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SOLVABILITY OF SOME STRONGLY
UNILATERAL PROBLEMS IN |_1 WITHOUT
REGULARITY CONDITION ON THE OBSTACLE
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Abstract. An existence result for the strongly nonlinear unilateral problems associated to
the equation,

—div(a(x,u, 0u)) +g(x,u,0u) = f € LY(Q),

is proved without any regularity condition on the obstacle.
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81. Introduction

Let Q be an open bounded subset®}, N > 2. Let f € LY(Q). Consider the nonlinear
Dirichlet problem associated to the following equation:

Au+g(x,u,0u) = f, Q)

whereA is a Leray-Lions operator acting frowol’p(Q) into its dual andy is a nonlinearity
satisfying a suitable conditions (cf. (H2)). Firstly, the variational case ( i.e., whete
W—lvp'(Q)) of the unilateral problems associated to the equation (1) is studied in [4] by
Bensoussane and al. While the cask’sfdata is treated in [5], but under the restrictions that
g = 0 anda = a(x,0u). Note that, in all the latter works, the following regularity condition
on the obstacley,

vt ewyP(Q)NL (Q) 2)

is supposed and plays a principal role to obtain the existence solution. Our purpose in this
paper, is then to study the previous nonlinear unilateral problem but without assuming any
regularity on the obstaclg and any coercivity on the nonlinearity To overcome those dif-
ficulties, we have introduced some more general coercivity (cf. (6)) and another complicated
test function (cf. (18)). It would be interesting at this stage to refer the reader to the works
[1, 2] in which, the degenerated case is studied but under the regularity condition (2).
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82. Basic assumptions and main results

Let Q be a bounded open set BfY, p be a real number such thatd p < c«. Given an
obstacle (measurable) functign: Q — R, we consider the convex set

Ky = {ueW,P(Q); u> v aein Q)}, (3)

such thatk,, NL*(Q) is not empty. Note thak, is obviously a closed subset \A()l’p(Q).
Suppose that: Q x R x RN — RN is a Carathéodory function satisfying the following:

(H1) Growth and monotonicity conditions:

|ai(%,5,&)| < [K(X)+ [P+ [E[PY, for i=1,...,N, (4)
[a(x,s,&) —a(x,s,n)](E—n) >0 forall &#neRN. (5)

There exis® (x) in L1(Q) and a strictly positive constant such that, for some fixed element
Vo in Ky NL*(Q)
a(xs,§)(§ —Ovo) > /[P = 8(x), (6)

fora.e. x in Q, allse R and all { € RN, wherek(x) is a positive function in_” (Q).

(H2) Sign and natural growth conditions: g is a Carathéodory function satisfying,

9(x,58).s>0, (7)
l9(x,s,&)| < b(Is))(|&[P +h(x)), (8)

whereb: R* — R* is a positive increasing function aihdx) is a positive function in.}(Q).
We now introduce the functional spaces which will be used after,

TyP(Q) = {u: Q — R measurable, Ty(u) e WyP(Q) forall k> 0},

whereTg(s) = max(—k, min(k,s)).
Theorem 1. Assume thatH;) and (Hz) hold and fc L1(Q). Then there exists at least one
solution of the following unilateral problem,
ue 75P(Q), u> yae in Q g(xu,0u) e LY(Q)
/ a(x,u, Ju)OTk(u—v) dx+/ g(x, u, Ou) T (u—v) dx 9)
o) o

g/ fTk(u—v)dx V ve Ky NL*(Q), Vk> 0.
Q

Remarkl. We obtain the same result if we assume only that the sign condition (7) is verified

at infinity, and also if the data is of the forfn— divF, with f € L1(Q) andF e (LP (Q))N.

Then, the previous result holds true when the datum is a measure which does not charges a
zerop-capacity set.
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Proof of Theorem 1.
Step 1. Approximate problerrLet us approximate the nonlinearity by

9(x,s,€)

g (X,S, ): 11 Lin/v « ENI
" 1+ Hg(x,s,€)|

and consider the approximate unilateral problems:

Un € Ky,
10
(Aln, Up — +/ gn(X, Un, Oun)( dX</ fa(un—Vv)dx, Vve Ky, (10)

where f,, is a regular function such thdg strongly converges té in L*(Q). We define the
operatorsGy andA in W,"P(Q) by,

(Gnu, V) :/ On(X, u,du)vdx and (Au,v) :/ a(x,u, Ju)Ovdx
Q Q

Thanks to a Holder’s inequality and growth conditions (4), we can easily show énad Gy,
are bounded.

Proposition 2. The operator B = A+ G, from Ky, into W‘LP'(Q) is pseudomonotone.
Moreover, B is coercive in the following sense:

< Bpv,v—Vvp >

VI — Foo if ||v]| — +oo, VE Ky.

This proposition will be proved below. In view of Proposition 2, the prob(@® has a
solution by the classical result (cf. Theorem 8.2 in Chapter 2 of [8]).
Step 2: A priori estimatesin this step, we will prove an uniform estimate for the truncated

solutionT(un). Letk > ||volle and letgg(s) = = s&%, wherey = (b(k)/a)?. Itis well known
that,
b(k 1
oS~ " (s > 2, Vs, a1

Takingun, — Nk (Ti (Un — Vo)) (n = e"%) as test function irf10), wherel = k+ ||Vol|e, We
obtain

20 U, Cun) 5T (u = o) (T (v~ Vo)) dx
+ [ 0n(% U D) p(Ti (U= v0)) X< | fu(Ti (uh = Vo)) dx
Sincegn (X, Un, Oun) @k (Ti (un — Vo)) > 0 on the subsefx € Q : |ux(X)| > k}, then
/ a(%, Un, Tun) O(Un — Vo) 9L (Ti (Un — Vo)) dx
{Jun—vol<I}

< [ 1000 U, ) 96T (un = Vo)) x| 1Ty — Vo)) dx
{lun| <k} Q
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By using (6), (8) and the fact thék € Q, |un(X)| <k} C {x€ Q:|uy—Vvo| < I}, we get
/ | (un) P dx < 2, (12)
Q

whereCy is a positive constant depending kn
Step 3: Convergence in measure of. Letky > ||Vo|| and fixk > kg. Takingv = up —
Tk(un — Vo) as a test function if10), we get

/a(x,un,Dun)DTk(un—vo)dx+/ On(X, Un, Oup) Te(up — Vo) dX

e @ (13)

g/ fTk(up — Vo) dx.
Q

Sincegn(X, Un, Oun) Te(un — Vo) > 0 on the subsefx € Q,|un(X)| > ko}, then the previous
inequality (13) and the natural growth (8) imply that

/ &(X, Un, Otn) OTie(Un — Vo) dX < Khi(ko) { / Ih(x)| dx+ / |DTkO(un)|pdx} LkC. (14)
Q Q Q
Therefore (12) and (14) allow to have

/ a(X, Un, Clun) C1Tic(Un — Vo) dx < K[Gi, +C.

JQ

Thanks to (6) and sincgx € Q, |un(X)| <k} C {x€ Q: |un— vo| <k+ ||Vo||»} and sincek is
arbitrary, we can deduce that

/Q |0 (un) P dX < K. (15)

Now, we aim to prove that, converges to some functianin measure. To do this, we use
(15) and we follow the same argument as in [3]. Hence, we conclude that

Ti(Un) — Tk(u)  weakly in Wy P(Q), (16)
Tk(up) — Tk(u)  strongly in LP(Q) and a.e. in Q.

Indeed sincély(un) converge weakly for some € Wol’p(Q) and sinceu, — u ae. in Q,
thenTy(un) — Tk(u) a.e. in Q finally by applying the lemma 1.3 in [8, chap 1], we deduce
(16). This yields, by using4) that there exists a functiom € (L” (Q))N, such that (for a
subsequence denoted agaj

a(X, Ti(Un), OTi(Un)) — h weakly in (LP (Q))N as n— co. (17)
Step 4: Almost everywhere convergence of the gradiafte fix k > ||vo||, and letw,n =
Tok(Un — Vo — Th(Un — Vo) + Tk(un) — Tk(u)) andwy, = Tox(U— Vo — Th(U— Vo)), with h > 2k.

Forn = exp(—4yk?), we define the following function as

Vih = Un — N @x(Wn) (18)
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(which is an admissible function of (10) sin@g and ¢k opere in the spaCA/&’p(Q) (cf [7,
pp. 151-152]) and,n > ). Now, takingv, y as test function irf10), we get

/Qa(x,un,Dun)ljwn,mpﬁ(wn’h)+gn(x,un,|]un)(pk(wn_,h) dxg/gfn(pk(wmh) dx (29)

Note that,Jw,, = 0 on the set wheri,| > h+-5k, therefore, settingh= 5k+ h, and denoting
by &t(n),&2(n),... various sequences of real numbers which converge to zendeasls to
infinity for any fixed value oh. By virtue of (19), sinceu, — u a.e. in Q and the fact that
On(X, Un, Oun) @x(Wn ) > 0 on the se{x € Q, |ux(X)| > k}, we can write

/ a(X, Tm(Un), OTm(Un) ) OWn h @ (Wn ) dX
+/ On (X, Un, OUn) @ (Wi ) dxg/ f o (Wh) dx+ gt (n).
{lun|<K} Q

Splitting the first integral on the left hand side of (20) whirg < k and|un| > k, we have

/Q a(X, Tm(Un), OTm(Un) ) OWn h) @ (Wn p) dX

= s a(X, Tm(Un), OTm(Un)) [ETic(Un) — OTie(W)] @i (Wn ) dx 21)

+ / a(X, Tm(Un), OTm(Un) ) OWn h @ (Wn ) dX
J{Jun|>k}
Following the same argument as in [1], we get

/Qa(x,Tm(un), OTm(un)) [OTk(un) — DTk(u)](plQ(wmh) dx
> Talx Ti(n). Ce(tn)) — 06 T, CTi()] [OTe( ) = CT(W)] (W) (22)

— pl(2K) / §(x) dx+ e8(n).
{Ju—vol>h)

We now turn to the second term of the left hand side of (20), using (6), we have

| [, 900t D) i) ¢ <) [ (000 +|TTe(tn) Pl ¢
{lun|<k} Q
< bK) | eI dx+"5 [ 800]g(wan)
29 Te(bn), i) T k) i)

%k)/ a(x, Tk(Un), OTi(Un)) Dvo| @k (Wnn)| dx.
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Following again the same techniques as in [1], we can prove that

‘/{u i I (X tn: En) (W) cx
< [0 TeCtm), OT(tk) — 2 i), )] [T(en) — DT )
+b(k)/Qc(x)|<Pk(Wh|dx+%“>/§25(x)|q,k(wh)|dx

— b /Q Vo @ (Wh) | dx+ £8(n).

(23)

Combining (20), (22) and (23), we obtain

1806 (), DTiun) — 2 Te(). OTe(w)]
% [Oiun) — OTi(W)] (A Wnn) — 2 [ (Wnp) ) dx
< b(K) | cl9|e(wn] e+ 20 [ 500l guwn)| dx

K /Q TV k(W) | dx-+ /Q (x) (W) dx-+ £2(1).

(24)

By (11) we have( @y (Wnh) — %kpk(wn_,h)b > %, hence the monotonicity (5) gives
/Q [a(%, Ti(Un), DTic(Un)) — (%, Ti(Un), OTie(U))] % [DTic(tn) — OTie(w)] dx
< 2(K) | 09 |pelwn ct 2% [ 501w o (@5)
P LU /Q Vol @x(Wh) | dx+2 /Q (X) @ (Wh) dx-+ &2°(n).
Hence, passing to the limit ovarandh and invoking lemma 5 of [6], we deduce that
T(un) — Tk(u) strongly in W, "P(Q). (26)
For 6 > 0 we can write

meag |0Ou, — Ou| > 6} < meag|un| > k} +meag|u| > k}
+meag|OT(un) — OTi(u)| > 6}.

Reasonings as in [3], we can deduce that each term on the right hand side of the least inequal-
ity is less thar§. ThusOu, — Ouin measure, which give again, for a subsequence,

Ou, — Ou a.e.inQ, (27)
which yields

a(x, un, Ou a(x,u,du) a.e.inQ,
{( n, Oun) — a( ) (28)

On(X, Un, Oun) — g(x,u,0u) a.e.in Q.
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Step 4: Equi-integrability of the nonlinearityWe need to prove that
In(X, Un, Oun) — g(x,u,0u) strongly in L1(Q). (29)

For that, we takei, — T1 (un — Vo — Th(un — Vo)) (with h large enough) as test function in (10)
and we conclude by Vitali's theorem.

Step 5: Passage to the limitetv e K, NL*(Q). Takingu, — Ti(u, — V) as test function in
(10) and using Fatou’s Lemma, we can pass to the limit. This proves Theorem 1. [

Proof of Proposition 2.
The coercivity follows from(6), (7) and the fact tha®, is bounded. It remains to show that
By is pseudo-monotone. Let a sequefgg € Wol’p(Q) such that

uc — u weakly in Wy P(Q) and  limsugBnug, U — u) <O. (30)
k~>+oo

Letve W, P(Q). We will prove that

Ili(m inf (BnUk, Ux — V) > (Bhu,u— V).
— 00

Since (uk) is a bounded sequence Wol"p(Q), we deduce thata(x, ux, Ouk))k (resp.
(an(X, U, Oug) i) is bounded in(LP (Q))N (resp. (LP (Q))), then there exists a function
he (LP(Q))N (resp.pn € LP(Q)) such that (for a subsequence denoted aai)),

ux — u strongly in LP(Q),
a(x, u, Ou) — h weakly in (LP (Q))N, (31)
On(X, U, Oug) — pn weakly in LP(Q).

The monotonicity condition (5) and (31) allow to get
liminf (Bnu, Ux — V) = liminf [ a(x, ug, Ouy) Oug dx— (h, OV) + (pn,u—V)
k— 400 k—+o0 JO

> —liminf [ a(x,ux, Ou)Ou dx+liminf [ a(x,ux, Ou)Ou dx (32)
k—+0 JOQ k—+o0 JO

+I|i(minf a(x, ux, Ou)Oug dx— (h, OV) + (pp,u— V).
—+00 JQ

Hence, after using the convergence (31) we can write

liminf (B, U —V) > (pn,u—V) + (, 0(u—v)) (33)

(for a subsequence, which holds for the all sequend®y applying a standard contradiction

argument). Now, since is arbitrary andk lim(Gpug, ux — u) = 0, we have by using (30)
— 400

and (33)

lim [ a(x, uk, Ou)O(ug —u) dx=0.
K— 00 Q



18 L. Aharouch, E. Azroul and M. Rhoudaf

We deduce that

kIim (a(x, uk, Ouk) — a(x, uk, Ou))d(ug — u) dx= 0.

——40 JQ

In view of Lemma 5 of [6], we hav&luy — Ou a.e. in Q, and applying Lemma 1.3 [8,
Chap. 1] which with (33) yields

Ili(mi+nf (Bnu, Ug — V) > (Bpu,u— V).
This completes the proof of the proposition. O
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