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A COMPACTNESS RESULT FOR A
PSEUDO-PARABOLIC CONSERVATION LAW
WITH CONSTRAINT

S. N. Antontsev, G. Gagneux and G. Vallet

Abstract. This work deals with the study of a compactness result for a class of pseu-
doparabolic problems of typedu — div{a(diu+ E)O(u+ tdu)} = 0. with boundary
conditions that takes explicitly into account a nonlinear mag of
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§81. Introduction

In this paper, we are interested in the mathematical analysis of a nonlinear pseudoparabolic
problem. This study rises from geological basin formation models initially developed by the
Institut Francais du Pétrole (IFP). The main feature of these models is characterized by a
constraint on the time-derivative of the solution that leads us to consider an original class of
conservation laws.

A more precise description of these models have been exposed by S. N. Antentsev
al. [2, 3, 1], G. Gagneuxt al. [7, 6] and G. Vallet [11] for the mathematical aspect of the
monolithological case and R. Eymaetlal. [5] for a numerical approach.

Let us consider a sedimentary basin whose base, denot@diby fixed connected open
subset ofRY (d = 1,2 in this framework) with a Lipschitzian boundafy= MU eU dl s
(with T'sNT e = 0) and an outward unit normal denoted By

The sediment height naturally satisfies the mass balance equatspm:+ div{d} = 0 in
Q, whered follows a dynamic extension of the law of Darcy (see C. Cuestal. [4] for
example). Moreover, one introduces a maximum erosionEatach that:—du < E in Q,
whereE takes into account the composition, the structure and the age of the sediment. The
coupling of these two constraints is clearly an essential issue since both diffusive sedimen-
tation or erosion and weather limited erosion can occur at the same time in a basin. Then
one introduces a new unknownsatisfying 0< A < 1 and playing the role of a flux limiter,
according to the Darcy-Barenblatt’s lagy= —AO(u+ tdu) in Q with 7 > 0.

In order to give a mathematical modellingof Th. Gallouét proposes in [9] the follow-
ing formulation: 1- 4 > 0, du+ E > 0 with (1— A1) (du+E) = 0 a.e. inQ. Moreover,
if H denotes the maximal monotone graph of the Heaviside function, the unilateral global
constraint is then implicitly contained in the formulatiare H(diu+E) (see G. Vallet [11]
and G. Gagneugt al. [6] for information about that).
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For the boundary conditions: on the boundBgyone assumeg| .fi = 0; on the boundary
s, one assumes the unilateral condition:.n € B(du), where B is the real graph of a
maximal monotone operator such that (cf. J.-L. Lions [10, p. 422])

0eB(0), WxyeR,V(&,0)eB(X) xB(y), (§—06)(x—y)>0 (monotone),

(in particular, for allx > 0, B(x) C [0,40c[ and 3 (—X) C| — ,0]), that there exist€1,Cz in
R such that (growth control),

VX e R, VO € B(X), C102 < x8 +Cp, 1)
there exists a sequent&)keny C €1 (R), compatible with the growth control, such that
fc(0) =0, fg >0, fy(+®) =+ and f * — B~ uniformly on any compact set.
Therefore, the mathematical modelling has to express respectively:

the mass balance of the sedimentd.u—div(AO[u+tdu]) =0inQ, (2)

_ .Nn=00n]0, T[xI
the boundary conditions 0#Q =T UTs: q 0T [xTe, (3)
q.n€ B(au)on]0,T[xIs,
the global unilateral constraint :A € H(diu+E) in Q, 4)
the initial condition : ui—p = Up, (5)

where one assumes:> 0, up € H(Q) andE € C([0, T];R ™).
This general problem remains an open problem and the aim of this paper is to give some
mathematical results whethis replaced by a continuous functianan approximation Yosida
of H for example.
Thus, the pseudoparabolic problem may be written: €ira priori in H1(0,T;H(Q))
such that, for any in H(Q) and for a.et in ]0, T|,

/Q{atuv+ a(u+E)O[u+ tar] Dv}dx+/l_ B(auyvdo >0, (6)

with the initial conditionuji—p = Up a.e. inQ.
In the sequed is a continuous function defined @that satisfies

0<a<M, a(x)=0if x<0 anda(x) >0 if x>0,

in order to have implicithg,u+ E > 0 a.e. inQ andA(x) = [Ja(s)ds

Moreover, and for technical reasons one assumesathat ! is Holder continuous with
exponent; in R*.
Remarkl. Note that

i) the suitable test function= —(diu+E)~ leads to:

/ (atu+E)’2dx—/ 6(81u+E)*dG:—/ (QU+E) Edx<0 foraetin]o,T[,

Q s Q

where6 € (adu). Since—0(du+E)~ > 0, one gets the moving obstacle constraint
dgu+E >0a.e. inQ.
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ii) Sinceup € H(Q), ubelongs td_*(0,T,H(Q)) anda;u belongs td.*(0, T,H(Q)).
Indeed, by using the test functiop = " ﬁ with £ > 0 and passing to limits
with ¢ towards O lead to

%HatUHEz(Q)—|—/Q[|[U+TatU]DatUdX§ 0. @)
Thus, on the one hand, for aten |0, T|,
Ul 20 < lluolliz(q) + VElldulli2(or2(q);
on the other hand,
w12 )+ 5 108w < C D[ g

and one concludes.

§2. Existence of a strong solution

2.1. A unigueness lemma

The key for understanding compactness properties in the regularizing procedure is the fol-
lowing assertion:

Lemma 1. Let us considek in H(Q), E areal number a monotone graph (not necessary
maximal) and b an essentially bounded nonnegative continuous function such that

X
vy € R, [b(X) - b(y)| < clB(X) ~B(y)[*2 where BX) = [ b(s)ds
0
Then, there exists at most one solution w i &) such that, for any v in HQ),
Oe / {wv+b(w-+ E)D[K+W]Dv}dx+/ B(w)vdo.
Q Is

Proof. One proves this result by using a usbakrgument with the following approximation
of the positive parpy, : t — py(t) = min(1,In(te/u)*), u > 0. O

2.2. The univoque case
Let us assume in this section tifate €1(R) with 3(0) = 0 andp’ > 0.

2.2.1. Semi-discretized non degenerated processes

Let us consideh > 0, up in HX(Q), E > 0 and, for a given positive,, a, = max «, a).
Proposition 2. There exists a uniqueun H(Q) such that, for all v H(Q),

/Q{uo‘;uov—kaa(ua;uo—kE)D[ua—FTuaEUO}DV}C‘X‘*‘ i B(u“;uo)vdG:O.

Proof. The proof is classical. One uses the fixed point theorem of Schauder-Tychonov for
the existence; then Lemma 1 for the uniqueness. O
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2.2.2. Semi-discretized degenerated problem

Let us consideh > 0, up in HY(Q), E > 0 and in the sequed(x) = O for any nonnegative
realx.

Proposition 3. There exists a unique u in*iQ) such that, for all vv H1(Q),

O:/Q{u_huoera(u_huO+E>D{u+ru_huo}mv}dx+ rsﬁ(u_huo)vdo.

Moreover,(u—ug)/h+E > 0a.e. inQ.

Proof. Note that the last part of the inequality is obvious by using —((u—ug)/h+E)".
By consideringy = fou to /h(aa(s+ E))~!dsin the equation of proposition (2), one gets

C 1 uqg—Ugll2 Ug — Ug Ug — Up
Mmea$l’) M h iz ‘ h ’ Hﬁ( ) 209 (g)
+%[”uaHal(Q)+||ua_U0||a1(Q)_HUOHHl(Q)]'

Therefore{(ug — Ug)/N)¢ and(uy )« are bounded sequencesHA(Q), and passing to limits
is possible since, up to a sub-sequer{cg,— Up)/h converges a.e. i@ andl. At last, the
uniqueness can be proved by using Lemma 1 with(h+ 1) a, kK = up/(h+ 7) and the graph

x— {B(xX)}. O

2.2.3. Existence of a solution

Inductively, the following result can be proved: let us consider N* with h=T /N, up in
H(Q) andEX > 0 for any integek.

Proposition 4. For u® = g, there exists a unique sequern(@¥)y in H1(Q) such that, for all
ve HY(Q),

kl 13

o= [{¥5 v a(E e ofuet e o) o
+ rsﬁ (LH{ uk)vdo.
Moreover,(u*1 —uk) /h+EX > 0 a.e. inQ, and
UKL k2 UL kg2
M Hi L2(Q) Hi‘ Hi(Q) ©)

2
o [ 2y 7 = 2 ]

A priori estimations leading to the main resultin order to prove this result, for any se-
quence(Vi )k C L2(Q), let us note in the sequel
Nfl{karl _\K

N—1
V= SV g and W=y H (t—kh)+Vk} [kh,(k+1)h[-
= =
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Lemma 5. (u"), and ("), are bounded sequences ifi(0, T,H(Q)) and a0 is a bounded
sequence in®(0,T,H%(Q)) and then in (0, T,L?(T's)).

Proof. This result comes from (9) for the first part and since (9) implies that

Huk+1_uk Huk+1_uk’

2
||uk+lHH1(Q)‘ H

M L2(Q) H1(Q )—21

Existence of a solution Following G. Gagneux and G. Vallet [8], our aim is to prove the
following result:

Proposition 6. There exists u in HQ) with du in L?(0,T,H(Q)) such that for any v in
H(Q) and for a.e. t in0, T,

/é{auwr a(u-+E)O[u+ tau] OV} dx+ /r B(au)vdo = 0.

Moreover, u belongs to W° (0, T,H(Q)).

Proof. Since(t")y, is bounded iH(0,T,H%(Q)), there exists a sub-sequence, still indexed
by h, such that for any, G"(t) — u(t) in HY(Q). Moreover, ift € [kh, (k+ 1)h[,

(kt
W) = 80) |0y = [1T°(KR) — B (0) 1 < /kh ||<9tu )| ds<Ch

Then, for anyt, u"(t) — u(t) in HY(Q).

Sincea " is bounded ilL.®(0, T,H(Q)), it follows that for anyt of Z whereZ C [0, T]
is a measurable set such that([0,T]\Z) = 0, 4"(t) is a bounded sequence k' (Q).
Therefore, up to a sub-sequence indexedpys, 0™ — &£(t) in HY(Q), strongly inL?(Q)
and a.e. inQ with &(t) + E(t) > 0 a.e. inQ, strongly inL?(I") and a.e. in" by using the
compactness of the trace operator freif(Q) into L%(T").

Let us note that, for antin [kh, (k+1)h[ and for allv € H}(Q),

0= /{atu v+a(a "+ EMO[u" + toa") Dv}dx+/ B(oM)vdo. (10)

Given that,a(d,0™ + E)Ov converges towarda(& (t) 4+ E)Ov in L2(Q)N and thatO[u +
£a,UM] converges weakly towardg{u(t) + €& (t)] in L?(Q)N, and thanks to the hypothesis on
B, &(t) is a solution to the problem: at timefind w in HY(Q) with w+E(t) > 0 a.e. inQ,
such that for any in H1(Q),

/Q (W a(w+ E (1) D[u(t) -+ ew]Ov} dx+ /r Bwvdo = 0. (11)

Thanks to Lemma 1 witb= tain R", ¥ = u(t)/t and the monotone graph— {5 (x)}, the
solutioné (t) is unique and all the sequeng@(t) converges towards(t) weakly inH1(Q).
For anyf in H=1(Q), sincet ~ (f,&(t)) is the limit of the sequence of measurable functions
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t— (f,a0"(t)), it is a measurable function thanks to Pettis Theorem (K. Yosida [13] p. 131),
sinceH(Q) is a separable set.

For anyv in L?(0,T,HY(Q)), (a0"(t),v(t)) converges a.e. it0, T[ towards(& (t),v(t)).
Moreover, |(3T"(t),v(t))| < ClIv(t)[|2(q) a.e. since the sequen¢& M)y is bounded in
L*(0,T,H(Q)). Thus, the weak convergenceliA(0,T,H(Q)) of g0" towardsé can be
proved. And one gets thdt= d;u.

At last, fort a.e. in]0, T[, passing to limits in (10) leads, for amyin L?(0, T,H%(Q)), to

/Q{Qtqura(atu—kE)D[u+e8tu]Dv}dxdt+ 1 B@uvdodt=0  (12)

and to the existence of a solution. O

2.3. The multivoque case

Let us prove in this section that ff is the maximal monotone graph presented in the intro-
duction, then

Proposition 7. There exists u in HQ) with du in L?(0,T,H(Q)) such that for any v in
HY(Q) and for a.e. t in0, T|,

(OFS / {atuv+a(a[u+E)D[u+r&tu]Dv}dx+/ B(du)vdo.
JQ JTs

Moreover, u belongs to W° (0, T,H(Q)).

Proof. Following J.-L. Lions idea in [10] p.422, one denotesfy= max(—n,min( f,,n)).
Associated with this sequence, one has a sequenRg¢ef solutions to (12).

Of course, this sequence is boundedHit(0, T;H%(Q)) and the same kind of demonstration
can be done in order to prove the existence of a solution to (6).

Let us considering the notations of the previous section. Then, fot &amy and for the
sub-sequence indexed bysuch thad,u, — &(t) in HY(Q), strongly inL?(I") and a.e. irT,
one has for any in H(Q),

/Q{atuntv+ a(AUn, + E) O[un +r8[unt]Dv}dx+/r Brc (At Vo = 0.

Therefore, one gets th#t, (dun, ) converges weakly ih?(I"s) towards an element denoted

by ¢. Therefore, the same kind of demonstration than the one given p. 424 of J.-L. Lions
[10] leads top = B~1(&(t)) and proves thaf (t) is a solution to the problem: at timefind

win H(Q) with w4 E(t) > 0 a.e. inQ, such that for any in H(Q),

/Q fwy++a(w-+ E(0)) Dlu(t) + wlov} dx+ | Bwivdo 50. (13)

Then, one gets a result of existence of a solution in the same way, according to the proposi-
tion 6. O
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2.4. Conclusion and open problems
A solution to the problem

ou—tAA(du+E) —div(a(du+E)Ou)=0 in Q,
GU+E>0 in Q,

—ThA(GU+E) —a(dtu+E)dau=0 in ]0,T[xl,
—ThA(GU+E) —a(diu+E)due f(du) in ]0,T[xls,
Ui—o=Uo in Q,

has been found in Lig0, T],H(Q)).

In order to conclude that this problem is well-posed in the sense of Hadamard, one still
has to prove that such a solution is unique. This is still an open problem, mainly due to a
behaviour of hysteresis type of the equation.

Let us cite a recent paper of Z. Wangal. [12] where the uniqueness of the solution to
a similar equation has been proved. The equation is posed in the one-dimension space case,
and the method is based on a Holmgren approach.

The above solution is a solution to a perturbation of the real problem aihas to be the
graph of the Heaviside function in order to satisfy the condition (4). This problem is open
too.
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