the cumulative external classk fluid generated up to timet (by theN sources). LetαN =
(αN

1 , . . . , αN
K )T . We assume that fluid at each station is processed in a firs-in-first-out (FIFO)

basis and that our service discipline isnon-idling.

Suppose that classk fluid is processed at a constant rateµk > 0 (independent ofN) if
stations(k) were never idle and the server devoted all of its attention to classk. Letmk = 1/µk

be themean service ratefor classk fluid, m= (m1, . . . ,mK)T andµ = (µ1, . . . ,µK)T . Let Pk`

be the proportion of classk fluid that leaving stations(k) goes next to stations(`) as class̀
fluid. We assumePkk = 0 and thatP= (Pk`)K

k,`=1 is a substochastic matrix with spectral radius

less than one. LetQ = (IK−PT)−1.

The following descriptive processes will be used to measure the performance of the
queueing network:

TheK−dimensionalfluid queue ZN, defined by:ZN
k (t) is the amount of classk fluid in

queue or being processed at timet. The immediateworkload WN, a J−dimensional pro-
cess defined by:WN

j (t) is the amount of time required for serverj to complete processing
of all fluids in queue (or being served) at stationj at timet. AssumeWN(0) = ZN(0) = 0.
The J−dimensionalcumulative idletime process YN, defined by:YN

j (t) is the cumulative
amount of time that server at stationj has been idle in the time interval[0, t], that is,YN

j (t) =∫ t
0 1{WN

j (s)=0}ds. Other auxiliar processes are the following: letAN, defined byAN
k (t) is the

total classk fluid arriving to stations(k) up to time t, including both feedback flow and
external input, andDN defined byDN

k (t) is the total amount of classk fluid departing sta-
tion s(k) (both being routing to other station or leaving the network), up to timet. Assume

AN(0) = DN(0) = 0. Let FN def= PT DN, andLN def= CM AN, whereM
def= diag(m1, . . . ,mK).
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These processes are related by the nextmodel equations. For anyt ≥ 0, if e= 1∈ RJ,

AN(t) = EN(t)+FN(t), WN(t) = LN(t)−et+YN(t), ZN(t) = AN(t)−DN(t),

DN(t +CT WN(t)) = AN(t), WN(t) = CM ZN(t).

We now consider a double sequence of fluid models having the same basic structure as des-
cribed before. The associated processes and parameters are denoted by appendr and N,
whereN is the number of sources, that tends to infinity, andr is the factor of scaling in time
and tends to infinity through a strictly increasing sequence of strictly positive real numbers.
Suppose thatP, µ = (µ1, . . . ,µK)T andm= (m1, . . . ,mK)T are allowed to change withr but
not with N. We use the notationPr , µ r , mr , Mr andQr . We defineλ r,N to be the unique
K−dimensional vector solution to thetraffic equation

λ
r,N = α

r,N µ̃1

µ̃1 + µ̃2
+(Pr)T

λ
r,N, (2)

λ
r,N
k is interpreted as theclass k fluid arrival rate due both to external and internal flow traffic.

We also define thefluid traffic intensityfor station j as

ρ
r,N
j

def= ∑
kserved at stationj

λ
r,N
k mr

k, for all j
(
in matricial form,ρ r,N = CMr

λ
r,N).

In order to define thescaled processesassociated to the fluid model, we must introduce
previously some notation, by following [4]. For anyj = 1,2, seta j = Γ(2−β j)/(β j −1) and
b = limt→∞ tβ2−β1L1(t)/L2(t). If 0 < b < ∞ setβmin = β1 = β2, L = L2 and we define

σ
2
lim =

2
(

µ̃2
2 a1b+ µ̃2

1 a2
)(

µ̃1 + µ̃2
)3 Γ(4−βmin)

.

If b = 0 orb = ∞, setL = Lmin, wheremin is the index 1 ifb = ∞ and is the index 2 ifb = 0;
maxdenoting the other index, and

σ
2
lim =

2µ̃2
maxamin(

µ̃1 + µ̃2
)3 Γ(4−βmin)

.

In either case,βmin∈ (1, 2).
Let we defineH

def= (3−βmin)/2. We have thatH ∈ (1/2, 1). Now we can define the
scaled processes, denoted with a hat:

Êr,N(t) def=
√

N
Er,N(r t )−α r,N r t µ̃1

µ̃1+µ̃2

rH L1/2(r)
, Âr,N(t) def=

√
N

Ar,N(r t )−λ r,N r t

rH L1/2(r)
,

D̂r,N(t) def=
√

N
Dr,N(r t )−λ r,N r t

rH L1/2(r)
, F̂ r,N(t) def=

√
N

F r,N(r t )− (Pr)T λ r,N r t

rH L1/2(r)
,

Ŵr,N(t) def=
√

N
Wr,N(r t )
rH L1/2(r)

, Ẑr,N(t) def=
√

N
Zr,N(r t )

rH L1/2(r)

Ŷr,N(t) def=
√

N
Yr,N(r t )

rH L1/2(r)
, L̂r,N(t) def=

√
N

Lr,N(r t )−ρ r,N r t

rH L1/2(r)
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Scaled equations will be used to determine the limit behavior of the normalized immediate
workloadŴr,N process. These equations are obtained by substituting scaled processes into
model equations:

Âr,N(t) = Êr,N(t)+ F̂ r,N(t) (3)

L̂r,N(t) = CMr Âr,N(t) (4)

Ŵr,N(t) = L̂r,N(t)+Ŷr,N(t)+ γ̂
r,N t , whereγ̂

r,N def=
√

N

(
ρ r,N−e

)
r

rH L1/2(r)
(5)

Ŵr,N(t) = CMr Ẑr,N(t) (6)

Ẑr,N(t) = Âr,N(t)− D̂r,N(t) (7)

F̂ r,N(t) = (Pr)T D̂r,N(t) (8)

Now we reduce the system of scaled equations as follows: by substitutingD̂r,N from (7)
into (8), and in turn substituting this expression into (3) we obtain

Âr,N(t) = Qr
(

Êr,N(t)− (Pr)T Ẑr,N(t)
)
. (9)

Substituting (9) into (4) and the resulting into (5) yields

Ŵr,N(t) = ξ̂
r,N(t)−CMr Qr (Pr)T Ẑr,N(t)+Ŷr,N(t), (10)

where
ξ̂

r,N(t) def= CMr Qr Êr,N(t)+ γ̂
r,N t. (11)

We now introduce, like in [6], aK×J matrix ∆r,N by ∆r,N
k j = λ

r,N
k /ρ

r,N
j if s(k) = j and 0

otherwise. We need to impose an assumption on∆r,N:

(H∆r,N) Assumption on matrix ∆r,N: (satisfied ifK = J)

CMr Qr ∆r,N is invertible for allN andr (big enough). (12)

By using matrix∆r,N we can define processesε̂ r,N andη̂ r,N by

ε̂
r,N(t) def= Ẑr,N(t)−∆r,NŴr,N(t), η̂

r,N(t) def= −CMr Qr (Pr)T
ε̂

r,N(t), (13)

and aJ× J matrix Gr,N def= CMr Qr (Pr)T ∆r,N. Then, IJ + Gr,N = CMr Qr ∆r,N and we can
rewrite (10) as

Ŵr,N(t) = ξ̂
r,N(t)−Gr,NŴr,N(t)+ η̂

r,N(t)+Ŷr,N(t), and withRr,N = (IJ +Gr,N)−1,

Ŵr,N(t) = Rr,N
(

ξ̂
r,N(t)+ η̂

r,N(t)+Ŷr,N(t)
)

= X̂r,N(t)+Rr,N Ŷr,N(t), (14)

with X̂r,N(t) def= Rr,N
(

ξ̂
r,N(t)+ η̂

r,N(t)
)
. (15)
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§4. The main result

Before to state the main result of this work, we need to introduce some assumptions:

(HαmP) Assumptions onα r,N, mr and Pr :
We will assume that there are twoK−dimensional vectorsα > 0 andm> 0, and a
K×K matrixP, substochastic and with spectral radius strictly less than one, which
satisfy: for anyr (big enough),∃α r = lim

N→∞
α

r,N, ∃α = lim
r→∞

α
r , ∃m= lim

r→∞
mr , and

∃P = lim
r→∞

Pr . Therefore, there exists∆r = lim
N→∞

∆r,N, ∆ = lim
r→∞

∆r , Q = lim
r→∞

Qr(=
(IK−PT)−1), Gr = lim

N→∞
Gr,N, G = lim

r→∞
Gr andM = lim

r→∞
Mr .

(H∆r ∆) Assumption on matrices∆r and ∆: (satisfied ifK = J)
MatricesCMr Qr ∆r , for r big enough, andCM Q∆ are invertible (therefore, matri-

cesRr def=
(
IJ +Gr

)−1
andR

def=
(
IJ +G

)−1
are well defined).

(AB) Asymptotically balanced (heavy-traffic) fluid model assumption: there exists
γ ∈ RJ such that

lim
r→∞

(
lim

N→∞

√
N

(
ρ r,N−e

)
r

rH L1/2(r)

)(
= lim

r→∞

(
lim

N→∞
γ̂

r,N))= γ.

The final assumption that we consider is a form ofstate space collapse, which relates
scaled immediate workload and fluid queue length processes.

(SSC) Assumption of state space collapse:(satisfied ifK = J)
For anyr (big enough), there existŝ̂ε r = P – lim

N→∞
ε̂

r,N ∈ RK , and lim
r→∞

ˆ̂ε r = 0.

The main result uses the following lemma that lean on Theorem 1 of [4].

Lemma 1. In our setting, under (HαmP) and (SSC), for any r (big enough), there exists

( ˆ̂Er , ˆ̂ε r) = ˜lim
N→∞

(Êr,N, ε̂ r,N) and D – lim
r→∞

( ˆ̂Er , ˆ̂ε r) = (BH ,0),

where BH is K-dimensional fBm with associated data(0, 3−βmin
2 , 0, σ2

lim diag(α)2).

Remark1. In Theorem 2 below we will impose condition (HR) for matricesRr (for r big
enough) andR. We note that ifK = J this assumption is trivially accomplished byRr , and
also byR if P has spectral radius less that one.

Theorem 2. In our setting, assume (H∆r,N), (HαmP), (H∆r ∆), (AB), (HR) for matrices

Rr , for r big enough, and R, and (SSC). Then, for any r (big enough) there existˆ̂Wr =
˜lim

N→∞
Ŵr,N, ˆ̂Xr = ˜lim

N→∞
X̂r,N, ˆ̂Yr = ˜lim

N→∞
Ŷr,N, there also exist W= D – lim

r→∞
ˆ̂Wr , X = D – lim

r→∞
ˆ̂Xr ,

Y = D – lim
r→∞

ˆ̂Yr , W = X + RY, and it is a rfBm on S= RJ
+ with associated data(0, H =

3−βmin
2 , Rγ, Γ, R), where

Γ = σ
2
lim RCM Qdiag(α)2QT MCT RT .
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Proof. We recall thatŴr,N(t) = X̂r,N(t)+Rr,N Ŷr,N(t), with

X̂r,N(t) = Rr,NCMr Qr
(

Êr,N(t)− (Pr)T
ε̂

r,N(t)
)

+Rr,N
γ̂

r,N t,

by (14), (15), (11) and (13).

By Lemma 1 and the Continuous Mapping Theorem, we obtain the existence ofˆ̂Xr =
˜lim

N→∞
X̂r,N, X = D – lim

r→∞
ˆ̂Xr , and thatX(t) = RCM QBH(t)+ Rγ t, that is aJ-dim. fBm with

associated data(0,H = 3−βmin
2 ,Rγ,Γ), Γ = σ2

limRCMQdiag(α)2QTMCTRT .
By the other way, we can write

Ŵr,N(t) =
(

X̂r,N(t)+
(
Rr,N−Rr)Ŷr,N(t)

)
+Rr Ŷr,N(t). (16)

SinceRr is completely-S by (HR), we can apply theoscillation inequalitygiven in Lemma 1
of [1] to obtain that there is a constantCRr > 0, that only depends onRr , such that for any
T ≥ 0, if define Osc

(
ω(·), [0, T]

)
as sup

0≤s<t≤T
|ω(t)−ω(s)|, we have that

Osc
(
Ŷr,N(·), [0, T]

)
≤CRr Osc

(
X̂r,N(·)+(Rr,N−Rr)Ŷr,N(·), [0, T]

)
. (17)

By hypothesis,Rr,N converges toRr asN→ ∞. Consequently, there existsN0 such that for
anyN≥ N0, CRr |Rr,N−Rr |< 1/2. Thus, (17) implies that for anyr (big enough), ifN≥ N0,∥∥Ŷr,N(·)

∥∥
T = Osc

(
Ŷr,N(·), [0, T]

)
≤ 2CRr Osc

(
X̂r,N(·), [0, T]

)
≤ 4CRr

∥∥X̂r,N(·)
∥∥

T (18)

Due to the continuity ofˆ̂Er (that implies the continuity of̂̂Xr ), we have that, for anyT ≥
0, for anyr (big enough), for anyε > 0, there existKε > 0 andN1 such that, ifN ≥ N1,
P
(∥∥X̂r,N(·)

∥∥
T ≤ Kε/(4CRr )

)
≥ 1− ε. By using this fact, (18) gives that ifN ≥ N1∨N0,

P
(∥∥Ŷr,N(·)

∥∥
T ≤ Kε

)
≥ 1− ε. Furthermore, there existsN2 such that for anyN≥ N2, |Rr,N−

Rr |< ε/Kε , and as a result, for anyN≥max{N0, N1, N2},

P
(
|(Rr,N−Rr)|

∥∥Ŷr,N(·)
∥∥

T ≥ ε
)
≤ ε,

that is, P – lim
N→∞

(Rr,N−Rr)Ŷr,N = 0.

Let we defineΩ̂r,N asŴr,N−(Rr,N−Rr)Ŷr,N. Then, if they exist, we have that̃lim
N→∞

Ω̂r,N =

˜lim
N→∞

Ŵr,N, and by (16) we also have that̂Ωr,N = X̂r,N + Rr Ŷr,N, with Rr verifying (HR)

for any r (big enough), and̂̂Xr = ˜lim
N→∞

X̂r,N having continuous paths. Then, there exists a

unique strong pathwise solution of theRr -regularization problem of̂̂Xr , that coincides with(
˜lim

N→∞
Ω̂r,N, ˜lim

N→∞
Ŷr,N). If we denote ˜lim

N→∞
Ŷr,N by ˆ̂Yr and ˜lim

N→∞
Ω̂r,N = ˜lim

N→∞
Ŵr,N by ˆ̂Wr , we

have that the unique solution of theRr -regularization problem of̂̂X is ( ˆ̂Wr , ˆ̂Yr), and then
ˆ̂Wr = ˆ̂Xr + Rr ˆ̂Yr . This fact implies thatˆ̂Wr , ˆ̂Xr and ˆ̂Yr satisfy hypothesis of theinvariant

principle of Theorem 4.1 in [5] with matrixRr , taking into account thatD – lim
r→∞

ˆ̂Xr = X,
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lim
r→∞

Rr = R, andR is a Completely-S matrix, by (HR). We have that
{( ˆ̂Wr , ˆ̂Xr , ˆ̂Yr

)}
r in-

herits tightness from sequence
{ ˆ̂Xr

}
r , and consequently, by (HR) (see Corollary 4.3 of [5]),

we obtain that there existsD – lim
r→∞

( ˆ̂Wr , ˆ̂Xr , ˆ̂Yr) = (W, X, Y), whereW = X +RY and con-

ditions of Definition 1 are satisfied. Therefore,W is a rfBm onS= RJ
+ with associated data

(0, H = 3−βmin
2 , Rγ, Γ, R).
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