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SYSTEMS OF SCHRÖDINGER EQUATIONS:
POSITIVITY AND NEGATIVITY
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Abstract. We consider here Schrödinger operator−∆+q(x)• defined in the entire space
RN, with a potentialq tending to+∞ at infinity with a sufficiently fast growth. The
ground state positivity and negativity for a Schrödinger equation with spectral parameter
says that, if the spectral parameter is lower than the principal eigenvalue, the solutions
satisfy ground state positivity (greater than a positive constant times the ground state)
and if the spectral parameter is slightly greater than the principal eigenvalue, then the
solutions satisfy ground state negativity (lower than minus a positive constant times the
ground state). We extend this ground state positivity and negativity to cooperative and
noncooperative systems of two Schrödinger equations.
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§1. Introduction

Positivity or negativity of weakL2-solutions of a linear partial differential equation with the
Schrödinger operator,

−∆u+q(x)u−λu = f (x) in RN, (1)

has been a subject of a number of research articles and monographs, see e.g. Alziary, Fle-
ckinger and Taká̌c [3, 5], Alziary and Taká̌c [2], and many others. Here,f is a given function
satisfying 0≤ f 6≡ 0 in RN (N ≥ 1), andλ stands for the spectral parameter. Letϕ1 denote
the positive eigenfunction associated with the principal eigenvalueλ1 of the Schrödinger
operatorA = −∆ + q(x)• in L2(RN). Assume that the potentialq(x) is radially symmetric
and grows fast enough near infinity, andf is a “sufficiently smooth” perturbation of a radially
symmetric function,f 6≡ 0 and 0≤ f/ϕ ≤C≡ const a.e. inRN. For such equation (1), it is
possible to show thatu satisfies the ground state positivity for−∞ < λ < λ1 (i.e., u≥ cϕ1

with c≡ const> 0) and satisfies the ground state negative forλ1 < λ < λ1+δ (i.e.,u≤−cϕ1

with c≡ const> 0), whereδ > 0 is a number depending onf . The constantc > 0 depends
on bothλ and f .

In their book, Protter and Weinberger [12] give a maximum principle for weakly coupled
systems of essentially positive elliptic equations. Then several authors revisited the problem
in the case of a bounded domain, De Figueiredo and Mitidieri [10], Mitidieri and Sweers [11]
and Cosner and Schaefer [9] for the maximum principle. The anti-maximum, always for
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bounded domain, was studied in particular by Sweers [13] and Takáč [14]. For a system of
Schrödinger equations on the whole space, Abakhti-Mchachti and Fleckinger [6] or Alziary,
Cardoulis and Fleckinger [1] obtained the maximum principle for a cooperative system but
not the ground state positivity. Alziary, Fleckinger and Takáč [4] proved the ground state
positivity for a cooperative system and for a(2×2) noncooperative system by inserting the
(2× 2) noncooperative system into a(3× 3) cooperative one. Recently Besbas [7] gave
a result concerning ground state negativity for particular cooperative system. Note that all
those results are obtained for radially symmetric potential.

Here our purpose is to show, on a(2×2) systems of Schrödinger equations in the whole
spaceRN, how to obtain ground state positivity and negativity for cooperative and noncoop-
erative system. We consider the following system :

L

(
u
v

)
=
(
−∆+q(x)• 0

0 −∆+q(x)•

)(
u
v

)
=
(

λu+au+bv+ f
λv+cu+dv+g

)
. (2)

The functionsf andg are inL2(Rn) andλ is a spectral parameter. The coefficientsa,b,c,d
are constant and we denote byM =

(
a b
c d

)
. If b≥ 0 andc≥ 0, the system is called cooperative.

Instead of inserting the(2×2) noncooperative system into a(3×3) cooperative one,the idea
is to use for both cooperative and noncooperative systems the decomposition of the resolvant
(λ I −L )−1 for λ nearλ1.

This article is organized as follows. In Section 2 we give some notations and definitions
and we state our main result, Theorem 1. In Section 3 we first recall the result for the single
equation. Indeed the proof of the theorem 1 will use the ground state positivity and negativity
for one equation. Finally in Section 4, we give the proof of our main result.

§2. Main Result

The Schrödinger operatorA denotes the selfadjoint extension of the symmetric operator in
L2(Rn) defined by

A u =−∆u+q(x)u for x∈ Rn and u∈C2
0(Rn).

The potentialq ∈ L∞
loc(Rn), tending to infinity when|x| goes to infinity, is supposed to be

greater than some positive constant, 0< Cst≤ q(x). With such hypotheses on the potential,
the spectrum ofA consists on a sequence of positive eigenvalues tending to infinity. The
smallest one,λ1 is given by the Rayley quotient

λ1 = inf
u∈Vq(Rn)

{∫
Rn
|∇u|2dx+

∫
Rn

q(x)|u|2dx, with ‖u‖L2(Rn) = 1

}
,

where the weighted spaceVq is defined as follows:

Vq(Rn) =
{

u∈ L2(Rn) :
∫

Rn
|∇u|2dx+

∫
Rn

q(x)|u|2dx< ∞
}

.

This principal eigenvalueλ1 is associated with a positive eigenfunctionϕ1 > 0 normalized
by ‖ϕ1‖2L2(Rn) = 1. This positive eigenfunctionϕ1 > 0 is called the ground state. The domain
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of the operatorA is denoted by

D(A ) = {u∈Vq(Rn) : (−∆+q)u∈ L2(Rn)}.

Finally, let us recall the definition of the ground state positivity and negativity, introduced
by Alziary, Fleckinger and Takáč [2, 3]

Definition 1. A function u ∈ L2(RN) satisfies theground state positivityif there exists a
constantc > 0 such that

u≥ cϕ1 almost everywhere inRN.

Analogously,u∈ L2(RN) satisfies theground state negativityif there exists a constantc > 0
such that

u≤−cϕ1 almost everywhere inRN.

The ground state positivity (or ground state negativity) of a sufficiently smooth solutionu
to the equation (1), forλ < λ1 (or λ1 < λ < λ1 +δ , respectively), is an important result with
numerous applications to both linear and nonlinear elliptic problems inRN, see Alziary and
Taká̌c [2]. Here,δ is a positive number depending uponf .

Those results are similar to the maximum or anti-maximum principle in a bounded do-
mainΩ ⊂ RN, N ≥ 1, which have been established in the work of Clément and Peletier [8],
Sweers [13] and Takáč [14]. But the case of the Schrödinger operator onΩ = RN is more
difficult; the hypothesisf ∈ Lp(Ω) (p > N) is no longer sufficient. We need to take a smaller
space forf , namely, a strongly ordered Banach spaceX introduced in Alziary and Taká̌c [2]:

X = {u∈ L2(RN) : u/ϕ1 ∈ L∞(RN)}, (3)

endowed with the ordered norm

‖u‖X = inf{C∈ R : |u| ≤Cϕ1 almost everywhere inRN}. (4)

The ordering “≤” on X is the natural pointwise ordering of functions. This means thatX is
an ordered Banach space whose positive coneX+ has nonempty interior̊X+.

We denote by(r,x′) the spherical coordinates inRN, that is,x = rx′ ∈ RN, wherer = |x|
andx′ = r−1x∈ SN−1 if x 6= 0; we setr = 0 and leavex′ ∈ SN−1 arbitrary if x = 0. As usual,
SN−1 denotes the unit sphere inRN centered at the origin. We refer tor andx′ as the radial
and azimuthal variables, respectively. The surface measure onSN−1 is denoted byσ ; we let
σN−1 = σ(SN−1) be the surface area ofSN−1.

For anyα > 0, we introduce the Banach spaceXα,2 of all functions f ∈ L2
loc(RN) having

the following properties:[
(−∆S)α/2 f

]
(r,•) ∈ L2(SN−1) for all r > 0,

where∆S denotes the Laplace-Beltrami operator on the sphereSN−1, and there is a constant
C≥ 0 such that, for almost everyr > 0,

1
σN−1

∫
SN−1
| f (r,x′)|2dσ(x′)+

1
σN−1

∫
SN−1

∣∣∣[(−∆S)α/2 f ](r,x′)
∣∣∣2 dσ(x′)≤ [Cϕ1(r)]2.
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The smallest such constantC defines the norm‖ f‖Xα,2 in Xα,2. Notice that, forf (x)≡ f (|x|),
we have f ∈ Xα,2 ⇐⇒ f ∈ X together with the norms‖ f‖Xα,2 = ‖ f‖X. Furthermore, if
α > N−1

2 thenXα,2 is continuously imbedded intoX, by the Sobolev imbedding theorem
for Wα,2(SN−1) ↪→C(SN−1). Of course, the Hilbert spaceWα,2(SN−1) is defined to be the
domain of(−∆S)α/2 in L2(SN−1) endowed with the graph norm.

Taking N ≥ 2, we establish the ground state positivity and negativity forf andg from
the Banach spaceXα,2. The necessity of such a restriction for the Schrödinger operator in
L2(RN) has been discussed and partly justified in [3, Remark 2.1 and Lemma 2.2] and in [4,
Example 4.1].

In order to formulate our hypothesis on the potentialq(x), x∈ RN, we first introduce the
following class of auxiliary functionsQ(r) of r ≡ |x|, R0≤ r < ∞, for someR0 > 0:{

Q(r) > 0, Q is locally absolutely continuous,

Q′(r)≥ 0, and
∫ ∞

R0
Q(r)−1/2dr < ∞.

(5)

We assume that the potentialq is radially symmetric,q(x) ≡ q(|x|), x ∈ RN, whereq(r) is
a Lebesgue measurable function satisfying the following hypothesis, with some auxiliary
functionQ(r) which obeys (5):The potentialq : R+ → R is locally essentially bounded,q(r) ≥

const> 0 for r ≥ 0, and there exists a constantc1 > 0 such that
c1Q(r)≤ q(r) for R0≤ r < ∞.

(H)

We always suppose thatM satisfies{
a > 0, d > 0, c 6= 0, anda≥ d,

D = (a−d)2 +4bc> 0.
(HM)

Hypothesesa > 0, d > 0 anda≥ d can always be satisfied by adding a constant timesu
in both sides of the first equation, a constant timesv in both sides of the second equation and
eventually switching the two equations to geta≥ d. But the matrixM must not have complex
eigenvalues. SoM has the two following eigenvalues:

µ
+ =

a+d+
√

D
2

and µ
− =

a+d−
√

D
2

,

Let us, now, formulate our main result.

Theorem 1. Let the hypotheses(H) and(HM) be satisfied. Assume that u and v are inD(A )
and satisfy the system (2) with f et g in Xα,2, for someα > N−1

2 , f + 2b
(a−d)+

√
D

g≥ 0 a.e. in

RN and f+ 2b
(a−d)+

√
D

g > 0 in some set of positive Lebesgue measure.

• Beforeλ1−µ+:
there exists a positive numberδ (depending upon f , g and M) such that, for every
λ ∈ (λ1−µ+−δ ,λ1−µ+), inequalities

u≥ cu ϕ1 and v≥ cv ϕ1 in RN in the case c> 0, (6)

u≥ cuϕ1 and v≤−cv ϕ1 in RN in the case c< 0, (7)

are valid with two constants cu > 0 and cv > 0 (depending upon f , g, M andλ ).
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• After λ1−µ+:
there exists a positive numberδ (depending upon f , g and M) such that, for every
λ ∈ (λ1−µ+,λ1−µ+ +δ ), inequalities

u≤−cu ϕ1 and v≤−cv ϕ1 in RN in the case c> 0, (8)

u≤−cu ϕ1 and v≥ cvϕ1 in RN in the case c< 0, (9)

are valid with two constants cu > 0 and cv > 0 (depending upon f , g, M andλ ).

§3. Some known results for a single equation on the whole space

The following theorem was established by Alziary, Fleckinger and Takáč, first forR2 in [3]
and then using Fourier series with spherical harmonics forRN in [5].

Theorem 2. Let the hypothesis(H) be satisfied. Assume that u∈ D(A ), A u−λu = f ∈
L2(RN), λ ∈ R, and f≥ 0 a.e. inRN with f > 0 in some set of positive Lebesgue measure.
Then, for everyλ ∈ (−∞,λ1), there exists a constant c> 0 (depending upon f andλ ) such
that

u≥ cϕ1 in RN. (10)

Moreover, if also f∈ Xα,2 for someα > N−1
2 , then there exists a positive numberδ (depend-

ing upon f ) such that, for everyλ ∈ (λ1,λ1 +δ ), the inequality

u≤−cϕ1 in RN (11)

is valid with a constant c> 0 (depending upon f andλ ).

In fact, the proof of this result gives more precisions about the behaviour of the constant
c whenλ goes toλ1. The next remark details how the constant depends uponf anλ .

Remark1. For λ < λ1, λ nearλ1, we haveu≥C( f ,λ )ϕ1, with C( f ,λ ) =
∫
Rn f ϕ1
λ1−λ

−Γ(λ , f )
and limλ→λ1

Γ(λ , f ) = Γ < ∞. So whenλ goes toλ1, u becomes very large. By the strong

maximum principle, we have also|u| ≤ ‖ f‖X
(λ1−λ )ϕ1.

For λ > λ1, λ nearλ1, we getu≤ −C( f ,λ )ϕ1, with C( f ,λ ) =
∫
Rn f ϕ1
λ−λ1

−Γ(λ , f ) and
limλ→λ1

Γ(λ , f ) = Γ < ∞. So whenλ goes toλ1, −u becomes very large. The proof of this
remark is given in [7].

§4. Proof of the Theorem

Proof. The two eigenvectorsv+ andv− associated respectively with the eigenvaluesµ+ and
µ− are

v+ =
(

a−d+
√

D
2
c

)
and v− =

( −b
a−d+

√
D

2

)
.

So the system can be rewritten{
−∆ũ+qũ = (λ + µ+)ũ+ f̃ in Rn

−∆ṽ+qṽ = (λ + µ−)ṽ+ g̃ in Rn
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with (
ũ
ṽ

)
= P

(
u
v

)
,

(
f̃
g̃

)
= P

(
f
g

)
and P =

1√
D

(
1 2b

(a−d)+
√

D
−2c

(a−d)+
√

D
1

)
.

The two functions ˜u andṽ are solutions of the two independent following equations:

−∆ũ+qũ = (λ + µ
+)ũ+

1√
D

(
f +

2b

(a−d)+
√

D
g

)
, (12)

−∆ṽ+qṽ = (λ + µ
−)ṽ+

1√
D

(
−2c

(a−d)+
√

D
f +g

)
. (13)

After solving those two equations, the initial functionsu andv could be calculated by

u =
(a−d)+

√
D

2
ũ−bṽ, (14)

v = cũ+
(a−d)+

√
D

2
ṽ. (15)

We supposeλ < λ1−µ−, and so the equation (13) satisfies the maximum principle. The
function f andg are inX and so for some constantCg̃, we have

|ṽ| ≤ (λ1−λ −µ
−)−1Cg̃ϕ1. (16)

• For λ < λ1−µ+ < λ1−µ−, the equation (12) satisfies the fundamental positivity, so
we have

|ṽ| ≤
Cg̃

λ1−λ −µ−
ϕ1≤

Cg̃

µ+−µ−
ϕ1 and ũ≥C(λ , f̃ )ϕ1,

with C(λ , f̃ ) which goes to+∞ whenλ tends toλ1.

Consequently, ˜v stays bounded and ˜u becomes very large positive whenλ goes toλ1.
So there exists a positive numberδ (depending uponf , g andM) such that, for every
λ ∈ (λ1−µ+−δ ,λ1−µ+), by (14) and (15), we get foru andv, in the casec > 0,

u≥ cuϕ1 and v≥ cvϕ1, cu andcv are positive constants.

In that case, it is possible to show, using the Neumann series for the resolvent(λ I −
L )−1, that the ground state positivity is true for allλ < λ1−µ+.

Of course, forc < 0, we have,

u≥ cuϕ1 and v≤−cvϕ1, cu andcv are positive constants.

• For λ1− µ+ < λ < λ1− µ−, the upper bound (16) stays valid and (12) satisfies the
ground state negativity, so there existsδũ ≤ µ+− µ− such that for everyλ ∈ (λ1−
µ+,λ1−µ+ +δũ), we have

|ṽ| ≤
Cg̃

λ1−λ −µ−
ϕ1≤

Cg̃

µ+−µ−−δũ
ϕ1 and ũ≤−C(λ , f̃ )ϕ1,
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with C(λ , f̃ ) which goes to+∞ whenλ tends toλ1.

Consequently, ˜v stays bounded and ˜u becomes very large negative whenλ goes toλ1.
So there exists a positive numberδ (depending uponf , g andM) such that, for every
λ ∈ (λ1−µ+,λ1−µ+ +δ ), by (14) and (15) we get foru andv, in the casec > 0,

u≤−cuϕ1 and v≤−cvϕ1, cu andcv are positive constants.

Of course, forc < 0, we have

u≤−cuϕ1 and v≥ cvϕ1, cu andcv are positive constants.
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