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Abstract. We provide the basis with optimal shape preserving properties of the spaceH̄1
generated by 1,t, cost, sint, cosht, sinht on [0,2π]. We illustrate the representation of
remarkable curves.
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§1. Introduction

The Bernstein basis is optimal among all other shape preserving bases of the space of polyno-
mials of degree not greater thann on a given compact interval [3]. Roughly speaking, a curve
designed with the optimal basis imitates the shape of its control polygon more faithfully than
using other representations. In [4] it was proved that each space of functions admitting shape
preserving representations always has an optimal basis calledthe normalized B-basis. This
paper is devoted to the construction of the optimal basis of a space which can be used to
design curves of interest in engineering and to show how such curves can be obtained in this
space.

§2. Designing with trigonometric and hyperbolic functions

Let us consider the design of curves whose components are functions in the space

H̄1 = span〈1, t,cost,sint,cosht,sinht〉,

on the intervalt ∈ [0,2π]. First we shall find the optimal basis (normalized B-basis) ofH̄1

and later we shall use it for the design of some remarkable curves.
By Theorem 4.1 of [1], there exists a normalized B-basis of the spaceH̄1 on [0,2π] if and

only if the space of the derivatives

H̄ ′1 = 〈1,cost,sint,cosht,sinht〉

is an extended Chebyshev space on[0,2π], that is, any nonzero function of the spaceH̄ ′1 has
at most dimH̄ ′1−1= 4 zeros (counting multiplicities) on[0,2π]. In order to show it, we need
the following generalization of Rolle’s Theorem.
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Lemma 1. Let f : I → R be a differentiable function on an interval I. Let Z∗I ( f ) be the
number of zeros of f (counting multiplicities). Then for any real s, we have

(a) If t1 < t2 are two zeros of f in I, then there exists a zeroτ of f ′+s f such that t1 < τ < t2,

(b) Z∗I ( f ′+s f)≥ Z∗I ( f )−1.

Proof. The set of zeros and their multiplicities of a function is preserved under multiplication
by a positiveC∞ function. Letg(t) := est f (t). Then the set of zeros ofg coincides with the
set of zeros ofg andZ∗I (g) = Z∗I ( f ). By Rolle’s theorem, we have that between any two zeros
t1 < t2 of g there exists a zeroτ, t1 < τ < t2, of g′ andZ∗I (g′)≥ Z∗I (g)−1. Now let us observe
that f ′(t)+s f(t) = e−stg′(t). Then (a) follows and, from

Z∗I ( f ′+s f) = Z∗I (g′)≥ Z∗I (g)−1 = Z∗I ( f )−1,

(b) follows.

We have already discussed in [2] the existence of normalized B-bases in all six dimen-
sional spaces invariant under translations and reflections containing the first degree algebraic
and trigonometric polynomials. For the sake of completeness, we give a direct argument to
show thatH̄1 has a normalized B-basis on[0,2π].

Proposition 2. The spaceH̄1 has a normalized B-basis on[0,2π].

Proof. By Theorem 4.1 of [1], we need to show that̄H ′1 = 〈1,cost,sint,cosht,sinht〉 is an
extended Chebyshev space on[0,2π]. Let us assume that a functionf in H̄ ′1 has 5 zeros
(counting multiplicities) on[0,2π].

If 2π is not a zero off , Z∗2π
( f ) = 0, then f has 5 zeros on[0,2π). By Lemma 1 (b), the

functiong := f ′+ f has at least 4 zeros on[0,2π) and again, by Lemma 1 (b), the function
g′−g = f ′′− f has at least 3 zeros on[0,2π).

If 2π is a simple zero off , Z∗2π
( f ) = 1, then f has 4 zeros on[0,2π) and a single zero

at 2π. By Lemma 1 (a), (b), the functiong has at least 4 zeros on[0,2π) and again, by
Lemma 1 (b), the functiong′−g = f ′′− f has at least 3 zeros on[0,2π).

If 2π is a double zero off , Z∗2π
( f ) = 2, then f has 3 zeros on[0,2π) and a double zero

at 2π. By Lemma 1 (a), (b), the functiong has at least 3 zeros on[0,2π). In addition, 2π is a
zero ofg. By Lemma 1 (a), (b), the functiong′−g = f ′′− f has at least 3 zeros on[0,2π).

Summarizing, if the multiplicity of 2π as a zero off is less than or equal to 2,Z∗2π
( f )≤ 2,

thenZ∗[0,2π)(g
′− g) ≥ 3. Taking into account that〈1,cost,sint〉 is an extended Chebyshev

space on[0,2π), we deduce thatg′−g = 0 andg(t) = Cet . Sinceg vanishes at least once,
we deduce thatC = 0 andg is the zero function. Sof ′+ f = 0 and, sincef vanishes at least
once, we finally deduce thatf is the zero function.

If 3 ≤ Z∗2π
( f ) ≤ 5, thenh(t) := f (2π − t) ∈ H̄ ′1 has 5 zeros (counting multiplicities) on

[0,2π] andZ∗2π
(h)≤ 2. By the above argument,h = 0 and thenf = 0.

So we have shown that̄H ′1 is an extended Chebyshev space on[0,2π].

Now we may proceed to the construction of the normalized B-basis. First we construct a
B-basis following the method suggested in Remark 2.3 and Theorem 2.4 of [1] and then, we
shall normalize it following Remark 4.1 of [1]. Let us describe the steps of this construction.
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First we start with the basis

(u0, . . . ,u5) :=
(
1, t,1−cost, t−sint, 1

2(cosht +cost)−1, 1
2(sinht +sint)− t

)
, t ∈ [0,2π],

whose wronskian matrix att = 0

W(u0, . . . ,u5)(0) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1


is lower triangular with positive diagonal entries.

Then we evaluate the wronskian matrix of(u5,u4, . . . ,u0) at t = 2π

W(u0, . . . ,u5)(2π) =


sinh(2π)/2−2π (cosh(2π)−1)/2 2π 0 2π 1
(cosh(2π)−1)/2 sinh(2π)/2 0 0 1 0

sinh(2π)/2 (cosh(2π)−1)/2 0 1 0 0
(cosh(2π)−1)/2 sinh(2π)/2 1 0 0 0

sinh(2π)/2 (cosh(2π)+1)/2 0 −1 0 0
(cosh(2π)+1)/2 sinh(2π)/2 −1 0 0 0


and compute itsLU factorization. We construct the basis(b0, . . . ,b5) defined by

(b5,−b4,b3,−b2,b1,−b0) = (u5,u4,u3,u2,u1,u0)U−1.

In order to normalize the obtained basis, we solve the linear system

L(c5,c4, . . . ,c0)T = (1,0, . . . ,0)T ,

and then the normalized B-basis is

(B0, . . . ,B5) := (c0b0, . . . ,c5b5).

Since the space is invariant under reflections we have for the functions of the normalized
B-basis

Bi(t) = B5−i(a+b− t), t ∈ [a,b], i = 0, . . . ,5.

So we only need to compute half of the basis functionsBi , 0≤ i ≤ 2.
Therefore the normalized B-basis is

B5(t) :=
(1− tanh2

π)(2t−sint−sinht)
4π(1− tanh2

π)−2tanhπ
,

B4(t) :=
tanh3

π(2t−sint−sinht)
(4π(1− tanh2

π)−2tanhπ)(tanhπ−2π)
− tanhπ(2−cost−cosht)

2(2π− tanhπ)
,

B3(t) :=
2t−sint−sinht
2(tanhπ−2π)

− tanhπ(2−cost−cosht)
2(tanhπ−2π)

+
t−sint

2π
,

B2(t) := B4(2π− t), B1(t) := B4(2π− t), B0(t) := B5(2π− t).
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Figure 1: Normalized B-basis of̄H1 on [0,2π]

Figure 1 shows the graphs of the normalized B-basis ofH̄1 on [0,2π].
Let us now obtain the control polygons of some curves. For this purpose we need the

coefficients of some functions with respect to the normalized B-basis. Let

α :=
1

tanhπ
− 2π

sinh2
π
≈ 0.9566321329

be the second Greville abscissa, then we can write down the coefficients of the functions 1, t
(see Table 1). Figure 2 represents a linear segment and its corresponding control polygon
P0 · · ·P5. Note the coincidence of the control pointsP0 = P3 andP2 = P5.

Table 1 also contains the coefficients of the trigonometric functions 1−cost,sint, and the
hyperbolic functions cosh(t−π),sinht with respect to the normalized B-basis.

Figure 3 shows a complete circle

(sint,1−cost), t ∈ [0,2π],

and its control polygon(
0
0

)(
α

0

)(
2π

2π/ tanhπ−1

)(
−2π

2π/ tanhπ−1

)(
−α

0

)(
0
0

)
.

Figure 4 shows the control polygon of the cycloid

(t−sint,1−cost), t ∈ [0,2π],

with respect to the normalized B-basis ofH̄1.
Finally, Figure 5 shows the control polygon of the catenary(

t/π−1,cosh(t−π)−coshπ
)
, t ∈ [0,2π].
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function c0 c1 c2 c3 c4 c5

1 1 1 1 1 1 1

t 0 α 2π 0 2π−α 2π

1−cost 0 0
2π

tanhπ
−1

2π

tanhπ
−1 0 0

sint 0 α 2π −2π −α 0

cosh(t−π) coshπ
2π

sinhπ

2π

sinhπ

2π

sinhπ

2π

sinhπ
coshπ

sinht 0 α 2π 2π 4π−α sinh(2π)

Table 1: Coefficients of linear polynomials, trigonometric and hyperbolic functions
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Figure 2: Control polygon of a linear segment in̄H1
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Figure 3: Control polygon of a circle
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Figure 4: Control polygon of a cycloid
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Figure 5: Control polygon of a catenary in̄H1
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