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FITTING SCATTERED DATA IN 2D
BY RBF TECHNIQUES

M. Bozzini and L. Lenarduzzi

Abstract. In this note we shall present some problems about fitting scattered data in 2d
from regular functions, and that, in our opinion, are to be studied more in depth.
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§1. Introduction

The purpose of this paper is to investigate the problems that may arise when we fit a set of
two dimensional scattered data by the very popular tool of radial basis functions (RBFs). In
particular we want to discuss the most recent techniques of the literature which aim to provide
a RBF approximation with two desirable properties: the good quality of reproduction and the
stability. These two aspects are strongly related to the data locations, to the data sizeN, that
is commonly said moderate (N of order of tens), standard (N of order of hundreds), large (N
of order of thousands), and to the regularity of the underlying functionf .

In fact it is known that when we interpolate data coming from a function regular enough,
the approximations feature convergence as the points get more dense. On the other hand, the
spectral condition of the interpolation matrix (see [16]) is bounded from above by a function
of the minimal distance among the point locations, which increases asN gets large.

Moreover, experimentally, one observes that the condition of the interpolation matrix,
depends on the configuration of the data points too.

Here we discuss the case of samples with moderate (§2) and standard size (§3), leaving
out the case of large size.

In our opinion, the techniques presented here provide partial solutions only to the afore-
said problems and some questions are still open.

In the following we callX = {xi}, i = 1, . . . ,N, the set of separated points inΩ ⊂ R2

of sizeN := |X| at which the functional values{ fi = f (xi)} are given. We assume that the
unknown functionf belongs toCα(Ω), α ≥ 1.

Let Φ : R2→ R2 be a radial basis function (RBF), that is to say a translation invariant
kernel on two argumentsx,y ∈ R2; in particular we shall consider the scaled multiquadric

Φδ (x) := −
√

δ 2 +‖x‖2. We shall denoteAX,X the matrix of interpolation associated to the
current kernelΦδ .
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§2. Sample of moderate size

The case of samples of moderate size arises for example in mathematical models in which
both a good accuracy and a low computational cost is searched for. An important and relevant
case is the solution of elliptical problems when the differential equation is part of an iterative
cycle. Problems of this kind occur in the recent modelling within nanotechnologies.

Another important case is connected to real world problems where it is impossible or too
expensive to get a large sample. Typical examples can be found in the medical field (heart
potential mapping).

We want to remark that in these cases we haven’t problem with the conditioning because
the points are generally well separated. In what follows we quote two papers. The first is
related to mathematical modelling and the second to recovering a function.

The paper [11] deals with elliptical problems. The authors make use of a collocation
method with scattered data to approximate the solution by shifts of the multiquadric function.

It is well known that multiquadric functions are radial functions very suitable in the case
of regular functions. In a recent paper, [10] (we shall return to this paper in §3), an algorithm
is presented to construct a stable multiquadric interpolant even by settingδ very large.

The usage of such a procedure for the solution of a collocation method on the unitary cir-
cle, can be used, in the case of functions smooth enough, to obtain accurate approximations.
The authors in their paper use this technique with only 50 collocation points for the solution
of a Poisson problem with Dirichlet conditions.

By choosing the optimal value ofδ as estimated by Rippa’s method [15], they get the
impressive accuracy of 10e(−12).

Concerning the recovering of a functionf , in [7] it is shown how it is possible to make
up, by the modest but sufficient information about the phenomenon, an accurate solution to
the problem.

Having few functional evaluations at disposal, the goodness of reconstruction depends on
the choice of the basis functions that must be as close as possible tof . If a function of the
basis were proportional tof , just one data would be enough to reconstructf .

So, we consider a set ofN linearly independent functions, each one depending on a pa-
rameter:

Dαi := {Ψi(x,αi), x∈Ω, αi ∈ Rs, s≥ 1, i = 1. . . ,N}.

When we prescribe a set of values{α̂i} we determine the basis{BΨ(α̂i)} and the corre-
sponding linear space. Then the problem is shifted to the choice of the basis more adherent
to the phenomenon.

Let us fix a positive operatorK that provides the measure of adherence tof asαi ∈ D
varies, whereD is the subdomain ofRs in which the unicity of the interpolating function is
guaranteed. Some examples ofK are: the entropy, the risk, the energy and the norm`p.

For example we consider the multiquadrics with variable shape: at the generic locationxi

of our sample set and with the Frenet frame(n, t)

Ψi(n, t) = {bi(n−ni)2 +(t− ti)2 +δ
2
i }1/2, αi = (bi ,δ

2
i ) ∈ D,

where
bi = bi(κ) = (1+κµiνi)−1, i = 1, . . . ,N;
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where µi is function of the gradient,νi is function of the radius of curvature;µi and νi

estimated by the sample. In addition,

• for uniform locations:δi = median (neighbouring distances fromxi);

• with empties of data:

δi = mean (neighbouring distances)

+0.5∗
(
median (neighbouring distances)−mean (neighbouring distances)

)
.

As operatorK we choose thè2 norm and this will allow to determine the optimalκ .
Sufficient theoretical conditions for the unique solvability of such interpolation processes are
discussed in [5].

Example 1. We takeN = 67 data points from the sygmoidal function on[0,1]2. The errors of
the tabulated reconstruction aree2 = 0.004 ande∞ = 0.026. On the contrary with the classical
Φδ , with the suitable valueδ = 0.1, the errors aree2 = 0.013 ande∞ = 0.067.

§3. Sample of standard size

The case ofN standard is the most considered in the literature.
In the case of scattered data, it is well known that RBFs are a useful tool. In the recent

paper [17], the authors show why and how RBFs are useful in various fields of Numerical
Analysis including approximation, interpolation and meshless methods for solving partial
differential equations.

Of particular interest are the multiquadrics because it was proved that they have exponen-
tial convergence whenf belongs to the reproducing kernel Hilbert space (RKHS) associated
to the multiquadric, see [13] and [16]. Estimates are provided in [14] for the case off outside
of the RKHS.

The main drawback of the multiquadric is that it may lead to bad conditioning of the linear
system to be solved. Schaback proved in [16] that that the spectral condition valueK2(AX,X)
of the interpolation matrixAX,X, is bounded from above by a function ofq(X)/δ , where
q(X) is the minimal distance among theX locations; such a function increases exponentially
asq(X)/δ diminishes.

There is a tradeoff between accuracy and stability for each radial basis. Many authors
have faced the problem by providing different solutions. Here we cite the most recent ones
at our knowledge. The already cited paper [10] provides a stable method to calculate (here
δ = 1/ε):

(1+(ε ‖x‖)2)1/2,

for each value ofε and in particular for small values of it, case in which the multiquadric
interpolant gives high accuracy generally but severe bad conditioning (see [13]). They calcu-
late the multiquadric interpolant on a circle of the planeε−complex where the matrixA(ε)
is well conditioned and they evaluate it at equidistant points; then they apply the inverse FFT
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and they get the coefficients of the Taylor expansion for a givenx in case that there are no
poles within the circle:

s(x,ε) = s0(x)+ ε
2s1(x)+ ε

4s2(x)+ · · ·

This method allows to get solutions stable and highly accurate where the function is very flat.
In [6] basis functions with strong decay at infinity and good stability are presented. They

are denoted kernel B-splines.
For the space of the polynomials up to orderk (whose dimension we denoteq(k)), the

N×q(k) matrix
PX,k :=

(
p j(xi)

)
xi∈X,1≤ j≤q(k)

and the space
VX,k =

{
α ∈ RN : PT

X,kα = 0
}

are defined.
It is assumedk > m, m minimal order of conditional positivityN ≥ q(k) > q(m), and

rankPX,k = q(k).
The kernel B-spline is defined as

uX,k,α(x) := ∑
x j∈X

α jΦ(x−x j)

with α ∈VX,k.
By denotingB = null(PT

X,k), the matrix of the linear system to be solved isBTAX,XB.
In the case off fitted by a polynomial of orderk without too many oscillations, the

scheme with orderk provides reconstructions very accurate, besides making the condition
K2(BTAX,XB) lower thanK2(AX,X) (lower of several orders fork large enough).

On 100 scattered points and using the multiquadric withδ = 0.01, we getK2(AX,X) =
4.22 e(6) andK2(BTAX,XB) = 1.20 e(6) for k = 1; we getK2(BTAX,XB) = 3.52 e(4) for
k= 6, and fork= 13 we getK2(BTAX,XB) = 7.72. Forδ = 1: we getK2(AX,X) = 3.83e(18),
K2(BTAX,XB) = 8.23e(16) with k = 1; we getK2(BTAX,XB) = 3.27e(12) with k = 6, and
we getK2(BTAX,XB) = 2.62e(4) with k = 13.

We note that when choosing the polynomial order less or equal than the orderm of the
conditionally positive definite radial basis, thel2− conditioning is not modified essentially.

In [6] there is an example with 121 data from the functionf (x,y) = (
√

x2 +y2−0.6)4
+

within Ω = [0,1]2. By takingk = 10,e2, the root mean squared error on a uniform grid, is of
the order of 10e(−5) and the lowering of the condition is of five orders.

Whenever f is not well fitted by a polynomial of orderk large, we can get accurate
reconstructions off also by taking orderk, provided that there are not regions too empty of
data and that there are several data along the boundary.

Example 2. We takeN = 148 data from humps and dips, see the locations in Figure 1,
rather scarce towards the boundary. The results fork = 4 andδ = 0.35 aree2 = 2 e(−3) and
e∞ = 3.9 e(−2), with a loss of accuracy fore2 of the 10% respect to the result withk = 1; it
is K2(BTAX,XB) = 4.6 e(11), whileK2(AX,X) = 1.6 e(14). The graphical output is shown in
Figure 2.
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Figure 1: Locations of the data points.

Both modalities said above not always are fully satisfying for practical reasons; for exam-
ple the kernel B-splines cannot be applied to PDE problems because the resulting RBF-PDE
coefficient matrix does not enjoy the property of being strictly positive.

Therefore the researchers to fix the problem of ill conditioning have studied methods of
approximation (no more of interpolation) that provide approximating functions with errors
less or equal than those of interpolation.

In [12], Lagrangian basis functions are constructed according to the principle of the least
squares. Namely , letA be theN×N collocation matrix. For the generic pointxi , we consider
a local neighbourhood ofm< N centers, and we denoteSi its index set.

Let Bi be them×N submatrix formed by selectingm rows ofA from Si , the least squares
problem

‖ Biwi−ei ‖2, i = 1, . . .N,

is solved, wherewi is thei− th row of the matrixW such thatWA' I from which

Aα = b =⇒ α = Wb.

Another way, described in [8], and suitable for non uniformely scattered data is that one
of constructing a multiquadric approximant according to the`2 norm.

Precisely the purpose is that one of obtaining a stable approximating function close to the
unstable interpolant of a smooth function.

The condition of the matrix of interpolation depends onq(X)/δ , as said above, but ex-
perimentally one observes that the condition ofAX,X depends on the configuration of the data
too and that a bad local configuration implies a bad global condition. In [8] we propose an
algorithm that here we summarize briefly.

A thresholding value to bound the condition number of the local systems of interpolation
is computed.

The local thinning of the points in order not to overcome the threshold is done on the
points as sorted by the procedure by Floater and Iske in [9] (such a sorting increases the
minimal distance between points).
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Figure 2: Graphical output.

After this step that has made the local regions more homogeneous for what condition is
concerned, a global least squares global approximant is constructed respect to all the data, by
MQ basis functions centered at those data points not discarded during the step of controlling
the local regions (we denoteT this set of knots).

Example 3. We takeN = 149 data onΩ = [0,1]2 for the function 2cos(10 x) sin(10 y)+
sin(10 xy). We take the multiquadric withδ = 0.35. The algorithm selects theT subset
of size 148. It isK2(AX,T) = 6.6 e(10); e2(X,T) = 6.5 e(−3); e∞(X,T) = 1.2 e(−1).
See the locations ofX dotted andT circled in Figure 3 and the graphical output in Fig-
ure 4; notice that there are regions rather empty of data, also at the boundary. Compare
with K2(AX,X) = 2.1 e(19), (so large because of a couple of points at distance 10−9 from
each other), with warning of not full rank from MatLab, and withe2(X,X) = 6.5 e(−3) and
e∞(X,X) = 1.2 e(−2).

We recall that a way of avoiding bad conditioning is also that one of selecting a subset
of significant data from(X, fX) and of interpolating this subset. In [4] a scheme is proposed
to choose a small subset. Then this subset is interpolated by using hexagonal multiquadric
kernel B-splines, that are proposed in [6], but with an adaptive construction of different shapes
and scales.
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Figure 3: Locations ofX andT.
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