SYSTEMS OF SCHRÖDINGER EQUATIONS: POSITIVITY AND NEGATIVITY

Bénédicte Alziary, Jacqueline Fleckinger and Marie-Hélène Lécureux

Abstract. We consider here Schrödinger operator $-\Delta + q(x) \bullet$ defined in the entire space \mathbb{R}^N , with a potential q tending to $+\infty$ at infinity with a sufficiently fast growth. The ground state positivity and negativity for a Schrödinger equation with spectral parameter says that, if the spectral parameter is lower than the principal eigenvalue, the solutions satisfy ground state positivity (greater than a positive constant times the ground state) and if the spectral parameter is slightly greater than the principal eigenvalue, then the solutions satisfy ground state negativity (lower than minus a positive constant times the ground state). We extend this ground state positivity and negativity to cooperative and noncooperative systems of two Schrödinger equations.

Keywords: Positive or negative solutions, pointwise bounds, ground state, principal eigenvalue, cooperative and noncooperative systems.

AMS classification: 35B50, 35J50.

§1. Introduction

Positivity or negativity of weak L^2 -solutions of a linear partial differential equation with the Schrödinger operator,

$$-\Delta u + q(x)u - \lambda u = f(x) \quad \text{in } \mathbb{R}^N, \tag{1}$$

has been a subject of a number of research articles and monographs, see e.g. Alziary, Fleckinger and Takáč [3, 5], Alziary and Takáč [2], and many others. Here, f is a given function satisfying $0 \le f \ne 0$ in \mathbb{R}^N ($N \ge 1$), and λ stands for the spectral parameter. Let φ_1 denote the positive eigenfunction associated with the principal eigenvalue λ_1 of the Schrödinger operator $\mathscr{A} = -\Delta + q(x) \bullet$ in $L^2(\mathbb{R}^N)$. Assume that the potential q(x) is radially symmetric and grows fast enough near infinity, and f is a "sufficiently smooth" perturbation of a radially symmetric function, $f \ne 0$ and $0 \le f/\varphi \le C \equiv \text{const a.e. in } \mathbb{R}^N$. For such equation (1), it is possible to show that u satisfies the ground state positivity for $-\infty < \lambda < \lambda_1$ (i.e., $u \ge c\varphi_1$ with $c \equiv \text{const} > 0$) and satisfies the ground state negative for $\lambda_1 < \lambda < \lambda_1 + \delta$ (i.e., $u \le -c\varphi_1$ with $c \equiv \text{const} > 0$), where $\delta > 0$ is a number depending on f. The constant c > 0 depends on both λ and f.

In their book, Protter and Weinberger [12] give a maximum principle for weakly coupled systems of essentially positive elliptic equations. Then several authors revisited the problem in the case of a bounded domain, De Figueiredo and Mitidieri [10], Mitidieri and Sweers [11] and Cosner and Schaefer [9] for the maximum principle. The anti-maximum, always for

bounded domain, was studied in particular by Sweers [13] and Takáč [14]. For a system of Schrödinger equations on the whole space, Abakhti-Mchachti and Fleckinger [6] or Alziary, Cardoulis and Fleckinger [1] obtained the maximum principle for a cooperative system but not the ground state positivity. Alziary, Fleckinger and Takáč [4] proved the ground state positivity for a cooperative system and for a (2×2) noncooperative system by inserting the (2×2) noncooperative system into a (3×3) cooperative one. Recently Besbas [7] gave a result concerning ground state negativity for particular cooperative system. Note that all those results are obtained for radially symmetric potential.

Here our purpose is to show, on a (2×2) systems of Schrödinger equations in the whole space \mathbb{R}^N , how to obtain ground state positivity and negativity for cooperative and noncooperative system. We consider the following system :

$$\mathscr{L}\begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} -\Delta + q(x)\bullet & 0\\ 0 & -\Delta + q(x)\bullet \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} \lambda u + au + bv + f\\ \lambda v + cu + dv + g \end{pmatrix}.$$
 (2)

The functions f and g are in $L^2(\mathbb{R}^n)$ and λ is a spectral parameter. The coefficients a, b, c, d are constant and we denote by $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If $b \ge 0$ and $c \ge 0$, the system is called cooperative. Instead of inserting the (2×2) noncooperative system into a (3×3) cooperative one,the idea is to use for both cooperative and noncooperative systems the decomposition of the resolvant $(\lambda I - \mathcal{L})^{-1}$ for λ near λ_1 .

This article is organized as follows. In Section 2 we give some notations and definitions and we state our main result, Theorem 1. In Section 3 we first recall the result for the single equation. Indeed the proof of the theorem 1 will use the ground state positivity and negativity for one equation. Finally in Section 4, we give the proof of our main result.

§2. Main Result

The Schrödinger operator \mathscr{A} denotes the selfadjoint extension of the symmetric operator in $L^2(\mathbb{R}^n)$ defined by

$$\mathscr{A} u = -\Delta u + q(x)u$$
 for $x \in \mathbb{R}^n$ and $u \in C_0^2(\mathbb{R}^n)$.

The potential $q \in L^{\infty}_{loc}(\mathbb{R}^n)$, tending to infinity when |x| goes to infinity, is supposed to be greater than some positive constant, $0 < \text{Cst} \le q(x)$. With such hypotheses on the potential, the spectrum of \mathscr{A} consists on a sequence of positive eigenvalues tending to infinity. The smallest one, λ_1 is given by the Rayley quotient

$$\lambda_{1} = \inf_{u \in V_{q}(\mathbb{R}^{n})} \left\{ \int_{\mathbb{R}^{n}} |\nabla u|^{2} dx + \int_{\mathbb{R}^{n}} q(x) |u|^{2} dx, \text{ with } \|u\|_{L^{2}(\mathbb{R}^{n})} = 1 \right\},$$

where the weighted space V_q is defined as follows:

$$V_q(\mathbb{R}^n) = \left\{ u \in L^2(\mathbb{R}^n) : \int_{\mathbb{R}^n} |\nabla u|^2 \, dx + \int_{\mathbb{R}^n} q(x) |u|^2 \, dx < \infty \right\}.$$

This principal eigenvalue λ_1 is associated with a positive eigenfunction $\varphi_1 > 0$ normalized by $\|\varphi_1\|_{L^2(\mathbb{R}^n)}^2 = 1$. This positive eigenfunction $\varphi_1 > 0$ is called the ground state. The domain

of the operator \mathscr{A} is denoted by

$$\mathscr{D}(\mathscr{A}) = \{ u \in V_q(\mathbb{R}^n) : (-\Delta + q)u \in L^2(\mathbb{R}^n) \}.$$

Finally, let us recall the definition of the ground state positivity and negativity, introduced by Alziary, Fleckinger and Takáč [2, 3]

Definition 1. A function $u \in L^2(\mathbb{R}^N)$ satisfies the *ground state positivity* if there exists a constant c > 0 such that

$$u \ge c \, \varphi_1$$
 almost everywhere in \mathbb{R}^N .

Analogously, $u \in L^2(\mathbb{R}^N)$ satisfies the *ground state negativity* if there exists a constant c > 0 such that

$$u \leq -c \varphi_1$$
 almost everywhere in \mathbb{R}^N .

The ground state positivity (or ground state negativity) of a sufficiently smooth solution u to the equation (1), for $\lambda < \lambda_1$ (or $\lambda_1 < \lambda < \lambda_1 + \delta$, respectively), is an important result with numerous applications to both linear and nonlinear elliptic problems in \mathbb{R}^N , see Alziary and Takáč [2]. Here, δ is a positive number depending upon f.

Those results are similar to the maximum or anti-maximum principle in a bounded domain $\Omega \subset \mathbb{R}^N$, $N \ge 1$, which have been established in the work of Clément and Peletier [8], Sweers [13] and Takáč [14]. But the case of the Schrödinger operator on $\Omega = \mathbb{R}^N$ is more difficult; the hypothesis $f \in L^p(\Omega)$ (p > N) is no longer sufficient. We need to take a smaller space for f, namely, a strongly ordered Banach space X introduced in Alziary and Takáč [2]:

$$X = \{ u \in L^2(\mathbb{R}^N) : u/\varphi_1 \in L^{\infty}(\mathbb{R}^N) \},$$
(3)

endowed with the ordered norm

$$||u||_{X} = \inf\{C \in \mathbb{R} : |u| \le C\varphi_{1} \text{ almost everywhere in } \mathbb{R}^{N}\}.$$
(4)

The ordering " \leq " on X is the natural pointwise ordering of functions. This means that X is an ordered Banach space whose positive cone X_+ has nonempty interior \mathring{X}_+ .

We denote by (r, x') the spherical coordinates in \mathbb{R}^N , that is, $x = rx' \in \mathbb{R}^N$, where r = |x|and $x' = r^{-1}x \in \mathbf{S}^{N-1}$ if $x \neq 0$; we set r = 0 and leave $x' \in \mathbf{S}^{N-1}$ arbitrary if x = 0. As usual, \mathbf{S}^{N-1} denotes the unit sphere in \mathbb{R}^N centered at the origin. We refer to r and x' as the radial and azimuthal variables, respectively. The surface measure on \mathbf{S}^{N-1} is denoted by σ ; we let $\sigma_{N-1} = \sigma(\mathbf{S}^{N-1})$ be the surface area of \mathbf{S}^{N-1} .

For any $\alpha > 0$, we introduce the Banach space $X^{\alpha,2}$ of all functions $f \in L^2_{loc}(\mathbb{R}^N)$ having the following properties:

$$\left[(-\Delta_S)^{\alpha/2}f\right](r,\bullet) \in L^2(\mathbf{S}^{N-1}) \quad \text{ for all } r > 0,$$

where Δ_S denotes the Laplace-Beltrami operator on the sphere \mathbf{S}^{N-1} , and there is a constant $C \ge 0$ such that, for almost every r > 0,

$$\frac{1}{\sigma_{N-1}} \int_{\mathbf{S}^{N-1}} |f(r,x')|^2 \, d\sigma(x') + \frac{1}{\sigma_{N-1}} \int_{\mathbf{S}^{N-1}} \left| [(-\Delta_S)^{\alpha/2} f](r,x') \right|^2 \, d\sigma(x') \le [C\varphi_1(r)]^2.$$

The smallest such constant *C* defines the norm $||f||_{X^{\alpha,2}}$ in $X^{\alpha,2}$. Notice that, for $f(x) \equiv f(|x|)$, we have $f \in X^{\alpha,2} \iff f \in X$ together with the norms $||f||_{X^{\alpha,2}} = ||f||_X$. Furthermore, if $\alpha > \frac{N-1}{2}$ then $X^{\alpha,2}$ is continuously imbedded into *X*, by the Sobolev imbedding theorem for $W^{\alpha,2}(\mathbf{S}^{N-1}) \hookrightarrow C(\mathbf{S}^{N-1})$. Of course, the Hilbert space $W^{\alpha,2}(\mathbf{S}^{N-1})$ is defined to be the domain of $(-\Delta_S)^{\alpha/2}$ in $L^2(\mathbf{S}^{N-1})$ endowed with the graph norm.

Taking $N \ge 2$, we establish the ground state positivity and negativity for f and g from the Banach space $X^{\alpha,2}$. The necessity of such a restriction for the Schrödinger operator in $L^2(\mathbb{R}^N)$ has been discussed and partly justified in [3, Remark 2.1 and Lemma 2.2] and in [4, Example 4.1].

In order to formulate our hypothesis on the potential $q(x), x \in \mathbb{R}^N$, we first introduce the following class of auxiliary functions Q(r) of $r \equiv |x|, R_0 \leq r < \infty$, for some $R_0 > 0$:

$$\begin{cases} Q(r) > 0, \ Q \text{ is locally absolutely continuous,} \\ Q'(r) \ge 0, \text{ and } \int_{R_0}^{\infty} Q(r)^{-1/2} dr < \infty. \end{cases}$$
(5)

We assume that the potential q is radially symmetric, $q(x) \equiv q(|x|)$, $x \in \mathbb{R}^N$, where q(r) is a Lebesgue measurable function satisfying the following hypothesis, with some auxiliary function Q(r) which obeys (5):

$$\begin{cases} \text{The potential } q: \mathbb{R}_+ \to \mathbb{R} \text{ is locally essentially bounded, } q(r) \geq \\ \text{const} > 0 \text{ for } r \geq 0 \text{, and there exists a constant } c_1 > 0 \text{ such that} \\ c_1 Q(r) \leq q(r) \text{ for } R_0 \leq r < \infty. \end{cases}$$
(H)

We always suppose that M satisfies

$$\begin{cases} a > 0, \ d > 0, \ c \neq 0, \ \text{and} \ a \ge d, \\ D = (a - d)^2 + 4bc > 0. \end{cases}$$
(H_M)

Hypotheses a > 0, d > 0 and $a \ge d$ can always be satisfied by adding a constant times u in both sides of the first equation, a constant times v in both sides of the second equation and eventually switching the two equations to get $a \ge d$. But the matrix M must not have complex eigenvalues. So M has the two following eigenvalues:

$$\mu^+=rac{a+d+\sqrt{D}}{2} \quad ext{ and } \quad \mu^-=rac{a+d-\sqrt{D}}{2},$$

Let us, now, formulate our main result.

Theorem 1. Let the hypotheses (H) and (H_M) be satisfied. Assume that u and v are in $\mathscr{D}(\mathscr{A})$ and satisfy the system (2) with f et g in $X^{\alpha,2}$, for some $\alpha > \frac{N-1}{2}$, $f + \frac{2b}{(a-d)+\sqrt{D}}g \ge 0$ a.e. in \mathbb{R}^N and $f + \frac{2b}{(a-d)+\sqrt{D}}g > 0$ in some set of positive Lebesgue measure.

• Before $\lambda_1 - \mu^+$:

there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in (\lambda_1 - \mu^+ - \delta, \lambda_1 - \mu^+)$, inequalities

 $u \ge c_u \varphi_1 \text{ and } v \ge c_v \varphi_1 \quad \text{in } \mathbb{R}^N \text{ in the case } c > 0,$ (6)

$$u \ge c_u \varphi_1 \quad and \quad v \le -c_v \varphi_1 \quad in \ \mathbb{R}^N \quad in \ the \ case \ c < 0,$$
 (7)

are valid with two constants $c_u > 0$ and $c_v > 0$ (depending upon f, g, M and λ).

Systems of Schrödinger equations

• After $\lambda_1 - \mu^+$: there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in (\lambda_1 - \mu^+, \lambda_1 - \mu^+ + \delta)$, inequalities

$$u \leq -c_u \varphi_1 \text{ and } v \leq -c_v \varphi_1 \text{ in } \mathbb{R}^N \text{ in the case } c > 0,$$
 (8)

$$u \leq -c_u \varphi_1 \text{ and } v \geq c_v \varphi_1 \quad \text{ in } \mathbb{R}^N \text{ in the case } c < 0,$$
 (9)

are valid with two constants $c_u > 0$ and $c_v > 0$ (depending upon f, g, M and λ).

§3. Some known results for a single equation on the whole space

The following theorem was established by Alziary, Fleckinger and Takáč, first for \mathbb{R}^2 in [3] and then using Fourier series with spherical harmonics for \mathbb{R}^N in [5].

Theorem 2. Let the hypothesis (H) be satisfied. Assume that $u \in \mathscr{D}(\mathscr{A})$, $\mathscr{A}u - \lambda u = f \in L^2(\mathbb{R}^N)$, $\lambda \in \mathbb{R}$, and $f \ge 0$ a.e. in \mathbb{R}^N with f > 0 in some set of positive Lebesgue measure. Then, for every $\lambda \in (-\infty, \lambda_1)$, there exists a constant c > 0 (depending upon f and λ) such that

$$u \ge c \, \varphi_1 \quad in \ \mathbb{R}^N. \tag{10}$$

Moreover, if also $f \in X^{\alpha,2}$ for some $\alpha > \frac{N-1}{2}$, then there exists a positive number δ (depending upon f) such that, for every $\lambda \in (\lambda_1, \lambda_1 + \delta)$, the inequality

$$u \le -c \, \varphi_1 \quad in \ \mathbb{R}^N \tag{11}$$

is valid with a constant c > 0 (depending upon f and λ).

In fact, the proof of this result gives more precisions about the behaviour of the constant c when λ goes to λ_1 . The next remark details how the constant depends upon f an λ .

Remark 1. For $\lambda < \lambda_1$, λ near λ_1 , we have $u \ge C(f,\lambda)\varphi_1$, with $C(f,\lambda) = \frac{\int_{\mathbb{R}^n} f\varphi_1}{\lambda_1 - \lambda} - \Gamma(\lambda, f)$ and $\lim_{\lambda \to \lambda_1} \Gamma(\lambda, f) = \Gamma < \infty$. So when λ goes to λ_1 , u becomes very large. By the strong maximum principle, we have also $|u| \le \frac{\|f\|_{\chi}}{(\lambda_1 - \lambda)}\varphi_1$.

For $\lambda > \lambda_1$, λ near λ_1 , we get $u \le -C(f,\lambda)\varphi_1$, with $C(f,\lambda) = \frac{\int_{\mathbb{R}^n} f\varphi_1}{\lambda - \lambda_1} - \Gamma(\lambda, f)$ and $\lim_{\lambda \to \lambda_1} \Gamma(\lambda, f) = \Gamma < \infty$. So when λ goes to λ_1 , -u becomes very large. The proof of this remark is given in [7].

§4. Proof of the Theorem

Proof. The two eigenvectors v^+ and v^- associated respectively with the eigenvalues μ^+ and μ^- are

$$v^+ = \begin{pmatrix} \frac{a-d+\sqrt{D}}{2} \\ c \end{pmatrix}$$
 and $v^- = \begin{pmatrix} -b \\ \frac{a-d+\sqrt{D}}{2} \end{pmatrix}$.

So the system can be rewritten

$$\begin{cases} -\Delta \tilde{u} + q\tilde{u} = (\lambda + \mu^{+})\tilde{u} + \tilde{f} & \text{in } \mathbb{R}^{n} \\ -\Delta \tilde{v} + q\tilde{v} = (\lambda + \mu^{-})\tilde{v} + \tilde{g} & \text{in } \mathbb{R}^{n} \end{cases}$$

with

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} = P \begin{pmatrix} u \\ v \end{pmatrix}, \quad \begin{pmatrix} \tilde{f} \\ \tilde{g} \end{pmatrix} = P \begin{pmatrix} f \\ g \end{pmatrix} \quad \text{and} \quad P = \frac{1}{\sqrt{D}} \begin{pmatrix} 1 & \frac{2b}{(a-d)+\sqrt{D}} \\ \frac{-2c}{(a-d)+\sqrt{D}} & 1 \end{pmatrix}$$

The two functions \tilde{u} and \tilde{v} are solutions of the two independent following equations:

$$-\Delta \tilde{u} + q\tilde{u} = (\lambda + \mu^+)\tilde{u} + \frac{1}{\sqrt{D}} \left(f + \frac{2b}{(a-d) + \sqrt{D}} g \right), \tag{12}$$

$$-\Delta \tilde{v} + q \tilde{v} = (\lambda + \mu^{-}) \tilde{v} + \frac{1}{\sqrt{D}} \left(\frac{-2c}{(a-d) + \sqrt{D}} f + g \right).$$
(13)

After solving those two equations, the initial functions u and v could be calculated by

$$u = \frac{(a-d) + \sqrt{D}}{2}\tilde{u} - b\tilde{v},\tag{14}$$

$$v = c\tilde{u} + \frac{(a-d) + \sqrt{D}}{2}\tilde{v}.$$
(15)

We suppose $\lambda < \lambda_1 - \mu^-$, and so the equation (13) satisfies the maximum principle. The function *f* and *g* are in *X* and so for some constant $C_{\tilde{g}}$, we have

$$|\tilde{v}| \le (\lambda_1 - \lambda - \mu^-)^{-1} C_{\tilde{g}} \varphi_1.$$
(16)

For λ < λ₁ − μ⁺ < λ₁ − μ[−], the equation (12) satisfies the fundamental positivity, so we have

$$|\tilde{v}| \leq rac{C_{ ilde{g}}}{\lambda_1 - \lambda - \mu^-} arphi_1 \leq rac{C_{ ilde{g}}}{\mu^+ - \mu^-} arphi_1 \quad ext{ and } \quad ilde{u} \geq C(\lambda, ilde{f}) arphi_1,$$

with $C(\lambda, \tilde{f})$ which goes to $+\infty$ when λ tends to λ_1 .

Consequently, \tilde{v} stays bounded and \tilde{u} becomes very large positive when λ goes to λ_1 . So there exists a positive number δ (depending upon *f*, *g* and *M*) such that, for every $\lambda \in (\lambda_1 - \mu^+ - \delta, \lambda_1 - \mu^+)$, by (14) and (15), we get for *u* and *v*, in the case c > 0,

 $u \ge c_u \varphi_1$ and $v \ge c_v \varphi_1$, c_u and c_v are positive constants.

In that case, it is possible to show, using the Neumann series for the resolvent $(\lambda I - \mathscr{L})^{-1}$, that the ground state positivity is true for all $\lambda < \lambda_1 - \mu^+$.

Of course, for c < 0, we have,

 $u \ge c_u \varphi_1$ and $v \le -c_v \varphi_1$, c_u and c_v are positive constants.

For λ₁ − μ⁺ < λ < λ₁ − μ⁻, the upper bound (16) stays valid and (12) satisfies the ground state negativity, so there exists δ_ũ ≤ μ⁺ − μ⁻ such that for every λ ∈ (λ₁ − μ⁺, λ₁ − μ⁺ + δ_ũ), we have

$$|\tilde{v}| \leq rac{C_{ ilde{g}}}{\lambda_1 - \lambda - \mu^-} arphi_1 \leq rac{C_{ ilde{g}}}{\mu^+ - \mu^- - \delta_{ ilde{u}}} arphi_1 \quad ext{ and } \quad ilde{u} \leq -C(\lambda, ilde{f}) arphi_1,$$

with $C(\lambda, \tilde{f})$ which goes to $+\infty$ when λ tends to λ_1 .

Consequently, \tilde{v} stays bounded and \tilde{u} becomes very large negative when λ goes to λ_1 . So there exists a positive number δ (depending upon *f*, *g* and *M*) such that, for every $\lambda \in (\lambda_1 - \mu^+, \lambda_1 - \mu^+ + \delta)$, by (14) and (15) we get for *u* and *v*, in the case c > 0,

 $u \leq -c_u \varphi_1$ and $v \leq -c_v \varphi_1$, c_u and c_v are positive constants.

Of course, for c < 0, we have

 $u \leq -c_u \varphi_1$ and $v \geq c_v \varphi_1$, c_u and c_v are positive constants. \Box

Acknowledgements

Part of this work has been done under CTP project 03007534.

References

- ALZIARY, B., CARDOULIS, L., AND FLECKINGER, J. Maximum principle and existence of solutions for elliptic systems involving Schrödinger operators. *Rev. R. Acad. Cienc. Exact. Fis. Nat.* 91 (1997), 47–52.
- [2] ALZIARY, B., AND TAKÁČ, P. A pointwise lower bound for positive solutions of a Schrödinger equation in \mathbb{R}^N . Journal of Differential Equations 133,2 (1997), 280–295.
- [3] ALZIARY, B., FLECKINGER, J., AND TAKÁČ, P. An extension of maximum and antimaximum principles to a Schrödinger equation in ℝ². *Journal of Differential Equations* 156 (1999), 122–152.
- [4] ALZIARY, B., FLECKINGER, J., AND TAKÁČ, P. Maximum and anti-maximum principles for some systems involving Schrödinger oprator. *Operator Theory: Advances and Applications 110* (1999), 13–21.
- [5] ALZIARY, B., FLECKINGER, J., AND TAKÁČ, P. Positivity and negativity of solutions to a Schrödinger equation in ℝ^N. *Positivity 5* (2001), 359–382.
- [6] ABAKHTI-MCHACHTI, A., AND FLECKINGER-PELLÉ, J. Existence of solutions for non cooperative semilinear elliptic systems defined on an unbounded domain. *Pitman Research Notes in Maths* 266, 92–106.
- [7] BESBAS, N. Principe d'Anti-Maximum pour des Équations et des Systèmes de Type Schrödinger dans ℝ^N. Thèse de doctorat de l'Université des Sciences Sociales Toulouse 1, 2004.
- [8] CLÉMENT, PH., AND PELETIER, L. A. An anti-maximum principle for second order elliptic operators. J. Differential Equations 34 (1979), 218–229.
- [9] COSNER, C., AND SCHAEFER, P. W. Sign-definite solutions in some linear elliptic systems. *Proc. Roy. Soc. Edinbourgh*, 111A (1989), 347–358.

- [10] DE FIGUEIREDO, D. G., AND MITIDIERI, E. Maximum principle for linear elliptic systems. *Quaterno Matematico, Dip. Sc. Mat., Univ. Trieste 177* (1988).
- [11] MITIDIERI, E., AND SWEERS, G. Weakly coupled elliptic systems and positivity. *Math. Nachr. 173* (1995), 259–286.
- [12] PROTTER, M. H., AND WEINBERGER, H. F. Maximum Principles in Differential Equations. Springer-Verlag, New York-Berlin-Heidelberg, 1984.
- [13] SWEERS, G. Strong positivity in $C(\overline{\Omega})$ for elliptic systems. *Math. Z. 209* (1992), 251–271.
- [14] TAKÁČ, P. An abstract form of maximum and anti-maximum principles of Hopf's type. *J. Math. Anal. Appl. 201* (1996), 339–364.

Bénédicte Alziary, Jacqueline Fleckinger and Marie-Hélène Lécureux CEREMATH MIP UMR 5640 Université Toulouse 1 31042 TOULOUSE Cedex alziary@univ-tlse1.fr and jfleck@univ-tlse1.fr