Monografias del Seminario Matematico Garcia de Gald&3n8—10 (2006)

ON THE LIMIT OF SOME PENALIZED
DEGENERATED PROBLEMS
(L1-DUAL) DATA

L. Aharouch, Y. Akdim and M. Rhoudaf

Abstract. This paper is concerned with the existence and uniqueness result of a solution
for some degenerated bilateral problem by using the penalization methods.
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81. Introduction

Let us consider an open bounded suledf RN, (N > 1) and a real numbep such that

1< p< . In[5] Dall'aglio and Orsina have considered the following sequence of equations,

—Ap(un) +g(x un)["tg(x,up) = f in Q, (1)
u,=0 on dQ,

whereg(x,s) is a Carathéodory function satisfying some suitable conditions and Wese
the usual p-Laplacian Operators, thatif(u) = —div(|0u[P~20u) and have proved that
the sequence of solutions of (1) converge to some eleamwhtch is exactly a solution of the
following bilateral problem
(=Bpu,v—u) > (f,v—u) WeK, @
ueK={veWP(Q), q <v(x)<g; aeinQ},

whereq, (x) = inf{s> 0, g(x,s) > 1} andg_ (x) = sup{s< 0, g(x,s) < —1}, f € L1Y(Q). Our
purpose in this paper, is to study the existence and uniqueness of the following degenerated
bilateral problem,
ue 7;P(Q,w), - <v(x) <q; ae in Q @)
<AU,Tk(U7V)> < <[J,Tk(U7V)> e K7

where 7;"P(Q,w) = {u measurable Ti(u) € Wy"(Q,w)} and whereu = f —divF, f e
LY(Q), F = NN ,LP(Q,w*). The familyw = {w;, 0 <i < N} is a collection of weight
functions defined o2 which expressed the degeneracy of the Leray-Lions operAtoss
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1

—div(a(x,0u)) andw* = {w; **, 0<i < N}. Note thatTy is the usual truncation opera-
tors. To this end, we have used a new penalization method. More precisely we approach our
problem (3) by the following sequence of degenerated equations,

{Abh+ |g(x7 un)|nilg(xa Un)|G(X7 Una DUn)‘ = f in Q7 (4)

Un GWOJ.’p(QaW)a |g(Xa uﬂ)|nG(Xa uﬂaljuﬂ) € Ll(Q)a

whereg: QxR — R andG: Q x R x RN — R are two Carathédory functions, which
satisfies some hypothesis (see below).

Our paper can be seen as a generalization of the previous work [5] and as a continuation
of the work [1] where the non weighted case is treated in the first paper and some degenerated
problem is studied in the second paper.

§2. Basic assumption and statement of result

Let Q be a bounded open subset®F (N > 1). Let 1< p < o, and letw = {wi(x);i =
0,...,N} be a vector of weight functions, i.e., every componerik) is a measurable func-
tion which is strictly positive a.e. iQ. Further, we suppose in all our considerations that for
0<i<N,

1
wi € LE.(Q) andw P e LE (Q). (5)
Finally, we define the weighted space as
P(Q,w) = {u, Tk(u) € Wy"P(Q,w), Yk > 0},

whereT is usual truncation operator. Now, we state the following assumptions.

Jullx = (i JAE

is a norm defined oX = W()l*p(Q,w) and is equivalent to the usual norm.
— There exist a weight functioa on Q and a parameter (1 < g < «) such that

(H1) — The expression

p b
w;i (X) dx) , (6)

o7 e L (Q). (7)

with ¢ = % and such that the Hardy inequality

(/Q |uqa(x)o|x)é <C (.i/o

holds for everyu € X with a constan€ > 0 independent ofi. Moreover, the imbed-
ding

du
9%

p b
w;i (X) dx) , (8)

X —LYQ,0) (9)
determined by the inequalif8) is compact.
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Let A be the nonlinear operator froVIdOl’p(Q,w) into its duaW 1P (Q,w*) defined as
Au= —div(a(x, Ou)),
wherea: Q x RN — RN js a Carathéodory function satisfying the following assumptions:

(H2) There exist a positive functiok(x) in Lp'(Q) and a positive constaist such that

ax.&)| < W (x +sz NP fori=1. N, (10)
a(x &) —a(x (€ — ) > 0 forall & £n € &Y, (11)
a(x,£)E > aiwi &P 12)

Letg: QxR — R andG: Q xR x RN — R two Carathéodory functions satisfying
(Hs) 6(x,9).5>0, (13)
) <bis). (19)
(6x:£)| < B(s) (o0 +Zw. IEP) (15)

whereb andb: RT — R* are two nonnegative increasing functions afx) is a positive
function which belongs ta!(Q). We suppose also thgtandG satisfy the following condi-
tions

{veWyP(Q,w), G(x,v,0v) =0ae inQ} c {ve Wy P(Q,w), [g(x,v)| <laeinQ} (16)

e for almost everywhere alk € Q\QZ, there existse = £(x) such that
g(x, S) > 17VS e]q+( )7q+( ) [7 (17)
for almost everywhere alk € Q\Q%, there existse = £(x) such that
9(x,8) < —1,¥s€lq-(x) —&,q-(¥)],

where

Q7 ={x€Q,q:(x) =+»}, Q°={xeQ, q (X)=—o}.

Theorem 1. Let f € L1(Q), assume that (J—(Hs), (16) and (17) hold and that the function
s— g(x,8) is an increasing function for almost everygxQ. Then the following problems,

Un € 5 P(Q,W),  [g(X, Un)["G(X, Un, Oun) € L1(Q),

19(%, Un)["1g(X, Un) | G(X, Un, Clun) [ Ti(Un — v) dx

+/ a(x,Dun)DTk(un—v)dxg/ ka(un—v)dx+/ FOTk(up — v) dx
VveV?/&’p(Q,w)mLm(Q) vk >0, ? i

(Pn)

has at least one solutioryu
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Remarkl. Note that the existence solutiap of the problem(R,) is guaranteed by the The-
orem 3.1 of [1].

Theorem 2. Let u, be a solution of the problerfR,). Then there exists a functionau
75°P(Q,w) such that
Tk(un) — Tk(u) strongly in V\é’p(Q,W),
which is the unigue solution of the following bilateral degenerated problems
g- <u<g; ae in Q,
ue i P(Q,w),
/a(x,Du)DTk(u—v)dxg/ ka(u—v)dx+/ FOTk(u—v)dx
Ja Ja Ja
Yve KNL®(Q) vk > 0,

3

where K= {veW()l*p(Q,W),q_ <u<gy aeinQ}.
Remarlk2. If G(x,s,0) # 0, we can replace the conditi¢f6) by the following condition
{ve P(Q,w),G(x,v,0v) =0ae} C {ve 1gP(Q,w),|g(x,v)| < lae}.
Remark3. Remark that, sinca(x,u) (dosn’t depend omy), we don’t need to suppose the

restriction 1< q < p+ p’ on the Hardy parameter(compare to [1]).

2.1. A priori estimates

Proposition 3. Let u, be a solution of the probler(P,). The there exist some (various)
positive constant ¢ independent of n and k and some measurable function u such that

dTi(Un)

. N
) a./Qiz\Wi’ 9%

i) Jola(Xun)|"|G(X,un, Oun)| dx<c

p
dx<kc.

i) Tk(un) — T(u) weakly in Vg’p(Qw),
Tk(un) — Tk(u) strongly in 9(Q, 0) and ae. in Q.

Proof. For i) and ii), it suffices to take = 0 as test function iiR,) and using12), (13) and
Young'’s inequality. Now, sincé(u,) is bounded ir\Nol’p(Q,W) we prove as in [1] thati,
converges almost everywhere to some measurable function O
2.2. Almost everywhere convergence of the gradient

Proposition 4. Let u, be a solution of the problerP,) and let u be the function of the
Proposition 3. Then,

i) Oup — Ou ae in Qand
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i) g-<u<g;aeinQ

Proof. i) Put

I, = / {[a0%, OTi(Un)) — (%, OTi(U))] [OTi(Un) — O ()] }® dx = / A9 dx
Q Q

where 0< 6 < 1. By using the similar argument as in [4] we can show Ehatl,lim 0. Then,

A? — 0 p.p. inQ.
Following the same techniques as in [2] we can prove that
OTk(un) — OTk(u) ae. in Q Vk> 0, (18)

and then
Oun, — Ouae in Q. (29)

i) We show thaig- <u<q; a.e. inQ.
To simplify, we suppose th&@(x, s,0) = 0. We have for alh > 0,

180 Th(un)) "I To(un). ST(un))] < C.
which implies that

/ 190 Ta(u) "1 G(x Ta(un), O (o)) | dx < ©
{lg(x,Th(un))[>k}

and

|G(X, Th(un), OTh(up))| dx < E

/{\Q(XaTh(Un))bk} Kn’

wherek > 1. Lettingh — oo, we get

G X, Th(U), DTh(U) dx=0.
/{|Q(X-,Th(u))\>k}‘ ( )l

Hence, by(16), we have
9(x, Th(u))| <1 ae in Q,

theng_ < Ty(u) < g a.e. inQ, and lettingh — «, we deduce the result. O

2.3. Strong convergence of truncations

Proposition 5. Let w, be a solution of the problertR,) and let u be the function of the
Proposition 3. Then,

Ti(Un) — Ti(u) strongly in W-P(Q,w).
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Proof. Letk > 0, and letg (t) = te”” with y>( )) such that

(20)

NI =

0'(9 22 19(9)| >

holds for alls€ R. Here, we defin@n = T (Un — Th(Un) + Tic(Un) — Ti(u) ) @ndvy = Ti (Un) —
¢(wWn), whereh > k> 0. The use of/, as test function ifR,), we obtain, for allp > 0,

(A(Un), Ty (Un = Ti (Un) + ¢ (Wn)))
+/ 190X, Un) " 1g(X, Un) |G(X, Un, C1un) [Ty (Un — Ti (Un) + ¢ (Wh)) dx (21)

/an —Ti(Un) + ¢ (wn)) dx

Note that, for the first term of (21) is inspired from the step 2 of the proof of Theorem 3.1 of
[1], for that we obtain

lim [ [a(x,OTk(un)) —a(x, OTk(u))][OTk(un) — OTk(u)] dx= 0.

n—oo Q

The proof is achieved by a standard argument. O

2.4. Proof of Theorem 2

Let 6 be a real number such thak06 < 1, leth be a positive real number, lebe a function
in KNL*(Q), and choos&(un) — Tk(un — V) as test function ifR,). We obtain

(A(Un), Tk(un — Th(un) + T(un — 6V)))
+ / 9% Un) "~ 19X, Un) |G(X, Un, Otn) [Tk (Un — Ti(Un) + Tie(Un — V) dx

/ka T (Un) + Ti(Un 6v))dx+/QFDTk(unfTh(un)+Tk(un76v))dx

and since/ a(x, Oup)0(un — Th(un)) dx> 0, and from Young'’s inequal-
[Un—Th(Un)+Tk(un—0V)|<k
ity, we get

/ a(x, Oun) OTy(up — Bv) dx
[Un—Tn(Un)+Tic(un—6V) | <k

+ / 190% Un) ™ g (X, Un) G(X, Uny Tt [Tc(tn — Th(Un) - Tic(Un — 6V)) dx

/ fT(Un — Th(un) + Tk(un — OV)) dx+ . FOTk(un — V) dx
JUn=Th (un)+Ti(un—6V)| <k

+ IF|P WP dx
lun|>h
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In virtue of Lebesgue’s theorem and by letting- o, we obtain

/a(x,Dun)DTk(unfGV)dx+/ |g(x,un)\”‘1g(x,un)\G(x,un,Dun)|Tk(unf9v)dx
Q Q

(22)
g/ ka(unfev)der/ FOTi(Un — OV) dx
Q Q
For the second term, we can write by using again the sign conditi®n
106 Un) "G00 Un) (G, Un, D) T — 69) ¢
> [ g0 )" g Un) G, U, D) Tl — 6) 23)
{0<un<6v}
g I g Un) GO, o, D) Tl — )
{6v<un<0}
Let us define, for every such thatv(x) > 0, 61(X) = sup g(x,s). Itis easy to see that
0<s<OV(x)
0< 81(x) < 1 a.e. inQ. We have then usingl5)
[ 180 Un) ™G0 ) G Ui, C) Tt — )
J{0<un<6v}
N 8T v| Un) p
<k BV (8100)" (€0 5 wi] e dx
{lun| <[Vl } Zi 9% (24)
~ ATy, (Un) [P
gkb(||v||w)/( ( +21W ”V“ L ) dx
Q
Consequently, by using the Vitaly’s theorem, we deduce that
lim l9(%, un)|"2g(X, Un)| G(X, Un, Oun) | Ti(Un — BV) dx= 0.
N—® J{0<un<6v}
By the same method, we prove that
S 106U " 0% Un) (G, Un, D) T — 6V) dx
{6v<un<0}
25)
- ATy, (Un) [P (
< kb(Hv||°o)/ (&2 < ZW' uvuw n) ) ix
Q
where—1 < 8(x) = inf g(x,s) <0. Hence
Ov<s<0
lim l9(%, un) "~ Lg(X, Un) |G(X, Un, Oun) [ Tk(un — V) dx= 0.

N—® Jfgy<un <0}

On the other hand, by using the Fatou’s lemma and summing up, we obtain
/ a(x, Ou)OTk(u— Bv) dx < / fT(u— 6v)dx+ / FOTk(up— 6Vv) dx,
Q Q JQ

for everyv € KNL*(Q) and for everyd € (0,1). The result is proved by letting tend to 1.
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Remark4. The proof of the uniqueness solutiarof the problem(P) is similar to the one
used in the proof of the analogous statement in [3] for the non weighted case.
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