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Abstract. In this paper, we give sufficient conditions for controllability of a class of
partial neutral functional differential equations with infinite delay. We suppose that the
linear part is not necessarily densely defined but satisfies the resolvent estimates of the
Hille-Yosida theorem. The results are obtained using the integrated semigroups theory.
We also announce and avoid a serious problem in the two published papers [9] and [8].
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§1. Introduction

In this paper, we prove a result about controllability to the following partial neutral functional
differential equation with infinite delay{

∂

∂ t Dxt = ADxt +Cu(t)+F(t,xt), t ≥ 0,

x0 = φ ∈B,
(1)

where the statex(.) takes values in a Banach space(E, |.|), the controlu(.) is given in
L2([0,T] ,U), T > 0, the Banach space of admissible control functions withU a Banach
space,C is a bounded linear operator fromU into E, A : D(A) ⊆ E→ E is a linear operator
onE, B is the phase space of functions mapping(−∞,0] into E, which will be specified later,
D is a bounded linear operator fromB into E defined by

Dϕ = ϕ(0)−D0ϕ for anyϕ ∈B,

D0 is a bounded linear operator fromB into E and for eachx : (−∞,T]→ E, T > 0, and
t ∈ [0,T], xt represents, as usual, the mapping defined from(−∞,0] into E by

xt (θ) = x(t +θ) for θ ∈ (−∞,0] .

F is anE-valued nonlinear continuous mapping onR+×B.
Treating equations with infinite delay such as Eq. (1) often requires more sophisticated

methods and techniques than the finite delay case. For example, to avoid repetitions and
understand the interesting properties of the phase space, we suppose that(B,‖.‖B) is a
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(semi)normed abstract linear space of functions mapping(−∞,0] into E, and satisfies the
following fundamental axioms which have been first introduced in [18] and widely discussed
in [23].

(A) There exist a positive constantH and functionsK(.), M(.) : R+→R+, with K contin-
uous andM locally bounded, such that for anyσ ∈R anda> 0, if x : (−∞,σ +a]→E,
xσ ∈B andx(.) is continuous on[σ ,σ +a], then for everyt in [σ ,σ +a] the following
conditions hold:

(i) xt ∈B,

(ii) |x(t)| ≤ H ‖xt‖B, which is equivalent to

(ii’) |ϕ(0)| ≤ H ‖ϕ‖B, for everyϕ ∈B,

(iii) ‖xt‖B ≤ K(t−σ) sup
σ≤s≤t

|x(s)|+M (t−σ)‖xσ‖B.

(A1) For the functionx(.) in (A), t 7→ xt is aB-valued continuous function fort in [σ ,σ +a].

(B) The spaceB is complete.

Example 1. Define for a constantγ the following standard space

Cγ :=
{

φ : (−∞,0]→ E continuous such that lim
θ→−∞

eγθ
φ(θ) exists inE

}
.

It is known from [23] thatCγ with the norm‖φ‖
γ
= supθ≤0eγθ |φ(θ)| , φ ∈Cγ , satisfies the

axioms(A), (A1) and(B) with H = 1, K(t) = max(1,e−γt) andM(t) = e−γt for all t ≥ 0.

Throughout, we also assume that the operatorA satisfies the Hille-Yosida condition:

(H1) there existM̄ ≥ 0 andω ∈ N such that]ω,+∞[⊂ ρ(A) and

sup
{
(λ −ω)n

∥∥(λ I −A)−n
∥∥ : n∈ N, λ > ω

}
≤ M̄. (2)

Let A0 be the part of the operatorA in D(A), which is defined by{
D(A0) =

{
x∈ D(A) : Ax∈ D(A)

}
,

A0x = Ax, for x∈ D(A0).

It is well known thatD(A0) = D(A) and the operatorA0 generates a strongly continuous
semigroup(T0(t))t≥0 onD(A).

Recall that ([27]) for allx∈ D(A) andt ≥ 0, one has
∫ t

0 T0(s)x∈ D(A0) and(
A
∫ t

0
T0(s)xds

)
+x = T0(t)x. (3)

We also recall that(T0(t))t≥0 coincides onD(A0) with the derivative of the locally Lipschitz
integrated semigroup(S(t))t≥0 generated byA on E. Which is, according to [5] and [24], a
family of bounded linear operators onE, that satisfies
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(i) S(0) = 0,

(ii) for any y∈ E, t→ S(t)y is strongly continuous with values inE,

(iii) S(s)S(t) =
∫ s

0(S(t + r)−S(r))dr for all t,s≥ 0, and for anyτ > 0 there exists a constant
l(τ) > 0 such that

‖S(t)−S(s)‖ ≤ l(τ) |t−s| for all t,s∈ [0,τ] .

This integrated semigroup is exponentially bounded, that is, there exist two constantsM̄ and
ω such that‖S(t)‖ ≤ M̄eωt for all t ≥ 0.

The theory of neutral functional differential equations with infinite delay in infinite di-
mension has been recently developed and it is still a field of research (see, for instance, [20],
[10] and the references therein). Our aim in this article is to announce and correct a serious
problem in two published papers [9] and [8]. That is, the hypotheses (H8 i) in [8] and (H4) in
[9] mean that the interval of existence depends on the initial function which contradicts the
followed definition of (local) controllability. To avoid the problem, we suppose conditions
that assure global existence. We give sufficient conditions for controllability of partial neu-
tral functional differential equations with infinite delay. We suppose that the linear part is not
necessarily densely defined but satisfies the resolvent estimates of the Hille-Yosida theorem.
The results are obtained using the integrated semigroups theory. We make use of the notion
of integral solution and we do not use the analytic semigroups theory.

§2. Main results

We start by introducing the following definition.

Definition 1. Let T > 0 andϕ ∈B. We say that a functionx := x(.,ϕ) : (−∞,T)→ E, 0 <
T ≤+∞, is anintegral solutionof Eq. (1) if

(i) x is continuous on[0,T),

(ii)
∫ t

0 Dxsds∈ D(A) for t ∈ [0,T),

(iii) Dxt = Dϕ +A
∫ t

0 Dxsds+
∫ t

0Cu(s)+F(s,xs)dsfor t ∈ [0,T),

(iv) x(t) = ϕ(t), for all t ∈ (−∞,0].

We deduce from [1] and [31] that integral solutions of Eq. (1) are given forϕ ∈B such
thatDϕ ∈ D(A) by the following systemDxt = S′(t)Dϕ + lim

λ→+∞

∫ t

0
S′(t−s)Bλ (Cu(s)+F(s,xs))ds, t ∈ [0,T) ,

x(t) = ϕ(t), t ∈ (−∞,0] ,
(4)

where
Bλ = λ (λ I −A)−1. (5)

To obtain global existence and uniqueness of integral solutions, we have supposed in [1] that
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(H2) K(0)‖D0‖< 1.

(H3) F : [0,+∞)×B→ E is continuous and there existsβ0 > 0 such that

|F(t,ϕ1)−F(t,ϕ2)| ≤ β0‖ϕ1−ϕ2‖B for ϕ1,ϕ2 ∈B andt ≥ 0.

Using Theorem 7 in [1], we get the following result.

Theorem 1. Assume that (H1), (H2) and (H3) hold. Letϕ ∈B such thatDϕ ∈D(A). Then,
there exists a unique integral solution x(.,ϕ) of Eq. (1), defined on(−∞,+∞).

Definition 2. Under the above conditions, Eq. (1) is said to becontrollableon an interval
J = [0,δ ], δ > 0, if for every initial functionϕ ∈B with ϕ(0)−D0ϕ ∈D(A) ande1 ∈D(A),
there exists a controlu∈ L2(J,U) such that the solutionx(.) of Eq. (1) satisfiesx(δ ) = e1.

Theorem 2. Suppose that (H1), (H2) and (H3) hold. Let x(.) be the integral solution of Eq.
(1) on(−∞,δ ) , δ > 0, and assume that (see [28]) the linear operator W from U intoD(A)
defined by

Wu= lim
λ→+∞

∫
δ

0
S′(δ −s)BλCu(s)ds,

induces an invertible operator̃W on L2(J,U)/KerW and there exist positive constants N1

and N2 satisfying‖C‖ ≤ N1 and
∥∥∥W̃−1

∥∥∥ ≤ N2, then Eq. (1) is controllable on J= [0,δ ],
provided that (

‖D0‖+β0M̄eω̄δ
δ +β0N1N2M̄2eω̄δ

δ
2
)

Kδ < 1,

where Kδ := max0≤t≤δ K (t) .

Proof. Let x(.) be the integral solution of Eq. (1) on(−∞,δ ) , δ > 0. It suffices to take for
t ∈ J

u(t) = W̃−1
{

lim
λ→+∞

∫
δ

0
S′(δ −s)BλCu(s)ds

}
(t).

That is

u(t) = W̃−1
{

x(δ )−D0xδ −S′(δ )Dϕ− lim
λ→+∞

∫
δ

0
S′(δ −s)Bλ F(s,xs)ds

}
(t).

We can show that by a fixed point argument, with this control the integral solutionx(.) of
Eq. (1) exists and satisfiesx(δ ) = e1. (see [1] for details about this method).

Remark1. Supposing that all linear operatorsW from U into D(A) defined by

Wu= lim
λ→+∞

∫ b

a
S′(b−s)BλCu(s)ds, (6)

0≤ a < b≤ T, T > 0, induce invertible operators̃W on L2([a,b] ,U)/KerW such that there
exist positive constantsN1 andN2 satisfying‖C‖ ≤N1 and

∥∥W̃−1
∥∥≤N2, takingδ = T/N, N

large enough and following [1], a similar argument as the above proof can be used inductively
in [nδ ,(n+1)δ ], 1≤ n≤ N−1, to see that Eq. (1) is controllable on[0,T] for all T > 0.
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