Stokes and Navier-Stokes equations WITH PERIODIC BOUNDARY CONDITIONS AND PRESSURE LOSS

Chérif Amrouche, Macaire Batchi and Jean Batina

Abstract

The object of this present work is to show the existence and uniqueness results for the Stokes and Navier-Stokes equations which model the laminar flow of an incompressible fluid inside a two-dimensional plane channel with periodic sections. The data of the pressure loss coefficient in the channel enables us to establish a relation on the pressure and to thus formulate an equivalent problem.

Keywords: Stokes problem, Navier-Stokes equations, incompressible fluid, periodic boundary conditions, pressure loss.

§1. Introduction

The problem which one proposes to study here is that modelling a laminar flow inside a two-dimensional plane channel with periodic section. Let Ω be an open bounded connected lipschitzian set of \mathbb{R}^{2} (see figure hereafter), and its boundary Γ is $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where $\left.\Gamma_{0}=\{0\} \times\right]-1,1\left[\right.$ and $\left.\Gamma_{1}=\{1\} \times\right]-1,1[$. One defines the space

$$
V=\left\{\mathbf{v} \in \mathbf{H}^{1}(\Omega) ; \operatorname{div} \mathbf{v}=0, \mathbf{v}=\mathbf{0} \text { on } \Gamma_{2},\left.\mathbf{v}\right|_{\Gamma_{0}}=\left.\mathbf{v}\right|_{\Gamma_{1}}\right\} .
$$

Here, there are not external forces and viscosity is equal to 1 . Thus for $\pi \in \mathbb{R}$ given, one considers the problem

$$
(\mathscr{S})\left\{\begin{array}{l}
\text { Find } \mathbf{u} \in V \text { such that } \\
\forall \mathbf{v} \in V, \int_{\Omega} \nabla \mathbf{u} . \nabla \mathbf{v} d \mathbf{x}=\pi \int_{-1}^{+1} v_{1}(1, y) d y
\end{array}\right.
$$

§2. Stokes problem (\mathscr{S})

With an aim of drawing up the suitable functional framework of the problem, firstly one proposes to study the problem (\mathscr{S}).
Theorem 1. Problem (\mathscr{S}) has an unique solution $\mathbf{u} \in V$. Moreover, there exists a constant depending only on $\Omega, C(\Omega)>0$, such that:

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)} \leq \pi C(\Omega) \tag{1}
\end{equation*}
$$

Figure 1: Geometry of channel

Proof. Let us note initially that space V provided the norm $H^{1}(\Omega)^{2}$ being a closed subspace of $H^{1}(\Omega)^{2}$ is thus an Hilbert space. Let us set

$$
a(\mathbf{u}, \mathbf{v})=\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d \mathbf{x}, \quad l(\mathbf{v})=\pi \int_{-1}^{+1} v_{1}(1, y) d y
$$

It is clear, thanks to the Poincare inequality, that the bilinear continuous form is V-coercive. It is easy to also see that $l \in V^{\prime}$. One deduces from Lax-Milgram Theorem the existence and uniqueness of \mathbf{u} solution of (\mathscr{S}). Moreover,

$$
\int_{\Omega}|\nabla \mathbf{u}|^{2} d \mathbf{x} \leq \pi \sqrt{2}\left(\int_{-1}^{+1}\left|u_{1}(1, y)\right|^{2} d y\right)^{1 / 2}
$$

i.e.

$$
\|\nabla \mathbf{u}\|_{L^{2}(\Omega)}^{2} \leq \pi \sqrt{2}\|\mathbf{u}\|_{L^{2}(\Gamma)} \leq \pi \sqrt{2}\|\mathbf{u}\|_{H^{1 / 2}(\Gamma)} .
$$

Thanks to the trace Theorem properties, finally one gets

$$
\|\nabla \mathbf{u}\|_{L^{2}(\Omega)}^{2} \leq \pi C_{1}(\Omega)\|\mathbf{u}\|_{H^{1}(\Omega)}
$$

which implies the estimate (1).

§3. Equivalent formulation of problem (S)

We now will give an interpretation of the problem (\mathscr{S}). One introduces the space

$$
\mathscr{V}=\left\{\mathbf{v} \in \mathscr{D}(\Omega)^{2} ; \operatorname{div} \mathbf{v}=0\right\}
$$

Let \mathbf{u} be the solution of (\mathscr{S}). Then, for all $\mathbf{v} \in \mathscr{V}$, one has

$$
\langle-\Delta \mathbf{u}, \mathbf{v}\rangle_{\mathscr{D}^{\prime}(\Omega) \times \mathscr{D}(\Omega)}=0 .
$$

So that thanks to De Rham Theorem, there exists $p \in \mathscr{D}^{\prime}(\Omega)$ such that

$$
\begin{equation*}
-\Delta \mathbf{u}+\nabla p=0 \text { in } \Omega \tag{2}
\end{equation*}
$$

Moreover, since $\nabla p \in H^{-1}(\Omega)^{2}$, it is known that there exists $q \in L^{2}(\Omega)$ such that (see [1])

$$
\begin{equation*}
\nabla q=\nabla p \text { in } \Omega \tag{3}
\end{equation*}
$$

The open set Ω being connected, there exists $C \in \mathbb{R}$ such that $p=q+C$, what means that $p \in L^{2}(\Omega)$. Let us recall that (see [1])

$$
\inf _{K \in \mathbb{R}}\|p+K\|_{L^{2}(\Omega)} \leq C\|\nabla p\|_{H^{-1}(\Omega)^{2}}
$$

One deduces from the estimate (1) and from (2) that

$$
\inf _{K \in \mathbb{R}}\|p+K\|_{L^{2}(\Omega)} \leq C\|\Delta \mathbf{u}\|_{H^{-1}(\Omega)^{2}} \leq C\|\mathbf{u}\|_{H^{1}(\Omega)^{2}} \leq \pi C(\Omega)
$$

Since $\mathbf{u} \in H^{1}(\Omega)^{2}$ and $\mathbf{0}=-\Delta \mathbf{u}+\nabla p \in L^{2}(\Omega)^{2}$, it is shown that $-\partial \mathbf{u} / \partial \mathbf{n}+p \mathbf{n} \in H^{-1 / 2}(\Gamma)^{2}$ and one has the Green formula: for all $\mathbf{v} \in V$,

$$
\begin{equation*}
\int_{\Omega}(-\triangle \mathbf{u}+\nabla p) \cdot \mathbf{v} d \mathbf{x}=\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d \mathbf{x}+\left\langle-\frac{\partial \mathbf{u}}{\partial \mathbf{n}}+p \mathbf{n}, \mathbf{v}\right\rangle \tag{4}
\end{equation*}
$$

where the bracket represents the duality product $H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)$. Moreover, as $p \in$ $L^{2}(\Omega)$ and $\triangle p=0$ in Ω, one has $p \in H^{-1 / 2}(\Gamma)$. Consequently, one has therefore $\partial \mathbf{u} / \partial \mathbf{n} \in$ $H^{-1 / 2}(\Gamma)^{2}$. The function \mathbf{u} being solution of (\mathscr{S}), for all $\mathbf{v} \in V$, one has according to (2) and (4):

$$
\begin{equation*}
\left\langle\frac{\partial \mathbf{u}}{\partial \mathbf{n}}-p \mathbf{n}, \mathbf{v}\right\rangle=\pi \int_{-1}^{+1} v_{1}(1, y) d y \tag{5}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left\langle\frac{\partial \mathbf{u}}{\partial x}-p \mathbf{e}_{1}, \mathbf{v}\right\rangle_{\Gamma_{1}}+\left\langle-\frac{\partial \mathbf{u}}{\partial x}+p \mathbf{e}_{1}, \mathbf{v}\right\rangle_{\Gamma_{0}}=\left\langle\pi \mathbf{e}_{1, \mathbf{v}}\right\rangle_{\Gamma_{1}}, \tag{6}
\end{equation*}
$$

where $\left\{\mathbf{e}_{i}\right\}$ is the orthonormal basis.
i) Let $\mu \in H_{00}^{1 / 2}\left(\Gamma_{1}\right)$ and let us set

$$
\mu_{2}=\left\{\begin{array}{ll}
\mu, & \text { on } \Gamma_{0} \cup \Gamma_{1}, \\
0, & \text { on } \Gamma_{2},
\end{array} \quad \text { and } \quad \boldsymbol{\mu}=\binom{0}{\mu_{2}}\right.
$$

where (see [2])

$$
H_{00}^{1 / 2}\left(\Gamma_{1}\right)=\left\{\varphi \in \mathbf{L}^{2}\left(\Gamma_{1}\right) ; \exists \mathbf{v} \in H^{1}(\Omega), \text { with }\left.\mathbf{v}\right|_{\Gamma_{2}}=\mathbf{0},\left.\mathbf{v}\right|_{\Gamma_{0} \cup \Gamma_{1}}=\varphi\right\}
$$

It is checked easily that

$$
\boldsymbol{\mu} \in H^{1 / 2}(\Gamma)^{2} \quad \text { and } \quad \int_{\Gamma} \boldsymbol{\mu} \cdot \mathbf{n} d \sigma=0
$$

So that there exists $\mathbf{v} \in H^{1}(\Omega)^{2}$ satisfying (see [3])

$$
\operatorname{div} \mathbf{v}=0 \text { in } \Omega \quad \text { and } \quad \mathbf{v}=\boldsymbol{\mu} \text { on } \Gamma .
$$

In particular $\mathbf{v} \in V$ and according to (6), this yields

$$
\left\langle\frac{\partial u_{2}}{\partial x}, \mu\right\rangle_{\Gamma_{1}}=\left\langle\frac{\partial u_{2}}{\partial x}, \mu\right\rangle_{\Gamma_{0}},
$$

which means that

$$
\begin{equation*}
\left.\frac{\partial u_{2}}{\partial x}\right|_{\Gamma_{1}}=\left.\frac{\partial u_{2}}{\partial x}\right|_{\Gamma_{0}} . \tag{7}
\end{equation*}
$$

One deduces now from (6) that, for all $\mathbf{v} \in V$,

$$
\begin{equation*}
\left\langle\frac{\partial u_{1}}{\partial x}-p, v_{1}\right\rangle_{\Gamma_{1}}+\left\langle-\frac{\partial u_{1}}{\partial x}+p, v_{1}\right\rangle_{\Gamma_{0}}=\left\langle\pi, v_{1}\right\rangle_{\Gamma_{1}} . \tag{8}
\end{equation*}
$$

But, $\operatorname{div} \mathbf{u}=0$ and $\left.u_{2}\right|_{\Gamma_{1}}=\left.u_{2}\right|_{\Gamma_{0}}$, one thus has

$$
\begin{equation*}
\left.\frac{\partial u_{2}}{\partial y}\right|_{\Gamma_{1}}=\left.\frac{\partial u_{2}}{\partial y}\right|_{\Gamma_{0}} \quad \text { and }\left.\quad \frac{\partial u_{1}}{\partial x}\right|_{\Gamma_{1}}=\left.\frac{\partial u_{1}}{\partial x}\right|_{\Gamma_{0}} \tag{9}
\end{equation*}
$$

Consequently, thanks to (8) one deduces:

$$
\begin{equation*}
\left\langle-p, v_{1}\right\rangle_{\Gamma_{1}}+\left\langle p, v_{1}\right\rangle_{\Gamma_{0}}=\left\langle\pi, v_{1}\right\rangle_{\Gamma_{1}} \tag{10}
\end{equation*}
$$

ii) While proceeding as in i, one shows that

$$
\begin{equation*}
\left.p\right|_{\Gamma_{1}}=\left.p\right|_{\Gamma_{0}}-\pi \tag{11}
\end{equation*}
$$

where the equality takes place with the $H^{1 / 2}$ sense. In short, if $\mathbf{u} \in H^{1}(\Omega)^{2}$ is solution of (\mathscr{S}), then there exists $p \in L^{2}(\Omega)$, unique up to an additive constant, such that:

$$
\begin{align*}
& -\Delta \mathbf{u}+\nabla p=\mathbf{0} \quad \text { in } \quad \Omega, \tag{12}\\
& \operatorname{div} \mathbf{u}=0 \quad \text { in } \quad \Omega, \tag{13}\\
& \mathbf{u}=\mathbf{0} \quad \text { on } \quad \Gamma_{2},\left.\quad \mathbf{u}\right|_{\Gamma_{1}}=\left.\mathbf{u}\right|_{\Gamma_{0}}, \tag{14}\\
& \left.\frac{\partial \mathbf{u}}{\partial x}\right|_{\Gamma_{1}}=\left.\frac{\partial \mathbf{u}}{\partial x}\right|_{\Gamma_{0}}, \tag{15}\\
& \left.p\right|_{\Gamma_{1}}=\left.p\right|_{\Gamma_{0}}-\pi . \tag{16}
\end{align*}
$$

It is clear that, if $(\mathbf{u}, p) \in H^{1}(\Omega)^{2} \times L^{2}(\Omega)$ checks (12)-(16), then \mathbf{u} is solution of (\mathscr{S}).
Theorem 2. The problem (12)-(16) has an unique solution $(\mathbf{u}, p) \in H^{1}(\Omega)^{2} \times L^{2}(\Omega)$, up to an additive constant for p. Moreover, \mathbf{u} verifies (\mathscr{S}) and

$$
\|\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)}+\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leq \pi C(\Omega) .
$$

Remark 1. The pressure verifies the relation (16), which means that p satisfies the relation of Patankar et al. [5].

§4. Navier-Stokes Equations

One takes again the assumptions of the Stokes problem given above. For $\pi \in \mathbb{R}$ given, one considers the following problem

$$
(\mathscr{N} \mathscr{S})\left\{\begin{array}{l}
\text { Find } \mathbf{u} \in V \text { such that } \\
\forall \mathbf{v} \in V, \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} d \mathbf{x}+b(\mathbf{u}, \mathbf{u}, \mathbf{v})=\pi \int_{-1}^{+1} v_{1}(1, y) d y
\end{array}\right.
$$

with

$$
b(\mathbf{u}, \mathbf{u}, \mathbf{v})=\int_{\Omega}(\mathbf{u} \cdot \nabla) \mathbf{v} \cdot \mathbf{w} d \mathbf{x} .
$$

With an aim of establishing the existence of the solutions of the problem $(\mathscr{N} \mathscr{S})$, one uses the Brouwer fixed point theorem (see $[4,6]$). One will show it.

Theorem 3. The problem $(\mathscr{N} \mathscr{S})$ has at least a solution $\mathbf{u} \in V$. Moreover, \mathbf{u} satisfies the estimate (1).

Proof. To show the existence of \mathbf{u}, one constructs the approximate solutions of the problem $(\mathscr{N} \mathscr{S})$ by the Galerkin method and then thanks to the compactness arguments, one proves by passing to the limits some convergence properties.
i) For each fixed integer $m \geq 1$, one defines an approximate solution \mathbf{u}_{m} of $(\mathscr{N} \mathscr{S})$ by

$$
\begin{gather*}
\mathbf{u}_{m}=\sum_{i=1}^{m} g_{i m} \mathbf{w}_{i}, \quad \text { with } \quad g_{i m} \in \mathbb{R} \tag{17}\\
\left(\left(\mathbf{u}_{m}, \mathbf{w}_{i}\right)\right)+b\left(\mathbf{u}_{m}, \mathbf{u}_{m}, \mathbf{w}_{i}\right)=\left\langle\pi \mathbf{n}, \mathbf{w}_{i}\right\rangle_{\Gamma_{1}}, i=1, \ldots, m
\end{gather*}
$$

where $V_{m}=\left\langle\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\rangle$ is the vector space spanned by the vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ and $\left\{\mathbf{w}_{i}\right\}$ is an Hilbertian basis of V which is separable. Let us note that (17) is equivalent to:

$$
\begin{equation*}
\forall \mathbf{v} \in V_{m},\left(\left(\mathbf{u}_{m}, \mathbf{v}\right)\right)+b\left(\mathbf{u}_{m}, \mathbf{u}_{m}, \mathbf{v}\right)=\pi \int_{-1}^{+1} v_{1}(1, y) d y \tag{18}
\end{equation*}
$$

With an aim to establish the existence of the solutions of the problem \mathbf{u}_{m}, the operator as follows is considered

$$
\begin{aligned}
\mathrm{P}_{m}: V_{m} & \longrightarrow V_{m} \\
\mathbf{u} & \longmapsto \mathrm{P}_{m}(\mathbf{u})
\end{aligned}
$$

defined by

$$
\forall \mathbf{u}, \mathbf{v} \in V_{m},\left(\left(\mathrm{P}_{m}(\mathbf{u}), \mathbf{v}\right)\right)=((\mathbf{u}, \mathbf{v}))+b(\mathbf{u}, \mathbf{u}, \mathbf{v})-\pi \int_{-1}^{+1} v_{1}(1, y) d y .
$$

Let us note initially that P_{m} is continuous and

$$
\forall \mathbf{u} \in V, b(\mathbf{u}, \mathbf{u}, \mathbf{u})=0
$$

Indeed, thanks to the Green formula, one has

$$
b(\mathbf{u}, \mathbf{u}, \mathbf{u})=-\frac{1}{2} \int_{\Omega}|\mathbf{u}|^{2} \operatorname{div} \mathbf{u} d \mathbf{x}+\frac{1}{2} \int_{\Gamma}(\mathbf{u} . \mathbf{n})|\mathbf{u}|^{2} d \sigma=0
$$

and one takes into account that $\operatorname{div} \mathbf{u}=0$ in Ω and

$$
\int_{\Gamma}(\mathbf{u} . \mathbf{n})|\mathbf{u}|^{2} d \sigma=\int_{\Gamma_{0}}(\mathbf{u} . \mathbf{n})|\mathbf{u}|^{2} d \sigma+\int_{\Gamma_{1}}(\mathbf{u} . \mathbf{n})|\mathbf{u}|^{2} d \sigma .
$$

Thanks to Brouwer Theorem, there exists \mathbf{u}_{m} satisfying (18) and

$$
\left\|\mathbf{u}_{m}\right\|_{\mathbf{H}^{1}(\Omega)} \leq \pi C(\Omega)
$$

ii) We can extract a subsequence \mathbf{u}_{v} such that

$$
\mathbf{u}_{v} \rightharpoonup \mathbf{u} \text { weakly in } V,
$$

and thanks to the compact imbedding of V in $L^{2}(\Omega)^{2}$, we obtain

$$
\forall \mathbf{v} \in V,((\mathbf{u}, \mathbf{v}))+b(\mathbf{u}, \mathbf{u}, \mathbf{v})=\pi \int_{-1}^{+1} v_{1}(1, y) d y
$$

As for the Stokes problem, one shows the existence of $p \in L^{2}(\Omega)$, unique except for an additive constant, such that the variational problem $(\mathscr{N} \mathscr{S})$ leads to

$$
\begin{cases}-\Delta \mathbf{u}+(\mathbf{u} . \nabla) \mathbf{u}+\nabla p=\mathbf{0} & \text { in } \\ \operatorname{div} \mathbf{u}=0 & \text { in } \\ \mathbf{u}=\mathbf{0} & \text { on } \\ \Gamma_{2} \\ \left.\mathbf{u}\right|_{\Gamma_{1}}=\left.\mathbf{u}\right|_{\Gamma_{0}}, & \end{cases}
$$

with following boundary conditions

$$
\begin{gathered}
\left.\frac{\partial \mathbf{u}}{\partial x}\right|_{\Gamma_{1}}=\left.\frac{\partial \mathbf{u}}{\partial x}\right|_{\Gamma_{0}} \\
\left.p\right|_{\Gamma_{1}}=\left.p\right|_{\Gamma_{0}}-\pi .
\end{gathered}
$$

References

[1] Amrouche, C., And Girault, V. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czecholovak Mathematical Journal 44, 119 (1994), 109-139.
[2] Dautray, R. and Lions, J. L. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vols. 1-6. Masson, 1984.
[3] Girault, V., and Raviart, P. A. Finite Element Methods for Navier-Stokes Equations. Springer Series SCM, 1986.
[4] Lions, J. L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Gauthier-Villars, 1969.
[5] Patankar, S. V., Liu, C. H., and Sparrow, E. M. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross sectional area. J. Heat Transfer 99 (1997), 180-186.
[6] Temam, R. Navier-Stokes Equations. Theory and Analysis. North-Holland, Amsterdam, 1985.

Chérif Amrouche and Macaire Batchi,
Laboratoire de Mathématiques Appliquées
CNRS UMR 5142 - Université de Pau et des Pays de l'Adour
IPRA, B.P. 1155, 64013 Pau Cedex, France
cherif.amrouche@univ-pau.fr
Jean Batina,
Laboratoire de Thermique Energétique et Procédés, Université de Pau et des Pays de l'Adour
Avenue de l’Université 64000 Pau, France

