Systems of Schrödinger equations: Positivity and negativity

Bénédicte Alziary, Jacqueline Fleckinger and Marie-Hélène Lécureux

Abstract

We consider here Schrödinger operator $-\Delta+q(x) \bullet$ defined in the entire space \mathbb{R}^{N}, with a potential q tending to $+\infty$ at infinity with a sufficiently fast growth. The ground state positivity and negativity for a Schrödinger equation with spectral parameter says that, if the spectral parameter is lower than the principal eigenvalue, the solutions satisfy ground state positivity (greater than a positive constant times the ground state) and if the spectral parameter is slightly greater than the principal eigenvalue, then the solutions satisfy ground state negativity (lower than minus a positive constant times the ground state). We extend this ground state positivity and negativity to cooperative and noncooperative systems of two Schrödinger equations.

Keywords: Positive or negative solutions, pointwise bounds, ground state, principal eigenvalue, cooperative and noncooperative systems.
AMS classification: 35B50, 35J50.

§1. Introduction

Positivity or negativity of weak L^{2}-solutions of a linear partial differential equation with the Schrödinger operator,

$$
\begin{equation*}
-\Delta u+q(x) u-\lambda u=f(x) \quad \text { in } \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

has been a subject of a number of research articles and monographs, see e.g. Alziary, Fleckinger and Takáč [3, 5], Alziary and Takáč [2], and many others. Here, f is a given function satisfying $0 \leq f \not \equiv 0$ in $\mathbb{R}^{N}(N \geq 1)$, and λ stands for the spectral parameter. Let φ_{1} denote the positive eigenfunction associated with the principal eigenvalue λ_{1} of the Schrödinger operator $\mathscr{A}=-\Delta+q(x) \bullet$ in $L^{2}\left(\mathbb{R}^{N}\right)$. Assume that the potential $q(x)$ is radially symmetric and grows fast enough near infinity, and f is a "sufficiently smooth" perturbation of a radially symmetric function, $f \not \equiv 0$ and $0 \leq f / \varphi \leq C \equiv$ const a.e. in \mathbb{R}^{N}. For such equation (1), it is possible to show that u satisfies the ground state positivity for $-\infty<\lambda<\lambda_{1}$ (i.e., $u \geq c \varphi_{1}$ with $c \equiv$ const >0) and satisfies the ground state negative for $\lambda_{1}<\lambda<\lambda_{1}+\delta$ (i.e., $u \leq-c \varphi_{1}$ with $c \equiv$ const >0), where $\delta>0$ is a number depending on f. The constant $c>0$ depends on both λ and f.

In their book, Protter and Weinberger [12] give a maximum principle for weakly coupled systems of essentially positive elliptic equations. Then several authors revisited the problem in the case of a bounded domain, De Figueiredo and Mitidieri [10], Mitidieri and Sweers [11] and Cosner and Schaefer [9] for the maximum principle. The anti-maximum, always for
bounded domain, was studied in particular by Sweers [13] and Takáč [14]. For a system of Schrödinger equations on the whole space, Abakhti-Mchachti and Fleckinger [6] or Alziary, Cardoulis and Fleckinger [1] obtained the maximum principle for a cooperative system but not the ground state positivity. Alziary, Fleckinger and Takáč [4] proved the ground state positivity for a cooperative system and for a (2×2) noncooperative system by inserting the (2×2) noncooperative system into a (3×3) cooperative one. Recently Besbas [7] gave a result concerning ground state negativity for particular cooperative system. Note that all those results are obtained for radially symmetric potential.

Here our purpose is to show, on a (2×2) systems of Schrödinger equations in the whole space \mathbb{R}^{N}, how to obtain ground state positivity and negativity for cooperative and noncooperative system. We consider the following system :

$$
\mathscr{L}\binom{u}{v}=\left(\begin{array}{cc}
-\Delta+q(x) \bullet & 0 \tag{2}\\
0 & -\Delta+q(x) \bullet
\end{array}\right)\binom{u}{v}=\binom{\lambda u+a u+b v+f}{\lambda v+c u+d v+g} .
$$

The functions f and g are in $L^{2}\left(\mathbb{R}^{n}\right)$ and λ is a spectral parameter. The coefficients a, b, c, d are constant and we denote by $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If $b \geq 0$ and $c \geq 0$, the system is called cooperative. Instead of inserting the (2×2) noncooperative system into a (3×3) cooperative one, the idea is to use for both cooperative and noncooperative systems the decomposition of the resolvant $(\lambda I-\mathscr{L})^{-1}$ for λ near λ_{1}.

This article is organized as follows. In Section 2 we give some notations and definitions and we state our main result, Theorem 1. In Section 3 we first recall the result for the single equation. Indeed the proof of the theorem 1 will use the ground state positivity and negativity for one equation. Finally in Section 4, we give the proof of our main result.

§2. Main Result

The Schrödinger operator \mathscr{A} denotes the selfadjoint extension of the symmetric operator in $L^{2}\left(\mathbb{R}^{n}\right)$ defined by

$$
\mathscr{A} u=-\Delta u+q(x) u \quad \text { for } x \in \mathbb{R}^{n} \quad \text { and } u \in C_{0}^{2}\left(\mathbb{R}^{n}\right)
$$

The potential $q \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n}\right)$, tending to infinity when $|x|$ goes to infinity, is supposed to be greater than some positive constant, $0<\mathrm{Cst} \leq q(x)$. With such hypotheses on the potential, the spectrum of \mathscr{A} consists on a sequence of positive eigenvalues tending to infinity. The smallest one, λ_{1} is given by the Rayley quotient

$$
\lambda_{1}=\inf _{u \in V_{q}\left(\mathbb{R}^{n}\right)}\left\{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{n}} q(x)|u|^{2} d x, \text { with }\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1\right\}
$$

where the weighted space V_{q} is defined as follows:

$$
V_{q}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{n}} q(x)|u|^{2} d x<\infty\right\} .
$$

This principal eigenvalue λ_{1} is associated with a positive eigenfunction $\varphi_{1}>0$ normalized by $\left\|\varphi_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=1$. This positive eigenfunction $\varphi_{1}>0$ is called the ground state. The domain
of the operator \mathscr{A} is denoted by

$$
\mathscr{D}(\mathscr{A})=\left\{u \in V_{q}\left(\mathbb{R}^{n}\right):(-\Delta+q) u \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

Finally, let us recall the definition of the ground state positivity and negativity, introduced by Alziary, Fleckinger and Takáč [2, 3]

Definition 1. A function $u \in L^{2}\left(\mathbb{R}^{N}\right)$ satisfies the ground state positivity if there exists a constant $c>0$ such that

$$
u \geq c \varphi_{1} \quad \text { almost everywhere in } \mathbb{R}^{N}
$$

Analogously, $u \in L^{2}\left(\mathbb{R}^{N}\right)$ satisfies the ground state negativity if there exists a constant $c>0$ such that

$$
u \leq-c \varphi_{1} \quad \text { almost everywhere in } \mathbb{R}^{N}
$$

The ground state positivity (or ground state negativity) of a sufficiently smooth solution u to the equation (1), for $\lambda<\lambda_{1}$ (or $\lambda_{1}<\lambda<\lambda_{1}+\delta$, respectively), is an important result with numerous applications to both linear and nonlinear elliptic problems in \mathbb{R}^{N}, see Alziary and Takáč [2]. Here, δ is a positive number depending upon f.

Those results are similar to the maximum or anti-maximum principle in a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 1$, which have been established in the work of Clément and Peletier [8], Sweers [13] and Takáč [14]. But the case of the Schrödinger operator on $\Omega=\mathbb{R}^{N}$ is more difficult; the hypothesis $f \in L^{p}(\Omega)(p>N)$ is no longer sufficient. We need to take a smaller space for f, namely, a strongly ordered Banach space X introduced in Alziary and Takáč [2]:

$$
\begin{equation*}
X=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): u / \varphi_{1} \in L^{\infty}\left(\mathbb{R}^{N}\right)\right\} \tag{3}
\end{equation*}
$$

endowed with the ordered norm

$$
\begin{equation*}
\|u\|_{X}=\inf \left\{C \in \mathbb{R}:|u| \leq C \varphi_{1} \text { almost everywhere in } \mathbb{R}^{N}\right\} . \tag{4}
\end{equation*}
$$

The ordering " \leq " on X is the natural pointwise ordering of functions. This means that X is an ordered Banach space whose positive cone X_{+}has nonempty interior \dot{X}_{+}.

We denote by $\left(r, x^{\prime}\right)$ the spherical coordinates in \mathbb{R}^{N}, that is, $x=r x^{\prime} \in \mathbb{R}^{N}$, where $r=|x|$ and $x^{\prime}=r^{-1} x \in \mathbf{S}^{N-1}$ if $x \neq 0$; we set $r=0$ and leave $x^{\prime} \in \mathbf{S}^{N-1}$ arbitrary if $x=0$. As usual, \mathbf{S}^{N-1} denotes the unit sphere in \mathbb{R}^{N} centered at the origin. We refer to r and x^{\prime} as the radial and azimuthal variables, respectively. The surface measure on \mathbf{S}^{N-1} is denoted by σ; we let $\sigma_{N-1}=\sigma\left(\mathbf{S}^{N-1}\right)$ be the surface area of \mathbf{S}^{N-1}.

For any $\alpha>0$, we introduce the Banach space $X^{\alpha, 2}$ of all functions $f \in L_{\text {loc }}^{2}\left(\mathbb{R}^{N}\right)$ having the following properties:

$$
\left[\left(-\Delta_{S}\right)^{\alpha / 2} f\right](r, \bullet) \in L^{2}\left(\mathbf{S}^{N-1}\right) \quad \text { for all } r>0
$$

where Δ_{S} denotes the Laplace-Beltrami operator on the sphere \mathbf{S}^{N-1}, and there is a constant $C \geq 0$ such that, for almost every $r>0$,

$$
\frac{1}{\sigma_{N-1}} \int_{\mathbf{S}^{N-1}}\left|f\left(r, x^{\prime}\right)\right|^{2} d \sigma\left(x^{\prime}\right)+\frac{1}{\sigma_{N-1}} \int_{\mathbf{S}^{N-1}}\left|\left[\left(-\Delta_{S}\right)^{\alpha / 2} f\right]\left(r, x^{\prime}\right)\right|^{2} d \sigma\left(x^{\prime}\right) \leq\left[C \boldsymbol{\varphi}_{1}(r)\right]^{2}
$$

The smallest such constant C defines the norm $\|f\|_{X^{\alpha, 2}}$ in $X^{\alpha, 2}$. Notice that, for $f(x) \equiv f(|x|)$, we have $f \in X^{\alpha, 2} \Longleftrightarrow f \in X$ together with the norms $\|f\|_{X^{\alpha, 2}}=\|f\|_{X}$. Furthermore, if $\alpha>\frac{N-1}{2}$ then $X^{\alpha, 2}$ is continuously imbedded into X, by the Sobolev imbedding theorem for $W^{\alpha, 2}\left(\mathbf{S}^{N-1}\right) \hookrightarrow C\left(\mathbf{S}^{N-1}\right)$. Of course, the Hilbert space $W^{\alpha, 2}\left(\mathbf{S}^{N-1}\right)$ is defined to be the domain of $\left(-\Delta_{S}\right)^{\alpha / 2}$ in $L^{2}\left(\mathbf{S}^{N-1}\right)$ endowed with the graph norm.

Taking $N \geq 2$, we establish the ground state positivity and negativity for f and g from the Banach space $X^{\alpha, 2}$. The necessity of such a restriction for the Schrödinger operator in $L^{2}\left(\mathbb{R}^{N}\right)$ has been discussed and partly justified in [3, Remark 2.1 and Lemma 2.2] and in [4, Example 4.1].

In order to formulate our hypothesis on the potential $q(x), x \in \mathbb{R}^{N}$, we first introduce the following class of auxiliary functions $Q(r)$ of $r \equiv|x|, R_{0} \leq r<\infty$, for some $R_{0}>0$:

$$
\left\{\begin{array}{l}
Q(r)>0, Q \text { is locally absolutely continuous } \tag{5}\\
Q^{\prime}(r) \geq 0, \text { and } \int_{R_{0}}^{\infty} Q(r)^{-1 / 2} d r<\infty
\end{array}\right.
$$

We assume that the potential q is radially symmetric, $q(x) \equiv q(|x|), x \in \mathbb{R}^{N}$, where $q(r)$ is a Lebesgue measurable function satisfying the following hypothesis, with some auxiliary function $Q(r)$ which obeys (5):

$$
\left\{\begin{array}{l}
\text { The potential } q: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is locally essentially bounded, } q(r) \geq \tag{H}\\
\text { const }>0 \text { for } r \geq 0, \text { and there exists a constant } c_{1}>0 \text { such that } \\
c_{1} Q(r) \leq q(r) \text { for } R_{0} \leq r<\infty .
\end{array}\right.
$$

We always suppose that M satisfies

$$
\left\{\begin{array}{l}
a>0, d>0, c \neq 0, \text { and } a \geq d \tag{M}\\
D=(a-d)^{2}+4 b c>0
\end{array}\right.
$$

Hypotheses $a>0, d>0$ and $a \geq d$ can always be satisfied by adding a constant times u in both sides of the first equation, a constant times v in both sides of the second equation and eventually switching the two equations to get $a \geq d$. But the matrix M must not have complex eigenvalues. So M has the two following eigenvalues:

$$
\mu^{+}=\frac{a+d+\sqrt{D}}{2} \quad \text { and } \quad \mu^{-}=\frac{a+d-\sqrt{D}}{2}
$$

Let us, now, formulate our main result.
Theorem 1. Let the hypotheses (H) and $\left(\mathrm{H}_{\mathrm{M}}\right)$ be satisfied. Assume that u and v are in $\mathscr{D}(\mathscr{A})$ and satisfy the system (2) with f et g in $X^{\alpha, 2}$, for some $\alpha>\frac{N-1}{2}, f+\frac{2 b}{(a-d)+\sqrt{D}} g \geq 0$ a.e. in \mathbb{R}^{N} and $f+\frac{2 b}{(a-d)+\sqrt{D}} g>0$ in some set of positive Lebesgue measure.

- Before $\lambda_{1}-\mu^{+}$:
there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in\left(\lambda_{1}-\mu^{+}-\delta, \lambda_{1}-\mu^{+}\right)$, inequalities

$$
\begin{align*}
& u \geq c_{u} \varphi_{1} \text { and } v \geq c_{v} \varphi_{1} \quad \text { in } \mathbb{R}^{N} \text { in the case } c>0 \tag{6}\\
& u \geq c_{u} \varphi_{1} \text { and } v \leq-c_{v} \varphi_{1} \text { in } \mathbb{R}^{N} \text { in the case } c<0 \tag{7}
\end{align*}
$$

are valid with two constants $c_{u}>0$ and $c_{v}>0$ (depending upon f, g, M and λ).

- After $\lambda_{1}-\mu^{+}$:
there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in\left(\lambda_{1}-\mu^{+}, \lambda_{1}-\mu^{+}+\delta\right)$, inequalities

$$
\begin{align*}
& u \leq-c_{u} \varphi_{1} \text { and } v \leq-c_{v} \varphi_{1} \text { in } \mathbb{R}^{N} \text { in the case } c>0, \tag{8}\\
& u \leq-c_{u} \varphi_{1} \text { and } v \geq c_{v} \varphi_{1} \quad \text { in } \mathbb{R}^{N} \text { in the case } c<0, \tag{9}
\end{align*}
$$

are valid with two constants $c_{u}>0$ and $c_{v}>0$ (depending upon f, g, M and λ).

§3. Some known results for a single equation on the whole space

The following theorem was established by Alziary, Fleckinger and Takáč, first for \mathbb{R}^{2} in [3] and then using Fourier series with spherical harmonics for \mathbb{R}^{N} in [5].
Theorem 2. Let the hypothesis (H) be satisfied. Assume that $u \in \mathscr{D}(\mathscr{A}), \mathscr{A} u-\lambda u=f \in$ $L^{2}\left(\mathbb{R}^{N}\right), \lambda \in \mathbb{R}$, and $f \geq 0$ a.e. in \mathbb{R}^{N} with $f>0$ in some set of positive Lebesgue measure. Then, for every $\lambda \in\left(-\infty, \lambda_{1}\right)$, there exists a constant $c>0$ (depending upon f and λ) such that

$$
\begin{equation*}
u \geq c \varphi_{1} \quad \text { in } \mathbb{R}^{N} \tag{10}
\end{equation*}
$$

Moreover, if also $f \in X^{\alpha, 2}$ for some $\alpha>\frac{N-1}{2}$, then there exists a positive number δ (depending upon f) such that, for every $\lambda \in\left(\lambda_{1}, \lambda_{1}+\delta\right)$, the inequality

$$
\begin{equation*}
u \leq-c \varphi_{1} \quad \text { in } \mathbb{R}^{N} \tag{11}
\end{equation*}
$$

is valid with a constant $c>0$ (depending upon f and λ).
In fact, the proof of this result gives more precisions about the behaviour of the constant c when λ goes to λ_{1}. The next remark details how the constant depends upon f an λ.
Remark 1. For $\lambda<\lambda_{1}, \lambda$ near λ_{1}, we have $u \geq C(f, \lambda) \varphi_{1}$, with $C(f, \lambda)=\frac{\int_{\mathbb{R}^{n}} f \varphi_{1}}{\lambda_{1}-\lambda}-\Gamma(\lambda, f)$ and $\lim _{\lambda \rightarrow \lambda_{1}} \Gamma(\lambda, f)=\Gamma<\infty$. So when λ goes to λ_{1}, u becomes very large. By the strong maximum principle, we have also $|u| \leq \frac{\|f\|_{X}}{\left(\lambda_{1}-\lambda\right)} \varphi_{1}$.

For $\lambda>\lambda_{1}, \lambda$ near λ_{1}, we get $u \leq-C(f, \lambda) \varphi_{1}$, with $C(f, \lambda)=\frac{f_{\mathbb{R}^{n}} f \varphi_{1}}{\lambda-\lambda_{1}}-\Gamma(\lambda, f)$ and $\lim _{\lambda \rightarrow \lambda_{1}} \Gamma(\lambda, f)=\Gamma<\infty$. So when λ goes to $\lambda_{1},-u$ becomes very large. The proof of this remark is given in [7].

§4. Proof of the Theorem

Proof. The two eigenvectors v^{+}and v^{-}associated respectively with the eigenvalues μ^{+}and μ^{-}are

$$
v^{+}=\binom{\frac{a-d+\sqrt{D}}{2}}{c} \quad \text { and } \quad v^{-}=\binom{-b}{\frac{a-d+\sqrt{D}}{2}} .
$$

So the system can be rewritten

$$
\begin{cases}-\Delta \tilde{u}+q \tilde{u}=\left(\lambda+\mu^{+}\right) \tilde{u}+\tilde{f} & \text { in } \mathbb{R}^{n} \\ -\Delta \tilde{v}+q \tilde{v}=\left(\lambda+\mu^{-}\right) \tilde{v}+\tilde{g} & \text { in } \mathbb{R}^{n}\end{cases}
$$

with

$$
\binom{\tilde{u}}{\tilde{v}}=P\binom{u}{v}, \quad\binom{\tilde{f}}{\tilde{g}}=P\binom{f}{g} \quad \text { and } \quad P=\frac{1}{\sqrt{D}}\left(\begin{array}{cc}
1 & \frac{2 b}{(a-d)+\sqrt{D}} \\
\frac{-2 c}{(a-d)+\sqrt{D}} & 1
\end{array}\right) .
$$

The two functions \tilde{u} and \tilde{v} are solutions of the two independent following equations:

$$
\begin{align*}
& -\Delta \tilde{u}+q \tilde{u}=\left(\lambda+\mu^{+}\right) \tilde{u}+\frac{1}{\sqrt{D}}\left(f+\frac{2 b}{(a-d)+\sqrt{D}} g\right), \tag{12}\\
& -\Delta \tilde{v}+q \tilde{v}=\left(\lambda+\mu^{-}\right) \tilde{v}+\frac{1}{\sqrt{D}}\left(\frac{-2 c}{(a-d)+\sqrt{D}} f+g\right) . \tag{13}
\end{align*}
$$

After solving those two equations, the initial functions u and v could be calculated by

$$
\begin{align*}
& u=\frac{(a-d)+\sqrt{D}}{2} \tilde{u}-b \tilde{v} \tag{14}\\
& v=c \tilde{u}+\frac{(a-d)+\sqrt{D}}{2} \tilde{v} \tag{15}
\end{align*}
$$

We suppose $\lambda<\lambda_{1}-\mu^{-}$, and so the equation (13) satisfies the maximum principle. The function f and g are in X and so for some constant $C_{\tilde{g}}$, we have

$$
\begin{equation*}
|\tilde{v}| \leq\left(\lambda_{1}-\lambda-\mu^{-}\right)^{-1} C_{\tilde{g}} \varphi_{1} . \tag{16}
\end{equation*}
$$

- For $\lambda<\lambda_{1}-\mu^{+}<\lambda_{1}-\mu^{-}$, the equation (12) satisfies the fundamental positivity, so we have

$$
|\tilde{v}| \leq \frac{C_{\tilde{g}}}{\lambda_{1}-\lambda-\mu^{-}} \varphi_{1} \leq \frac{C_{\tilde{g}}}{\mu^{+}-\mu^{-}} \varphi_{1} \quad \text { and } \quad \tilde{u} \geq C(\lambda, \tilde{f}) \varphi_{1}
$$

with $C(\lambda, \tilde{f})$ which goes to $+\infty$ when λ tends to λ_{1}.
Consequently, \tilde{v} stays bounded and \tilde{u} becomes very large positive when λ goes to λ_{1}. So there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in\left(\lambda_{1}-\mu^{+}-\delta, \lambda_{1}-\mu^{+}\right)$, by (14) and (15), we get for u and v, in the case $c>0$,

$$
u \geq c_{u} \varphi_{1} \quad \text { and } \quad v \geq c_{v} \varphi_{1}, \quad c_{u} \text { and } c_{v} \text { are positive constants. }
$$

In that case, it is possible to show, using the Neumann series for the resolvent $(\lambda I-$ $\mathscr{L})^{-1}$, that the ground state positivity is true for all $\lambda<\lambda_{1}-\mu^{+}$.
Of course, for $c<0$, we have,

$$
u \geq c_{u} \varphi_{1} \quad \text { and } \quad v \leq-c_{v} \varphi_{1}, \quad c_{u} \text { and } c_{v} \text { are positive constants. }
$$

- For $\lambda_{1}-\mu^{+}<\lambda<\lambda_{1}-\mu^{-}$, the upper bound (16) stays valid and (12) satisfies the ground state negativity, so there exists $\delta_{\tilde{u}} \leq \mu^{+}-\mu^{-}$such that for every $\lambda \in\left(\lambda_{1}-\right.$ $\mu^{+}, \lambda_{1}-\mu^{+}+\delta_{\tilde{u}}$, we have

$$
|\tilde{v}| \leq \frac{C_{\tilde{g}}}{\lambda_{1}-\lambda-\mu^{-}} \varphi_{1} \leq \frac{C_{\tilde{g}}}{\mu^{+}-\mu^{-}-\delta_{\tilde{u}}} \varphi_{1} \quad \text { and } \quad \tilde{u} \leq-C(\lambda, \tilde{f}) \varphi_{1},
$$

with $C(\lambda, \tilde{f})$ which goes to $+\infty$ when λ tends to λ_{1}.
Consequently, \tilde{v} stays bounded and \tilde{u} becomes very large negative when λ goes to λ_{1}.
So there exists a positive number δ (depending upon f, g and M) such that, for every $\lambda \in\left(\lambda_{1}-\mu^{+}, \lambda_{1}-\mu^{+}+\delta\right)$, by (14) and (15) we get for u and v, in the case $c>0$,
$u \leq-c_{u} \varphi_{1} \quad$ and $\quad v \leq-c_{v} \varphi_{1}, \quad c_{u}$ and c_{v} are positive constants.
Of course, for $c<0$, we have
$u \leq-c_{u} \varphi_{1} \quad$ and $\quad v \geq c_{v} \varphi_{1}, \quad c_{u}$ and c_{v} are positive constants.

Acknowledgements

Part of this work has been done under CTP project 03007534.

References

[1] AlZiary, B., Cardoulis, L., and Fleckinger, J. Maximum principle and existence of solutions for elliptic systems involving Schrödinger operators. Rev. R. Acad. Cienc. Exact. Fis. Nat. 91 (1997), 47-52.
[2] AlZiary, B., and TakÁč, P. A pointwise lower bound for positive solutions of a Schrödinger equation in \mathbb{R}^{N}. Journal of Differential Equations 133,2 (1997), 280-295.
[3] AlZiary, B., Fleckinger, J., And Takáč, P. An extension of maximum and antimaximum principles to a Schrödinger equation in \mathbb{R}^{2}. Journal of Differential Equations 156 (1999), 122-152.
[4] Alziary, B., Fleckinger, J., And Takáč, P. Maximum and anti-maximum principles for some systems involving Schrödinger oprator. Operator Theory: Advances and Applications 110 (1999), 13-21.
[5] Alziary, B., Fleckinger, J., And TakÁč, P. Positivity and negativity of solutions to a Schrödinger equation in \mathbb{R}^{N}. Positivity 5 (2001), 359-382.
[6] Abakhti-Mchachti, A., and Fleckinger-Pellé, J. Existence of solutions for non cooperative semilinear elliptic systems defined on an unbounded domain. Pitman Research Notes in Maths 266, 92-106.
[7] Besbas, N. Principe d'Anti-Maximum pour des Équations et des Systèmes de Type Schrödinger dans \mathbb{R}^{N}. Thèse de doctorat de l'Université des Sciences Sociales Toulouse 1, 2004.
[8] Clément, Ph., and Peletier, L. A. An anti-maximum principle for second order elliptic operators. J. Differential Equations 34 (1979), 218-229.
[9] Cosner, C., and Schaefer, P. W. Sign-definite solutions in some linear elliptic systems. Proc. Roy. Soc. Edinbourgh, 111A (1989), 347-358.
[10] de Figueiredo, D. G., and Mitidieri, E. Maximum principle for linear elliptic systems. Quaterno Matematico, Dip. Sc. Mat., Univ. Trieste 177 (1988).
[11] Mitidieri, E., and Sweers, G. Weakly coupled elliptic systems and positivity. Math. Nachr. 173 (1995), 259-286.
[12] Protter, M. H., and Weinberger, H. F. Maximum Principles in Differential Equations. Springer-Verlag, New York-Berlin-Heidelberg, 1984.
[13] Sweers, G. Strong positivity in $C(\bar{\Omega})$ for elliptic systems. Math. Z. 209 (1992), 251271.
[14] TAKÁČ, P. An abstract form of maximum and anti-maximum principles of Hopf's type. J. Math. Anal. Appl. 201 (1996), 339-364.

Bénédicte Alziary, Jacqueline Fleckinger and Marie-Hélène Lécureux
CEREMATH MIP UMR 5640
Université Toulouse 1
31042 TOULOUSE Cedex
alziary@univ-tlse1.fr and jfleck@univ-tlse1.fr

