ON THE LIMIT OF SOME PENALIZED DEGENERATED PROBLEMS (L^{1}-DUAL) DATA

L. Aharouch, Y. Akdim and M. Rhoudaf

Abstract

This paper is concerned with the existence and uniqueness result of a solution for some degenerated bilateral problem by using the penalization methods.

Keywords: Weighted Sobolev spaces, , Unilateral problems, penalisation method.
AMS classification: AMS 35J15, 35J20, 35J60.

§1. Introduction

Let us consider an open bounded subset Ω of $\mathbb{R}^{N},(N>1)$ and a real number p such that $1<p<\infty$. In [5] Dall'aglio and Orsina have considered the following sequence of equations,

$$
\left\{\begin{array}{l}
-\Delta_{p}\left(u_{n}\right)+\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)=f \text { in } \Omega \tag{1}\\
u_{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $g(x, s)$ is a Carathéodory function satisfying some suitable conditions and where Δ_{p} is the usual p-Laplacian Operators, that is $-\Delta_{p}(u)=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ and have proved that the sequence of solutions of (1) converge to some element u which is exactly a solution of the following bilateral problem

$$
\left\{\begin{array}{l}
\left\langle-\Delta_{p} u, v-u\right\rangle \geq\langle f, v-u\rangle \quad \forall v \in K, \tag{2}\\
u \in K=\left\{v \in W_{0}^{1, p}(\Omega), q_{-} \leq v(x) \leq q_{+} \text {a.e. in } \Omega\right\},
\end{array}\right.
$$

where $q_{+}(x)=\inf \{s>0, g(x, s) \geq 1\}$ and $q_{-}(x)=\sup \{s<0, g(x, s) \leq-1\}, f \in L^{1}(\Omega)$. Our purpose in this paper, is to study the existence and uniqueness of the following degenerated bilateral problem,

$$
\left\{\begin{array}{l}
u \in \mathscr{T}_{0}^{1, p}(\Omega, w), q_{-} \leq v(x) \leq q_{+} \text {a.e. in } \Omega, \tag{3}\\
\left\langle A u, T_{k}(u-v)\right\rangle \leq\left\langle\mu, T_{k}(u-v)\right\rangle \quad \forall v \in K,
\end{array}\right.
$$

where $\mathscr{T}_{0}^{1, p}(\Omega, w)=\left\{u\right.$ measurable $\left.: T_{k}(u) \in W_{0}^{1, p}(\Omega, w)\right\}$ and where $\mu=f-\operatorname{div} F, f \in$ $L^{1}(\Omega), F=\Pi_{i=1}^{N} L^{p}\left(\Omega, w^{*}\right)$. The family $w=\left\{w_{i}, 0 \leq i \leq N\right\}$ is a collection of weight functions defined on Ω which expressed the degeneracy of the Leray-Lions operators $A u=$
$-\operatorname{div}(a(x, \nabla u))$ and $w^{*}=\left\{w_{i}^{-\frac{1}{p-1}}, 0 \leq i \leq N\right\}$. Note that T_{k} is the usual truncation operators. To this end, we have used a new penalization method. More precisely we approach our problem (3) by the following sequence of degenerated equations,

$$
\left\{\begin{array}{l}
A u_{n}+\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right|=f \text { in } \Omega, \tag{4}\\
u_{n} \in W_{0}^{1, p}(\Omega, w),\left|g\left(x, u_{n}\right)\right|^{n} G\left(x, u_{n}, \nabla u_{n}\right) \in L^{1}(\Omega),
\end{array}\right.
$$

where $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ and $G: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}$ are two Carathédory functions, which satisfies some hypothesis (see below).

Our paper can be seen as a generalization of the previous work [5] and as a continuation of the work [1] where the non weighted case is treated in the first paper and some degenerated problem is studied in the second paper.

§2. Basic assumption and statement of result

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 1)$. Let $1<p<\infty$, and let $w=\left\{w_{i}(x) ; i=\right.$ $0, \ldots, N\}$ be a vector of weight functions, i.e., every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that for $0 \leq i \leq N$,

$$
\begin{equation*}
w_{i} \in L_{l o c}^{1}(\Omega) \text { and } w_{i}^{-\frac{1}{p-1}} \in L_{l o c}^{1}(\Omega) . \tag{5}
\end{equation*}
$$

Finally, we define the weighted space as

$$
\tau_{0}^{1, p}(\Omega, w)=\left\{u, T_{k}(u) \in W_{0}^{1, p}(\Omega, w), \forall k>0\right\}
$$

where T_{k} is usual truncation operator. Now, we state the following assumptions.
$\left(H_{1}\right)$ - The expression

$$
\begin{equation*}
\|u\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} \tag{6}
\end{equation*}
$$

is a norm defined on $X=W_{0}^{1, p}(\Omega, w)$ and is equivalent to the usual norm.

- There exist a weight function σ on Ω and a parameter $q(1<q<\infty)$ such that

$$
\begin{equation*}
\sigma^{1-q^{\prime}} \in L_{l o c}^{1}(\Omega) \tag{7}
\end{equation*}
$$

with $q^{\prime}=\frac{q}{q-1}$ and such that the Hardy inequality

$$
\begin{equation*}
\left(\int_{\Omega}|u|^{q} \sigma(x) d x\right)^{\frac{1}{q}} \leq C\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} \tag{8}
\end{equation*}
$$

holds for every $u \in X$ with a constant $C>0$ independent of u. Moreover, the imbedding

$$
\begin{equation*}
X \hookrightarrow L^{q}(\Omega, \sigma) \tag{9}
\end{equation*}
$$

determined by the inequality (8) is compact.

Let A be the nonlinear operator from $W_{0}^{1, p}(\Omega, w)$ into its dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ defined as

$$
A u=-\operatorname{div}(a(x, \nabla u)),
$$

where $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function satisfying the following assumptions: $\left(H_{2}\right)$ There exist a positive function $k(x)$ in $L^{p^{\prime}}(\Omega)$ and a positive constant α such that

$$
\begin{gather*}
\left|a_{i}(x, \xi)\right| \leq w_{i}^{\frac{1}{p}}(x)\left[k(x)+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}(x)\left|\xi_{j}\right|^{p-1}\right], \text { for } i=1, \ldots, N, \tag{10}\\
{[a(x, \xi)-a(x, \eta)](\xi-\eta)>0 \text { for all } \xi \neq \eta \in \mathbb{R}^{N},} \tag{11}\\
a(x, \xi) \xi \geq \alpha \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p} . \tag{12}
\end{gather*}
$$

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $G: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ two Carathéodory functions satisfying

$$
\begin{gather*}
g(x, s) \cdot s \geq 0 \tag{3}\\
|g(x, s)| \leq b(|s|) \tag{14}\\
|G(x, s, \xi)| \leq \tilde{b}(|s|)\left(c(x)+\sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}\right),
\end{gather*}
$$

where b and $\tilde{b}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are two nonnegative increasing functions and $c(x)$ is a positive function which belongs to $L^{1}(\Omega)$. We suppose also that g and G satisfy the following conditions

$$
\begin{equation*}
\left\{v \in W_{0}^{1, p}(\Omega, w), G(x, v, \nabla v)=0 \text { a.e. in } \Omega\right\} \subset\left\{v \in W_{0}^{1, p}(\Omega, w),|g(x, v)| \leq 1 \text { a.e. in } \Omega\right\} \tag{16}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\text { for almost everywhere all } x \in \Omega \backslash \Omega_{+}^{\infty}, \text { there exists } \varepsilon=\varepsilon(x) \text { such that } \tag{17}\\
g(x, s)>1, \forall s \in] q_{+}(x), q_{+}(x)+\varepsilon[, \\
\text { for almost everywhere all } x \in \Omega \backslash \Omega_{-}^{\infty}, \text { there exists } \varepsilon=\varepsilon(x) \text { such that } \\
g(x, s)<-1, \forall s \in] q_{-}(x)-\varepsilon, q_{-}(x)[,
\end{array}\right.
$$

where

$$
\Omega_{+}^{\infty}=\left\{x \in \Omega, q_{+}(x)=+\infty\right\}, \quad \Omega_{-}^{\infty}=\left\{x \in \Omega, q_{-}(x)=-\infty\right\}
$$

Theorem 1. Let $f \in L^{1}(\Omega)$, assume that $\left(H_{1}\right)-\left(H_{3}\right)$, (16) and (17) hold and that the function $s \rightarrow g(x, s)$ is an increasing function for almost every $x \in \Omega$. Then the following problems,

$$
\left(P_{n}\right)\left\{\begin{array}{l}
u_{n} \in \mathscr{T}_{0}^{1, p}(\Omega, w), \quad\left|g\left(x, u_{n}\right)\right|^{n} G\left(x, u_{n}, \nabla u_{n}\right) \in L^{1}(\Omega) \\
\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-v\right) d x \\
\quad+\int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x \leq \int_{\Omega} f T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x \\
\forall v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega) \forall k>0,
\end{array}\right.
$$

has at least one solution u_{n}.

Remark 1. Note that the existence solution u_{n} of the problem $\left(P_{n}\right)$ is guaranteed by the Theorem 3.1 of [1].

Theorem 2. Let u_{n} be a solution of the problem $\left(P_{n}\right)$. Then there exists a function $u \in$ $\tau_{0}^{1, p}(\Omega, w)$ such that

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { strongly in } W_{0}^{1, p}(\Omega, w),
$$

which is the unique solution of the following bilateral degenerated problems

$$
(P)\left\{\begin{array}{l}
q_{-} \leq u \leq q_{+} \text {a.e. in } \Omega \\
u \in \tau_{0}^{1, p}(\Omega, w), \\
\int_{\Omega} a(x, \nabla u) \nabla T_{k}(u-v) d x \leq \int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \nabla T_{k}(u-v) d x \\
\forall v \in K \cap L^{\infty}(\Omega) \forall k>0,
\end{array}\right.
$$

where $K=\left\{v \in W_{0}^{1, p}(\Omega, w), q_{-} \leq u \leq q_{+}\right.$a.e. in $\left.\Omega\right\}$.
Remark 2. If $G(x, s, 0) \neq 0$, we can replace the condition (16) by the following condition

$$
\left\{v \in \tau_{0}^{1, p}(\Omega, w), G(x, v, \nabla v)=0 \text { a.e. }\right\} \subset\left\{v \in \tau_{0}^{1, p}(\Omega, w),|g(x, v)| \leq 1 \text { a.e. }\right\} .
$$

Remark 3. Remark that, since $a(x, \nabla u)$ (dosn't depend on u), we don't need to suppose the restriction $1<q<p+p^{\prime}$ on the Hardy parameter q (compare to [1]).

2.1. A priori estimates

Proposition 3. Let u_{n} be a solution of the problem $\left(P_{n}\right)$. The there exist some (various) positive constant c independent of n and k and some measurable function u such that
i) $\alpha \int_{\Omega} \sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} d x \leq k c$.
ii) $\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n}\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq c$
iii) $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega, w)$,
$T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $L^{q}(\Omega, \sigma)$ and a.e. in Ω.
Proof. For i) and ii), it suffices to take $v=0$ as test function in $\left(P_{n}\right)$ and using (12), (13) and Young's inequality. Now, since $T_{k}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega, w)$ we prove as in [1] that u_{n} converges almost everywhere to some measurable function u.

2.2. Almost everywhere convergence of the gradient

Proposition 4. Let u_{n} be a solution of the problem $\left(P_{n}\right)$ and let u be the function of the Proposition 3. Then,
i) $\nabla u_{n} \longrightarrow \nabla u$ a.e. in Ω and
ii) $q_{-} \leq u \leq q_{+}$a.e. in Ω

Proof. i) Put

$$
I_{n}=\int_{\Omega}\left\{\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\}^{\theta} d x=\int_{\Omega} A_{n}^{\theta} d x
$$

where $0<\theta<1$. By using the similar argument as in [4] we can show that $\lim _{n \rightarrow \infty} I_{n}=0$. Then,

$$
A_{n}^{\theta} \rightarrow 0 \text { p.p. in } \Omega .
$$

Following the same techniques as in [2] we can prove that

$$
\begin{equation*}
\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u) \text { a.e. in } \Omega \quad \forall k>0 \tag{18}
\end{equation*}
$$

and then

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega . \tag{19}
\end{equation*}
$$

ii) We show that $q_{-} \leq u \leq q_{+}$a.e. in Ω.

To simplify, we suppose that $G(x, s, 0)=0$. We have for all $h>0$,

$$
\int_{\Omega}\left|g\left(x, T_{h}\left(u_{n}\right)\right)\right|^{n}\left|G\left(x, T_{h}\left(u_{n}\right), \nabla T_{h}\left(u_{n}\right)\right)\right| d x \leq C
$$

which implies that

$$
\int_{\left\{\left|g\left(x, T_{h}\left(u_{n}\right)\right)\right|>k\right\}}\left|g\left(x, T_{h}\left(u_{n}\right)\right)\right|^{n}\left|G\left(x, T_{h}\left(u_{n}\right), \nabla T_{h}\left(u_{n}\right)\right)\right| d x \leq C
$$

and

$$
\int_{\left\{\left|g\left(x, T_{h}\left(u_{n}\right)\right)\right|>k\right\}}\left|G\left(x, T_{h}\left(u_{n}\right), \nabla T_{h}\left(u_{n}\right)\right)\right| d x \leq \frac{C}{k^{n}},
$$

where $k>1$. Letting $n \rightarrow \infty$, we get

$$
\int_{\left\{\left|g\left(x, T_{h}(u)\right)\right|>k\right\}}\left|G\left(x, T_{h}(u), \nabla T_{h}(u)\right)\right| d x=0 .
$$

Hence, by (16), we have

$$
\left|g\left(x, T_{h}(u)\right)\right| \leq 1 \text { a.e. in } \Omega,
$$

then $q_{-} \leq T_{h}(u) \leq q_{+}$a.e. in Ω, and letting $h \rightarrow \infty$, we deduce the result.

2.3. Strong convergence of truncations

Proposition 5. Let u_{n} be a solution of the problem $\left(P_{n}\right)$ and let u be the function of the Proposition 3. Then,

$$
T_{k}\left(u_{n}\right) \longrightarrow T_{k}(u) \text { strongly in } W_{0}^{1, p}(\Omega, w)
$$

Proof. Let $k>0$, and let $\phi(t)=t e^{\gamma t^{2}}$ with $\gamma>\left(\frac{\tilde{b}(k)}{2 \alpha}\right)^{2}$ such that

$$
\begin{equation*}
\phi^{\prime}(s)-2 \frac{\tilde{b}(k)}{\alpha}|\phi(s)| \geq \frac{1}{2} \tag{20}
\end{equation*}
$$

holds for all $s \in \mathbb{R}$. Here, we define $w_{n}=T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ and $v_{n, l}=T_{l}\left(u_{n}\right)-$ $\phi\left(w_{n}\right)$, where $h>k>0$. The use of $v_{n, l}$ as test function in $\left(P_{n}\right)$, we obtain, for all $\eta>0$,

$$
\begin{align*}
&\left\langle A\left(u_{n}\right)\right.\left., T_{\eta}\left(u_{n}-T_{l}\left(u_{n}\right)+\phi\left(w_{n}\right)\right)\right\rangle \\
& \quad+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{\eta}\left(u_{n}-T_{l}\left(u_{n}\right)+\phi\left(w_{n}\right)\right) d x \tag{21}\\
& \leq \int_{\Omega} f T_{\eta}\left(u_{n}-T_{l}\left(u_{n}\right)+\phi\left(w_{n}\right)\right) d x .
\end{align*}
$$

Note that, for the first term of (21) is inspired from the step 2 of the proof of Theorem 3.1 of [1], for that we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left[a\left(x, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x=0
$$

The proof is achieved by a standard argument.

2.4. Proof of Theorem 2

Let θ be a real number such that $0<\theta<1$, let h be a positive real number, let v be a function in $K \cap L^{\infty}(\Omega)$, and choose $T_{h}\left(u_{n}\right)-T_{k}\left(u_{n}-\theta v\right)$ as test function in $\left(P_{n}\right)$. We obtain

$$
\begin{aligned}
& \left\langle A\left(u_{n}\right), T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right)\right\rangle \\
& \quad \quad+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right) d x \\
& \leq \int_{\Omega} f T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right) d x .
\end{aligned}
$$

and since $\int_{\left|u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right| \leq k} a\left(x, \nabla u_{n}\right) \nabla\left(u_{n}-T_{h}\left(u_{n}\right)\right) d x \geq 0$, and from Young's inequality, we get

$$
\begin{aligned}
& \int_{\left|u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right| \leq k} a\left(x, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-\theta v\right) d x \\
& \quad \quad+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right) d x \\
& \leq \int_{\Omega} f T_{k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right) d x+\int_{\left|u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}-\theta v\right)\right| \leq k} \underset{T_{k}\left(u_{n}-\theta v\right) d x}{ } \quad+\int_{\left|u_{n}\right| \geq h}|F|^{p^{\prime}} \cdot w^{1-p^{\prime}} d x .
\end{aligned}
$$

In virtue of Lebesgue's theorem and by letting $h \rightarrow \infty$, we obtain

$$
\begin{align*}
& \int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-\theta v\right) d x+\int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x \tag{22}\\
& \quad \leq \int_{\Omega} f T_{k}\left(u_{n}-\theta v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\theta v\right) d x
\end{align*}
$$

For the second term, we can write by using again the sign condition (13)

$$
\begin{align*}
& \int_{\Omega}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x \\
& \quad \geq \int_{\left\{0 \leq u_{n} \leq \theta v\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x \tag{23}\\
& \quad \quad+\int_{\left\{\theta v \leq u_{n} \leq 0\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x .
\end{align*}
$$

Let us define, for every x such that $v(x)>0, \delta_{1}(x)=\sup _{0 \leq s \leq \theta v(x)} g(x, s)$. It is easy to see that $0 \leq \delta_{1}(x)<1$ a.e. in Ω. We have then using (15)

$$
\begin{align*}
& \int_{\left\{0 \leq u_{n} \leq \theta v\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x \\
& \quad \leq k \int_{\left\{\left|u_{n}\right| \leq\|v\|_{\infty}\right\}} \tilde{b}\left(\|v\|_{\infty}\right)\left(\delta_{1}(x)\right)^{n}\left(c(x)+\sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{\|v\|_{\infty}}\left(u_{n}\right)}{\partial x_{i}}\right|^{p}\right) d x \tag{24}\\
& \quad \leq k \tilde{b}\left(\|v\|_{\infty}\right) \int_{\Omega}\left(\delta_{1}(x)\right)^{n}\left(c(x)+\sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{\|v\|_{\infty}}\left(u_{n}\right)}{\partial x_{i}}\right|^{p}\right) d x
\end{align*}
$$

Consequently, by using the Vitaly's theorem, we deduce that

$$
\lim _{n \rightarrow \infty} \int_{\left\{0 \leq u_{n} \leq \theta v\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x=0 .
$$

By the same method, we prove that

$$
\begin{align*}
& \int_{\left\{\theta v \leq u_{n} \leq 0\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x \\
& \quad \leq k \tilde{b}\left(\|v\|_{\infty}\right) \int_{\Omega}\left(\delta_{2}(x)\right)^{n}\left(c(x)+\sum_{i=1}^{N} w_{i}(x)\left|\frac{\partial T_{\|v\|_{\infty}}\left(u_{n}\right)}{\partial x_{i}}\right|^{p}\right) d x \tag{25}
\end{align*}
$$

where $-1<\delta_{2}(x)=\inf _{\theta v \leq s \leq 0} g(x, s) \leq 0$. Hence

$$
\lim _{n \rightarrow \infty} \int_{\left\{\theta v \leq u_{n} \leq 0\right\}}\left|g\left(x, u_{n}\right)\right|^{n-1} g\left(x, u_{n}\right)\left|G\left(x, u_{n}, \nabla u_{n}\right)\right| T_{k}\left(u_{n}-\theta v\right) d x=0
$$

On the other hand, by using the Fatou's lemma and summing up, we obtain

$$
\int_{\Omega} a(x, \nabla u) \nabla T_{k}(u-\theta v) d x \leq \int_{\Omega} f T_{k}(u-\theta v) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\theta v\right) d x
$$

for every $v \in K \cap L^{\infty}(\Omega)$ and for every $\theta \in(0,1)$. The result is proved by letting θ tend to 1 .

Remark 4. The proof of the uniqueness solution u of the problem (P) is similar to the one used in the proof of the analogous statement in [3] for the non weighted case.

References

[1] Aharouch, L., and Akdim, Y. Existence of solution of degenerated unilateral problems with L^{1} data. Annale Mathématique Blaise Pascal 11 (2004), 47-66.
[2] Akdim, Y., Azroul, E., and Benkirane, A. Existence results for quasilinear degenerated equations via strong convergence of truncations.Revista Matematica Complutense 17, 2 (2004), 359-379.
[3] Bénilan, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., and VÁzQUEZ, J. L. An L^{1}-theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22 (1995), 240-273.
[4] Boccardo, L. Some nonlinear Dirichlet problem in L^{1} involving lower order terms in divergence form. In Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994). Pitman Res. Notes Math. Ser., 350. Longman, Harlow, 1996, pp. 43-57.
[5] Dall'aglio, A., and Orsina, L. On the limit of some nonlinear elliptic equations involving increasing powers.Asymptotic Analysis 14 (1997), 49-71.
L. Aharouch, Y. Akdim and M. Rhoudaf

Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P. 1796 Atlas Fès, Maroc
laharouch@fsdmfes.ac.ma, akdimyoussef@yahoo.fr and
mrhoudaf@fsdmfes.ac.ma

