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OPTIMAL INSPECTION OF A SYSTEM WITH

TWO TYPES OF FAILURES UNDER AGE

DEPENDENT MINIMAL REPAIR

F. G. Badía and M. D. Berrade

Abstract. This work describes a maintenance model for a system that presents failures of
two types, revealed minor failures (type R) and unrevealed catastrophic failures (type U). The
latter are detected by means of an inspection policy at periodic timeskT, k = 1,2, . . . Moreover
it is assumed the possibility of imperfect inspections, that is, false alarms of failure as well
as undetected failures after an inspection. Type R failures are removed by a minimal repair
whereas a perfect repair follows the type U failures. The maintenance procedure is completed
with a renewal of the system after theNth type R failure. The objective function is the expected
cost in an infinite time span and interest centers on the existence of a finite optimum policy.

Keywords:Maintenance, optimum policy, reliability, unrevealed failures.

AMS classification:90B25, 60K10.

§1. Introduction

A system failure often means the reduction —partial or even complete— of its ability to fulfill
its required function. Most of the times the consequences of a failure can be measured from
an economic point of view. Thus, the failure of a component in a manufacturing plant can
be responsible of the defective production as well as of the cost incurred due to downtime.
The reliability of any system turns out to be a crucial issue and so does the maintenance
procedures.

Corrective maintenance is performed after a system failure and can be of different types.
The perfect repair brings the system back to anas-good-as-newcondition by any procedure
or even the whole replacement of the system by a new identical one. After an imperfect repair
the device is returned to the functioning state but it is no longeras-good-as-new. In case that it
recovers the state just prior to failure (as-bad-as-old), the repair is known as minimal repair. It
is important to remark that different probabilistic structures emerge depending on the quality
of maintenance actions. In the works of Brown and Proschan [5] as well as Nakagawa and
Yasui [7] an imperfect maintenance is achieved with probabilityp or a perfect one with
probability 1− p. Nakagawa and Yasui [7] study policies which minimize the expected cost
rates. Blocket al [4] present also a perfect repair in combination with a minimal repair.
Brown and Proschan [5] as well as Blocket al [4] analyze the preservation and monotone
properties of the model.

In addition, another classification comes out regarding the failure type. Those detected as
soon as they occur are known as revealed failures. However many engineering systems may
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undergo the so-called unrevealed failures, that is, those that are detected only by special tests
or inspection. Failures of this sort are typical in systems that are not in continuous operation
such as spares or units in stand-by mode. If the failure happens while the mechanism is in an
idle period it will remain undiscovered until the following attempt of use unless the system
is monitored. The periodic inspection appears to be the right alternative to overcome the
prohibitive cost of a continuous monitoring. Badíaet al. [1] consider the cost optimization
by selection of a unique interval for both inspection and maintenance. Zequeira and Bérenger
[10] provide an inspection policy along with preventive actions for a system subject to three
competing failure types. In a recent work Biswaset al. [3] analyze the availability function of
a periodically inspected system that experiences a fixed number of imperfect repairs before
being perfectly repaired.

Periodic inspections are often applied to detectors of fire, gas, as well as pressure and
safety valves installed to prevent special risks. The safety systems of nuclear plants are
typical examples of systems under unrevealed failures (Vaurio [9]). In this work we consider
a system subject to both failure types, revealed and unrevealed, and design an inspection
policy along with a maintenance procedure. The shorter the times between inspections the
smaller the downtime. However each inspection involves a cost and the inspection frequency
should be weighted against the cost incurred. In this article we aim at minimizing the cost per
time unit over an infinite time span and interest centers on the condition under which there
exists an optimum inspection interval. The maintenance model along with the cost function
as well as the main results concerning the existence of an optimum policy are in the second
section where the relevant conclusions are also provided. Some examples illustrating the
theoretical results are presented in the last section. This model constitutes an extension of
former inspections policies provided in Badíaet al [1] and [2].

§2. The model and main results

In what follows we consider a system that may undergo two failure types: revealed minor
failures (R) and unrevealed catastrophic failures (U). A failure occurring at timet, will be of
the type R with probabilityp(t) and of the type U with probabilityq(t) = 1− p(t). Computers
serve as practical example of systems of this sort. The existence of a file containing a virus
should be checked by means of anti-virus programs and, more often than not, can cause a
serious damage in the hard disk. However failures in the power supply are detected as soon
as they occur and in general are of less importance.

Periodic inspections are carried out to detect type U failures. LetT denote the elapsed
time between two consecutive inspections. We also assume the possibility of imperfect in-
spections as in Badíaet al [1]. That is, false alarms of failure as well as undetected failures
after an inspection. A minimal repair follows the type R failures meanwhile a perfect repair
is carried out every time that a type U failure is discovered. The maintenance procedure is
completed with a perfect repair after theNth type R failure so as to prevent system wearout.
Times of inspections are assumed to be negligible but times of both perfect and minimal
repairs are taken into account.
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2.1. Notation and former results

• X time to first failure.

• r(x) failure rate corresponding toX.

• H(x) cumulative failure rate,H(x) =
∫ x

0 r(u)du.

• HR(x) =
∫ x

0 p(t)r(t)dt cumulative failure rate of the time to the first type R failure.

• HU (x) =
∫ x

0 q(t)r(t)dt cumulative failure rate of the time to the first type U failure.

It follows that
H(x) = HR(x)+HU (x).

• Y time to the first type U failure.

• Gi time to theith type R failure,i = 1,2, . . . ,N.

• N[0, t] number of type R failures in[0, t].

Next, the different times of repair are defined:

• tU time of the perfect repair of a type U failure.

• tR time of the perfect repair after theNth failure of the typeR.

• tmr time of the minimal repair of a type R failure.

Regarding to costs, the following ones are considered:

• ci unitary cost of inspection.

• cf unitary cost of false alarm.

• cd cost rate per unit of downtime. Downtime occurs while a type U failure remains
undiscovered or in case that the system is being repaired.

• cmr,i(t) cost of the minimal repair incurred after theith type R failure that occurs at time
t, i = 1,2, . . . ,N−1.

• cr1 cost of the perfect repair after a type U failure.

• cr2(N, t) cost of the perfect repair that follows theNth type R failure. It depends on both
N and the failure time,t.

The objective function is the expected cost per unit of time over an infinite time span. It
depends on both time between inspections,T, and the number,N, of type R failures previous
to the perfect repair. We provide a necessary and sufficient condition for the existence of an
optimal inspection interval,T?.

The next proposition contains some basic results related to the age dependent minimal
policy (see Blocket al [4]) that will be used through this article.
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Proposition 1. Under the model assumptions, the following results hold:

(i) The density and reliability functions corresponding to the first type U failure, Y , are

fY(x) = q(x)r(x)e−HU (x), x≥ 0,

FY(x) = e−HU (x), x≥ 0.

(ii) (Nt)t with Nt = N[0, t] is a non homogeneous Poisson process (NHPP) with HR(t) being
its mean function.

(iii) The density and reliability function corresponding to the time to the ith failure, Gi (i =
1,2, . . . ,N) are

fGi (x) = p(x)r(x)
HR(x)i−1

(i−1)!
e−HR(x), x≥ 0,

FGi (x) =
i−1

∑
j=0

HR(x) j

j!
e−HR(x), x≥ 0.

(iv) Y is independent from both the process(Nt)t and the variables Gi .

The probability of a false alarm in an inspection is denoted byα meanwhileβ represents
the probability that a type U failure is not detected.

2.2. Cost function

The model also involves the following random variables:

– K1 number of inspections previous to a type U failure.

– K2 number of inspections previous to theNth type R failure.

– K3 number of inspections after a type U failure until it is detected.

Therefore

K1 =
⌊

Y
T

⌋
, K2 =

⌊
GN

T

⌋
,

wherebxc denotes the integer part of a real numberx. In additionK3 is a geometric random
variable with parameter 1−β . Hence its mean value is

E(K3) =
1

1−β
= δ .

A cycle, denoted byτ is the time span between two consecutive renewals of the system.
Let A1 andA2 be the following events:A1 = {Y < GN} y A2 = {Y > GN}. ThereforeA1

represents that the cycle ends after the perfect repair when a type U failure is detected.A2

corresponds to the the case when the cycle is completed after the perfect repair that follows



Optimal inspection of a system with two types of failures under age dependent minimal repair 211

theNth failure. Denoting by 1A the indicator function of the eventA andMR the number of
minimal repairs in a cycle. The next equalities are obtained by using previous results on the
age-dependent minimal repair model (Blocket al [4]):

MR= N[0,Y]1A1 +(N−1)1A2 = N[0,Y]1{N[0,Y]≤N−1}+(N−1)1{N[0,Y]≥N},

E(MR) =
N−2

∑
k=0

∫ ∞

0

HR(x)k

k!
p(x)r(x)e−H(x)dx.

The length of a cycle turns out to be

τ = T(K1 +K3)1A1 +GN1A2 + tU1A1 + tR1A2 + tmrMR.

The probabilities ofA1 andA2 are derived from the results in Proposition 1:

P(A1) =
∫ ∞

0
FGN(x) fY(x)dx=

N−1

∑
k=0

∫ ∞

0
q(x)r(x)

HR(x)k

k!
e−H(x)dx,

P(A2) =
∫ ∞

0
FY(x) fGN(x)dx=

∫ ∞

0
p(x)r(x)

HR(x)N−1

(N−1)!
e−H(x)dx.

XN andX?
N denote two auxiliary random variables with the following density functions:

fXN(x) =
p(x)r(x)HR(x)N−1

(N−1)! e−H(x)

P(A2)
, fX?

N
(x) =

∑N−1
k=0 q(x)r(x)HR(x)k

k! e−H(x)

P(A1)
,

andS?
N(T) the next expectation

S?
N(T) = E

(⌊
X?

N

T

⌋)
.

Then
E(K11A1) = P(A1)S?

N(T), E(GN1A2) = P(A2)E(XN).

The mean number of minimal repairs in a cycle is obtained by means of well known results
on minimal repair. Hence the mean length of a cycle turns out to be

E(τ) = P(A1)T(S?
N(T)+δ )+P(A2)E(XN)+P(A1)tU +P(A2)tR+ tmrE(MR).

The cost of a cycle,C(τ), is expressed in terms of the random variables below.

– I number of inspections in a cycle, I = (K1 +K3)1A1 +K21A2.

– I0 number of inspections in a cycle previous to a type U failure,I0 = K11A1 +K21A2.

– F number of false alarms in a cycle.

– CMRcost incurred in a cycle due to the minimal repairs.

– D downtime of the system in a cycle,D = τ− (YA1 +GN1A2).
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p N∗ T?
N? Q(T?

N? ,N?)
0.1 2 3.246 11.677
0.2 2 2.75 11.494
0.3 3 3.57 11.304
0.4 3 3.092 11.085
0.5 4 3.75 10.869
0.6 5 4.215 10.638

Table 1: Optimum policy,N?, T∗N? and optimum cost,Q(T?
N? ,N?).

The distribution ofF whenI0 is known is a binomial random variable with parametersn = I0
andp = α. Therefore

E(F) = αE(I0).

In addition

CMR=

(
N[0,Y]

∑
i=1

cmr,i(Gi)

)
1A1 +

(
N−1

∑
i=1

cmr,i(Gi)

)
1A2

=

(
N[0,Y]

∑
i=1

cmr,i(Gi)

)
1{N[0,Y]≤N−1}+

(
N−1

∑
i=1

cmr,i(Gi)

)
1{N[0,Y]≥N}.

The cost of a cycle is

C(τ) = ci I +cf F +cr11A1 +cr2(N,GN)+CMR+cdD.

The next result is obtained from well-known results related to the age-dependent minimal
repair model (Blocket al [4]):

E(CMR) =
∫ ∞

0

N−2

∑
j=0

cmr, j+1(x)
HR(x) j

j!
e−HR(x)p(x)r(x)e−HU (x)dx.

Some additional calculations allow to derive the expected cost of a cycle:

E(C(τ)) = cdE(τ)+Ψ(N)+(ci +cf α)(P(A1)S?
N(T)+P(A2)SN(T)),

where

SN(T) = E

(⌊
XN

T

⌋)
,

Ψ(N) = P(A1)(ciδ +cr1−cdE(X?
N))+P(A2)(E(cr2(N,XN))−E(XN))+E(CMR).

The cost function, denoted byQ(T,N), is the expected cost per unit of time over an infinite
time span. The key result of the renewal-reward processes states thatQ(T,N) converges, as
time goes by, to the ratio between the expected cost of a cycle and its expected length (see
Ross [8]). Therefore, the forthcoming result holds.
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Proposition 2. Q(T,N) turns out to be

Q(T,N) = cd +
Ψ(N)+(ci +cf α)[P(A1)S?

N(T)+P(A2)SN(T)]
E[τ]

. (1)

Theorem 3. If P(A1) > 0, then there exists T?N ( 0 < T?
N < ∞) that minimizes Q(T,N) in 1 if

and only if
Ψ(N) < 0. (2)

Proof. Using some properties ofS?
N(T) andSN(T) already derived (Badíaet al [1]), if 0 <

P(A1), it follows that

lim
T→∞

E(τ) = ∞ and lim
T→∞

(P(A1)S?
N(T)+P(A2)SN(T)) = 0,

lim
T→0

E(τ) < ∞ and lim
T→0

(P(A1)S?
N(T)+P(A2)SN(T)) = ∞.

Therefore
lim
T→0

Q(T,N) = ∞ and lim
T→∞

Q(T,N) = Q(∞,N) = cd.

If Ψ(N) < 0, there existsT0 ∈ (0,∞) such thatP(A1)S?
N(T0)+ P(A2)SN(T0) = −Ψ(N).

Q(T,N) > cd for T < T0 andQ(T,N) < cd for T > T0 and Theorem 3 holds.
WheneverΨ(N)≥ 0, Q(T,N)≥ cd = Q(∞,N) andT?

N = ∞.

Remark1. Condition (2) is equivalent to the next one involving the expected uptime,E[A]:

P(A1)E(X?
N)+P(A2)E(XN) = E(A) >

P(A1)(ciδ +cr1)+P(A2)E(cr2(N,XN))
cd

.

The foregoing inequality implies that an inspection policy is rewarding whenever the
system uptime compensates the costs incurred.

§3. Examples

Time to failure is assumed to be an exponential random variable with mean equal to one.The
probabilities of false alarm and undetected failure after inspection are, respectively,α = β =
0.1. The rest of the parameters in the model are given as follows:ci = 1, cf = 4, cd = 12,
cr1 = 10,cmr,i(t) = it , , i = 1, . . . ,N−1, cr2(N, t) = Nt, tU = tR = 1, tmr = 0.5.

With respect to the the optimum number of type R failures previous to the perfect repair,
N?, we follow the procedure proposed by Nakagawa [6]. First, the optimumT?

N is derived,
for a givenN, afterwards the optimum,N?, is obtained. Then

Q(T?
N? ,N?) = min

N
Q(T?

N ,N).

Table 1 shows both the optimum inspection interval,T?
N? , and the optimum number of

type R failures,N?, previous to the perfect repair as well as the corresponding optimum cost,
Q(T?

N? ,N?). Table 1 reveals that the optimum inspection interval,T?
N? is non-monotonic with

p. Nevertheless, the greater the probability of a type R failure,p, the greaterN? and the lower
the optimum cost. Note that whenp increases, the probability of a catastrophic failure, which
causes higher costs than a revealed one, is reduced and so is the optimum cost.
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