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SOLVABILITY OF SOME STRONGLY

UNILATERAL PROBLEMS IN L1 WITHOUT

REGULARITY CONDITION ON THE OBSTACLE

L. Aharouch, E. Azroul and M. Rhoudaf

Abstract. An existence result for the strongly nonlinear unilateral problems associated to
the equation,

−div(a(x,u,∇u))+g(x,u,∇u) = f ∈ L1(Ω),

is proved without any regularity condition on the obstacle.
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§1. Introduction

Let Ω be an open bounded subset ofRN, N ≥ 2. Let f ∈ L1(Ω). Consider the nonlinear
Dirichlet problem associated to the following equation:

Au+g(x,u,∇u) = f , (1)

whereA is a Leray-Lions operator acting fromW1,p
0 (Ω) into its dual andg is a nonlinearity

satisfying a suitable conditions (cf. (H2)). Firstly, the variational case ( i.e., wheref ∈
W−1,p′(Ω)) of the unilateral problems associated to the equation (1) is studied in [4] by
Bensoussane and al. While the case ofL1−data is treated in [5], but under the restrictions that
g≡ 0 anda≡ a(x,∇u). Note that, in all the latter works, the following regularity condition
on the obstacleψ,

ψ
+ ∈W1,p

0 (Ω)∩L∞(Ω) (2)

is supposed and plays a principal role to obtain the existence solution. Our purpose in this
paper, is then to study the previous nonlinear unilateral problem but without assuming any
regularity on the obstacleψ and any coercivity on the nonlinearityg. To overcome those dif-
ficulties, we have introduced some more general coercivity (cf. (6)) and another complicated
test function (cf. (18)). It would be interesting at this stage to refer the reader to the works
[1, 2] in which, the degenerated case is studied but under the regularity condition (2).
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§2. Basic assumptions and main results

Let Ω be a bounded open set ofRN, p be a real number such that 1< p < ∞. Given an
obstacle (measurable) functionψ : Ω→ R, we consider the convex set

Kψ = {u∈W1,p
0 (Ω); u≥ ψ a.e. in Ω)}, (3)

such thatKψ ∩L∞(Ω) is not empty. Note thatKψ is obviously a closed subset ofW1,p
0 (Ω).

Suppose thata : Ω×R×RN→ RN is a Carathéodory function satisfying the following:

(H1) Growth and monotonicity conditions:

|ai(x,s,ξ )| ≤ [k(x)+ |s|p−1 + |ξ |p−1], for i = 1, . . . ,N, (4)

[a(x,s,ξ )−a(x,s,η)](ξ −η) > 0 for all ξ 6= η ∈ RN. (5)

There existδ (x) in L1(Ω) and a strictly positive constantα such that, for some fixed element
v0 in Kψ ∩L∞(Ω)

a(x,s,ζ )(ζ −∇v0)≥ α|ζ |p−δ (x), (6)

for a.e. x in Ω, all s∈ R and all ζ ∈ RN, wherek(x) is a positive function inLp′(Ω).

(H2) Sign and natural growth conditions: g is a Carathéodory function satisfying,

g(x,s,ξ ).s≥ 0, (7)

|g(x,s,ξ )| ≤ b(|s|)(|ξ |p +h(x)), (8)

whereb : R+→R+ is a positive increasing function andh(x) is a positive function inL1(Ω).
We now introduce the functional spaces which will be used after,

T 1,p
0 (Ω) =

{
u : Ω→ R measurable,Tk(u) ∈W1,p

0 (Ω) for all k > 0
}

,

whereTk(s) = max(−k,min(k,s)).

Theorem 1. Assume that(H1) and(H2) hold and f∈ L1(Ω). Then there exists at least one
solution of the following unilateral problem,

u∈T 1,p
0 (Ω), u≥ ψ a.e. in Ω, g(x,u,∇u) ∈ L1(Ω)∫

Ω
a(x,u,∇u)∇Tk(u−v) dx+

∫
Ω

g(x,u,∇u)Tk(u−v) dx

≤
∫

Ω
f Tk(u−v) dx, ∀ v∈ Kψ ∩L∞(Ω), ∀k > 0.

(9)

Remark1. We obtain the same result if we assume only that the sign condition (7) is verified
at infinity, and also if the data is of the formf −divF, with f ∈ L1(Ω) andF ∈ (Lp′(Ω))N.
Then, the previous result holds true when the datum is a measure which does not charges a
zerop-capacity set.
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Proof of Theorem 1.
Step 1: Approximate problem. Let us approximate the nonlinearity by

gn(x,s,ξ ) =
g(x,s,ξ )

1+ 1
n|g(x,s,ξ )|

and consider the approximate unilateral problems:un ∈ Kψ ,

〈Aun,un−v〉+
∫

Ω
gn(x,un,∇un)(un−v)dx≤

∫
Ω

fn(un−v)dx, ∀v∈ Kψ ,
(10)

where fn is a regular function such thatfn strongly converges tof in L1(Ω). We define the
operatorsGn andA in W1,p

0 (Ω) by,

〈Gnu,v〉=
∫

Ω
gn(x,u,∇u)vdx and 〈Au,v〉=

∫
Ω

a(x,u,∇u)∇vdx.

Thanks to a Hölder’s inequality and growth conditions (4), we can easily show thatA andGn

are bounded.

Proposition 2. The operator Bn = A+ Gn from Kψ into W−1,p′(Ω) is pseudomonotone.
Moreover, Bn is coercive in the following sense:

< Bnv,v−v0 >

‖v‖
−→+∞ if ‖v‖ −→+∞, v∈ Kψ .

This proposition will be proved below. In view of Proposition 2, the problem(10) has a
solution by the classical result (cf. Theorem 8.2 in Chapter 2 of [8]).
Step 2: A priori estimates.In this step, we will prove an uniform estimate for the truncated
solutionTk(un). Let k≥ ‖v0‖∞ and letϕk(s) = seγs2

, whereγ = (b(k)/α)2. It is well known
that,

ϕ
′
k(s)−

b(k)
α
|ϕk(s)| ≥

1
2
, ∀s∈ R. (11)

Takingun−ηϕk(Tl (un− v0)) (η = e−γ l2) as test function in(10), wherel = k+ ‖v0‖∞, we
obtain∫

Ω
a(x,un,∇un)∇Tl (un−v0)ϕ ′k(Tl (un−v0)) dx

+
∫

Ω
gn(x,un,∇un)ϕk(Tl (un−v0)) dx≤

∫
Ω

fnϕk(Tl (un−v0)) dx.

Sincegn(x,un,∇un)ϕk(Tl (un−v0))≥ 0 on the subset{x∈Ω : |un(x)|> k}, then∫
{|un−v0|≤l}

a(x,un,∇un)∇(un−v0)ϕ ′k(Tl (un−v0)) dx

≤
∫
{|un|≤k}

|gn(x,un,∇un)||ϕk(Tl (un−v0))| dx+
∫

Ω
fnϕk(Tl (un−v0)) dx.
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By using (6), (8) and the fact that{x∈Ω, |un(x)| ≤ k} ⊆ {x∈Ω : |un−v0| ≤ l}, we get∫
Ω
|∇Tk(un)|pdx≤ 2Ck, (12)

whereCk is a positive constant depending onk.
Step 3: Convergence in measure ofun. Let k0 ≥ ‖v0‖∞ and fix k > k0. Taking v = un−
Tk(un−v0) as a test function in(10), we get∫

Ω
a(x,un,∇un)∇Tk(un−v0)dx+

∫
Ω

gn(x,un,∇un)Tk(un−v0)dx

≤
∫

Ω
fnTk(un−v0)dx.

(13)

Sincegn(x,un,∇un)Tk(un− v0) ≥ 0 on the subset{x ∈ Ω, |un(x)| > k0}, then the previous
inequality (13) and the natural growth (8) imply that∫

Ω
a(x,un,∇un)∇Tk(un−v0)dx≤ kb(k0)

[∫
Ω
|h(x)|dx+

∫
Ω
|∇Tk0(un)|pdx

]
+kC. (14)

Therefore (12) and (14) allow to have∫
Ω

a(x,un,∇un)∇Tk(un−v0)dx≤ k[Ck0 +C].

Thanks to (6) and since{x∈Ω, |un(x)| ≤ k} ⊆ {x∈Ω : |un−v0| ≤ k+‖v0‖∞} and sincek is
arbitrary, we can deduce that ∫

Ω
|∇Tk(un)|pdx≤ kC2. (15)

Now, we aim to prove thatun converges to some functionu in measure. To do this, we use
(15) and we follow the same argument as in [3]. Hence, we conclude that

Tk(un) ⇀ Tk(u) weakly in W1,p
0 (Ω),

Tk(un)→ Tk(u) strongly in Lp(Ω) and a.e. in Ω.
(16)

Indeed sinceTk(un) converge weakly for somevk ∈W1,p
0 (Ω) and sinceun→ u a.e. in Ω,

thenTk(un)→ Tk(u) a.e. in Ω finally by applying the lemma 1.3 in [8, chap 1], we deduce
(16). This yields, by using(4) that there exists a functionhk ∈ (Lp′(Ω))N, such that (for a
subsequence denoted againun)

a(x,Tk(un),∇Tk(un)) ⇀ hk weakly in (Lp′(Ω))N as n→ ∞. (17)

Step 4: Almost everywhere convergence of the gradient.We fix k > ‖v0‖∞, and letwn,h =
T2k(un− v0−Th(un− v0)+Tk(un)−Tk(u)) andwh = T2k(u− v0−Th(u− v0)), with h > 2k.
For η = exp(−4γk2), we define the following function as

vn,h = un−ηϕk(wn,h) (18)
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(which is an admissible function of (10) sinceTk andϕk opere in the spaceW1,p
0 (Ω) (cf [7,

pp. 151-152]) andvn,h≥ ψ). Now, takingvn,h as test function in(10), we get

∫
Ω

a(x,un,∇un)∇wn,hϕ
′
k(wn,h)+gn(x,un,∇un)ϕk(wn,h) dx≤

∫
Ω

fnϕk(wn,h) dx. (19)

Note that,∇wn,h = 0 on the set where|un|> h+5k, therefore, settingm= 5k+h, and denoting
by ε1

h(n),ε2
h(n), . . . various sequences of real numbers which converge to zero asn tends to

infinity for any fixed value ofh. By virtue of (19), sinceun→ u a.e. in Ω and the fact that
gn(x,un,∇un)ϕk(wn,h)≥ 0 on the set{x∈Ω, |un(x)|> k}, we can write

∫
Ω

a(x,Tm(un),∇Tm(un))∇wn,hϕ
′
k(wn,h) dx

+
∫
{|un|≤k}

gn(x,un,∇un)ϕk(wn,h) dx≤
∫

Ω
f ϕk(wh) dx+ ε

1
h(n).

(20)

Splitting the first integral on the left hand side of (20) where|un| ≤ k and|un|> k, we have∫
Ω

a(x,Tm(un),∇Tm(un))∇wn,h)ϕ ′k(wn,h) dx

=
∫
{|un|≤k}

a(x,Tm(un),∇Tm(un))[∇Tk(un)−∇Tk(u)]ϕ ′k(wn,h) dx

+
∫
{|un|>k}

a(x,Tm(un),∇Tm(un))∇wn,hϕ
′
k(wn,h) dx.

(21)

Following the same argument as in [1], we get∫
Ω

a(x,Tm(un),∇Tm(un))[∇Tk(un)−∇Tk(u)]ϕ ′k(wn,h) dx

≥
∫

Ω

[
a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))

][
∇Tk(un)−∇Tk(u)

]
ϕ
′
k(wn,h) dx

−ϕ
′
k(2k)

∫
{|u−v0|>h}

δ (x) dx+ ε
6
h(n).

(22)

We now turn to the second term of the left hand side of (20), using (6), we have∣∣∣∣∣
∫
{|un|≤k}

gn(x,un,∇un)ϕk(wn,h) dx
∣∣∣≤ b(k)

∫
Ω
(c(x)+ |∇Tk(un)|p|ϕk(wn,h)| dx

≤ b(k)
∫

Ω
c(x)|ϕk(wn,h)| dx+ b(k)

α

∫
Ω

δ (x)|ϕk(wn,h)|

+ b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un))∇Tk(un)|ϕk(wn)| dx

− b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un))∇v0|ϕk(wn,h)| dx.
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Following again the same techniques as in [1], we can prove that∣∣∣∣∫{|un|≤k}
gn(x,un,∇un)ϕk(wn,h) dx

∣∣∣∣
≤
∫

Ω

[
a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))

]
[∇Tk(un)−∇Tk(u)]|ϕk(wn,h)|dx

+b(k)
∫

Ω
c(x)|ϕk(wh| dx+ b(k)

α

∫
Ω

δ (x)|ϕk(wh)| dx

− b(k)
α

∫
Ω

hk∇v0|ϕk(wh)| dx+ ε
8
h(n).

(23)

Combining (20), (22) and (23), we obtain∫
Ω

[
a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))

]
×
[
∇Tk(un)−∇Tk(u)

](
ϕ
′
k(wn,h)− b(k)

α
|ϕk(wn,h)|

)
dx

≤ b(k)
∫

Ω
c(x)|ϕk(wh| dx+ b(k)

α

∫
Ω

δ (x)|ϕk(wh)| dx

− b(k)
α

∫
Ω

hk∇v0|ϕk(wh)| dx+
∫

Ω
f (x)ϕk(wh) dx+ ε

9
h(n).

(24)

By (11) we have(ϕ ′k(wn,h)− b(k)
α
|ϕk(wn,h)|)≥ 1

2, hence the monotonicity (5) gives∫
Ω
[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))]× [∇Tk(un)−∇Tk(u)] dx

≤ 2b(k)
∫

Ω
c(x)|ϕk(wh| dx+2b(k)

α

∫
Ω

δ (x)|ϕk(wh)| dx

−2b(k)
α

∫
Ω

hk∇v0|ϕk(wh)| dx+2
∫

Ω
f (x)ϕk(wh) dx+ ε

10
h (n).

(25)

Hence, passing to the limit overn andh and invoking lemma 5 of [6], we deduce that

Tk(un)→ Tk(u) strongly in W1,p
0 (Ω). (26)

For δ > 0 we can write

meas{|∇un−∇u|> δ} ≤ meas{|un|> k}+meas{|u|> k}
+meas{|∇Tk(un)−∇Tk(u)|> δ}.

Reasonings as in [3], we can deduce that each term on the right hand side of the least inequal-
ity is less thanε

3 . Thus∇un→ ∇u in measure, which give again, for a subsequence,

∇un→ ∇u a.e. in Ω, (27)

which yields {
a(x,un,∇un)→ a(x,u,∇u) a.e. in Ω,

gn(x,un,∇un)→ g(x,u,∇u) a.e. in Ω.
(28)
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Step 4: Equi-integrability of the nonlinearity.We need to prove that

gn(x,un,∇un)→ g(x,u,∇u) strongly in L1(Ω). (29)

For that, we takeun−T1(un−v0−Th(un−v0)) (with h large enough) as test function in (10)
and we conclude by Vitali’s theorem.
Step 5: Passage to the limit.Let v∈ Kψ ∩L∞(Ω). Takingun−Tk(un−v) as test function in
(10) and using Fatou’s Lemma, we can pass to the limit. This proves Theorem 1.

Proof of Proposition 2.
The coercivity follows from(6),(7) and the fact thatGn is bounded. It remains to show that
Bn is pseudo-monotone. Let a sequence(uk) ∈W1,p

0 (Ω) such that

uk ⇀ u weakly in W1,p
0 (Ω) and limsup

k→+∞
〈Bnuk,uk−u〉 ≤ 0. (30)

Let v∈W1,p
0 (Ω). We will prove that

liminf
k→+∞

〈Bnuk,uk−v〉 ≥ 〈Bnu,u−v〉.

Since (uk) is a bounded sequence inW1,p
0 (Ω), we deduce that(a(x,uk,∇uk))k (resp.

(gn(x,uk,∇uk))k) is bounded in(Lp′(Ω))N (resp. (Lp′(Ω))), then there exists a function
h∈ (Lp′(Ω))N (resp.ρn ∈ Lp′(Ω)) such that (for a subsequence denoted again(uk)),

uk −→ u strongly in Lp(Ω),
a(x,uk,∇uk) ⇀ h weakly in (Lp′(Ω))N,

gn(x,uk,∇uk) ⇀ ρn weakly in Lp′(Ω).
(31)

The monotonicity condition (5) and (31) allow to get

liminf
k→+∞

〈Bnuk,uk−v〉= liminf
k→+∞

∫
Ω

a(x,uk,∇uk)∇uk dx−〈h,∇v〉+ 〈ρn,u−v〉

≥ − liminf
k→+∞

∫
Ω

a(x,uk,∇u)∇u dx+ liminf
k→+∞

∫
Ω

a(x,uk,∇uk)∇u dx

+ liminf
k→+∞

∫
Ω

a(x,uk,∇u)∇uk dx−〈h,∇v〉+ 〈ρn,u−v〉.

(32)

Hence, after using the convergence (31) we can write

liminf
k→+∞

〈Bnuk,uk−v〉 ≥ 〈ρn,u−v〉+ 〈h,∇(u−v)〉 (33)

(for a subsequence, which holds for the all sequenceuk by applying a standard contradiction
argument). Now, sincev is arbitrary and lim

k→+∞
〈Gnuk,uk− u〉 = 0, we have by using (30)

and (33)

lim
k→+∞

∫
Ω

a(x,uk,∇uk)∇(uk−u) dx= 0.
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We deduce that

lim
k→+∞

∫
Ω
(a(x,uk,∇uk)−a(x,uk,∇u))∇(uk−u) dx= 0.

In view of Lemma 5 of [6], we have∇uk→ ∇u a.e. in Ω, and applying Lemma 1.3 [8,
Chap. 1] which with (33) yields

liminf
k→+∞

〈Bnuk,uk−v〉 ≥ 〈Bnu,u−v〉.

This completes the proof of the proposition.
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