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ANALYSIS OF A COUPLED

PARABOLIC-HYPERBOLIC PROBLEM

G. Aguilar, L. Lévi and M. Madaune-Tort

Abstract. This paper deals with the mathematical analysis of a quasilinear parabolic-
hyperbolic problem in a multidimensional bounded domainΩ. In a regionΩp a diffusion-
advection-reaction type equation is set while in the complementaryΩh ≡ Ω \Ωp, only
advection-reaction terms are taken into account. To begin we provide the definition of
a weak solution through an entropy inequality on the whole domain. Since the interface
∂Ωp∩∂Ωh contains outward characteristics for the first-order operator inΩh, the unique-
ness proof starts by considering first the hyperbolic zone and then the parabolic one. The
existence property uses the vanishing viscosity method and to pass to the limit on the
hyperbolic zone, we refer to the notion of process solution.
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§1. Introduction

We are interested in a coupling of a quasilinear parabolic equation with an hyperbolic first-
order equation in a bounded domainΩ of Rn, n≥ 1. This problem arises from several sim-
plified physical models like infiltration processes in a stratified subsoil viewed as two layers
with different geological characteristics and such that in the second layer we can neglect the
effects of diffusivity (see also [4]). For any positive and finiteT, the problem in hand reads
as follows: find a measurable and bounded functionu onQ≡]0,T[×Ω such that

∂tu−
n

∑
i=1

∂xi (Kh(u)∂xi P)+gh(t,x,u) = 0 in Qh, (1)

∂tu−
n

∑
i=1

∂xi (Kp(u)∂xi P)+gp(t,x,u) = ∆φ(u) in Qp, (2)

u = 0 on ]0,T[×∂Ω, u(0, .) = u0 on Ω, (3)

with the geometrical configurationΩ = Ωh∪Ωp andΩh∩Ωp = /0. Besides, forl in {h, p},
Ql =]0,T[×Ωl . Of course, suitable conditions across the interface between the two regions
Qp andQh are needed. If we refer to the analysis of F. Gastaldi andal. in [4], these transmis-
sion conditions have to be formally written:

−Kh(u)∇P.νh = (∇φ(u)+Kp(u)∇P).νp on Σhp, (4)

whereΣhp =]0,T[×Γhp andΓhp = Γh∩Γp andΓl = ∂Ωl . Moreoverνl denotes the outward
normal unit vector definedH n-a.e. onΣl and forq in [0,n+ 1], H q is theq-dimensional
Hausdorff measure. LastlyH n−1(Γhp∩ (Γl \Γhp)) = 0.
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1.1. Main assumptions on data

The pressure fieldP belongs toW2,+∞(Ω) and fulfills∆P = 0 which is not restrictive as soon
as (1) and (2) involve reaction terms. In addition

Γhp⊂ {σ̄ ∈ Γh ; ∇P(σ̄).νh≤ 0}. (5)

For l in {h, p}, the reaction termgl belongs toW1,+∞(]0,T[×Ωl ×R) and we set

M′gl
= esssup

(t,x,u)∈]0,T[×Ωl×R
|∂ugl (t,x,u)|,

and the initial datau0 belongs toL∞(Ω). Thus we are able to define the nondecreasing time-
depending function

M : t ∈ [0,T]→M(t) = ‖u0‖L∞(Ω) eM1 t +
M2

M1
(eM1 t −1),

whereM1 = M′gh
+M′gp

and

M2 = max
]0,T[×Ωh

|gh(t,x,0)|+ max
]0,T[×Ωp

|gp(t,x,0)|.

To simplify we write M = M(T) and we assume that the following local hypotheses are
fulfilled:

i) Kp is a Lipschitzian function on[−M,M] while Kh is a nondecreasingLipschitzian
function on [−M,M] with constants respectivelyK′p and K′h . Besides, thanks to a
translation argument, it is not a restriction to suppose thatKh(0) = Kp(0) = 0.

ii) φ is a nondecreasing Lipschitzian function on[−M,M] such thatφ−1 exists, this
including the case whenL ({x ∈ [−M,M],φ ′(x) = 0}) = 0, whereL refers to the
Lebesgue measure onR. Furthermoreφ(0) = 0.

Remark1. The monotonicity ofKh and (5) show that on the transmission zoneK′h∇P.νh≤ 0.
That wayΣhp is really included in the set of outward characteristics for the first-order opera-
tor in the hyperbolic domain and along the interface the information is leaving the hyperbolic
domain. This essential property will guide us for the statement of uniqueness by first consid-
ering the behavior of a solution in the hyperbolic area and then in the parabolic one.

1.2. Notations and functional spaces

In the sequel,σ (resp.σ̄ ) is variable ofΣi (resp.Γi), i ∈ {h,hp, p}. This way,σ = (t, σ̄) for
anyt of [0,T]. It will be referred to the Hilbert space

W(0,T)≡ {v∈ L2(0,T;H1
0(Ω)) ; ∂tv∈ L2(0,T;H−1(Ω))},

used with the graph’s norm. We denote〈., .〉 the pairing betweenH1
0(Ω) andH−1(Ω). Be-

sides, we also need to consider the Hilbert space

V = {v∈ H1(Ωp) ; v = 0 a.e. onΓp\Γhp},
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used with‖v‖V = ‖∇v‖L2(Ωp)n. We denote〈〈., .〉〉 the pairing betweenV andV ′.
Lastly, to simplify the writing,

F(x,u,k) = sign(u−k)
(
(Kp(u)−Kp(k))IΩp(x)+(Kh(u)−Kh(k))IΩh(x)

)
≡ Fp(u,k)IΩp(x)+ |Kh(u)−Kh(k)|IΩh(x),

G(t,x,u,k) = sign(u−k)gp(t,x,u)IΩp(x)+sign(u−k)gh(t,x,u)IΩh(x)

≡Gp(u,k)IΩp(x)+Gh(u,k)IΩh(x),

Fh(a,b,c) =
1
2
{|Kh(a)−Kh(b)|− |Kh(c)−Kh(b)|+ |Kh(a)−Kh(c)|}.

In this framework, we set:

Definition 1. A function u is a weak solution to the coupling Problem (1)–(4) if and only if
u belongs toL∞(Q), φ(u) to L2(0,T;V) and:

i) for all ϕ ∈D(]−∞,T[×Ω), ϕ ≥ 0, and for any realk,∫
Q
|u−k|∂tϕ dxdt−

∫
Qp

∇ |φ(u)−φ(k)| .∇ϕ dxdt+
∫

Ω
|u0−k|ϕ(0, .)dx

−
∫

Q
F(x,u,k)∇P.∇ϕ dxdt−

∫
Q

G(t,x,u,k)ϕ dxdt≥ 0,
(6)

ii) for all ζ ∈ L1(Σh\Σhp), ζ ≥ 0, and for any realk,

ess lim
τ→0−

∫
Σh\Σhp

Fh(u(σ + τνh),0,k)∇P(σ̄).νhζ dH n≤ 0. (7)

§2. The uniqueness property

The proofs of all what follows may be found in [1]

2.1. Study in the hyperbolic zone

We derive from (6) and (7) and by using (5) an entropy inequality on the hyperbolic domain
that will be the starting point to establish a time-Lipschitzian dependence inL1(Ωh) of a weak
solution to (1)-(4) with respect to the corresponding initial data. To begin let us state:

Proposition 1. Let u be a bounded and measurable function on Q satisfying (6) and (7).
Then for any real k and anyϕ of D(]0,T[×Rn), ϕ ≥ 0,

−
∫

Qh

(
|u−k|∂tϕ−|Kh(u)−Kh(k)|∇P.∇ϕ−Gh(u,k)ϕ

)
dxdt

≤
∫

Σh\Σhp

|Kh(k)|∇P(σ̄).νhϕ(σ)dH n

−ess lim
τ→0−

∫
Σh\Σhp

|Kh(u(σ + τνh))|∇P(σ̄).νhϕ(σ)dH n.

(8)
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From Proposition 1 and thanks to the method of doubling variables, we derive:

Theorem 2. Let u1 and u2 be two bounded and measurable functions on Qh satisfying (6)
and (7) respectively for initial data u0,1 and u0,2. Then

for a.e. t in ]0,T[,
∫

Ωh

|u1(t, .)−u2(t, .)| dx≤ eM′gh
t
∫

Ωh

|u0,1−u0,2| dx.

2.2. Study in the parabolic zone

By restricting (6) on the parabolic zone, we give first some information on the regularity for
∂tu. Then we characterizeu onQp through a variational equality including an advection term
that corresponds to entering data from the hyperbolic zone. Indeed:

Proposition 3. Let u be a bounded function on Q such that∇φ(u) belongs to L2(Qp)n and
satisfying (6). Then∂tu belongs to L2(0,T;V ′). Furthermore, for anyϕ in L2(0,T;V),∫ T

0
〈〈∂tu,ϕ〉〉dt+

∫
Qp

∇φ(u).∇ϕ dxdt+
∫

Qp

Kp(u)∇P.∇ϕ dxdt

+
∫

Qp

gp(t,x,u)ϕ dxdt+ess lim
τ→0−

∫
Σhp

Kh(u(σ + τνh))∇P(σ̄).νhϕ dH n = 0.

(9)

2.3. The uniqueness theorem

Theorem 2 ensures a uniqueness property on the hyperbolic zone. On the parabolic one,
the lack of regularity of the time partial derivative of a weak solution to (1)–(4) requires a
doubling the time variable. Furthermore, to deal with the convective term, we assume that
there exists a realθ in ]1/2,+∞[ and a positive constantC such that

∀(x,y) ∈ [−M,M]2,
∣∣(Kp◦φ

−1)(x)− (Kp◦φ
−1)(y)

∣∣≤ C |x−y|θ . (10)

Then we have:

Theorem 4. Assume that (10) holds. Then (1)–(4) admits at most one weak solution.

§3. Existence Property

3.1. The Viscous Problem

We obtain an existence result for (1)–(4) through the vanishing viscosity method that consists
here in introducing, for any positiveε, φε = φ + εIR and the next formal problem : find a
bounded and measurable functionuε onQ such that

∂tuε −
n

∑
i=1

∂xi (Kh(uε)∂xi P)+gh(t,x,uε) = ε∆φε(uε) in Qh, (11)

∂tuε −
n

∑
i=1

∂xi (Kp(uε)∂xi P)+gp(t,x,uε) = ∆φε(uε) in Qp, (12)

uε = 0 on Σ, uε(0, .) = u0 in Ω, (13)
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and to have a well-posed problem, we express the transmission conditions acrossΣhp:

−
(
ε∇φε(uε)+Kh(uε

)
∇P).νh =

(
∇φε(uε)+Kp(uε)∇P

)
.νp on Σhp,

uε |Qh = uε |Qp on Σhp.

Our objective is first to establish that for a fixedε, Problem (11)–(13) has a unique weak
solutionuε . Secondly, we look fora priori estimates for(uε)ε>0 that are sufficient to study
its limit whenε goes to 0+. To begin we state:

Theorem 5. For any positiveε, there exists a unique weak solution uε to the regularized
problem (11)–(13) in W(0,T)∩L∞(Q). This solution fulfills

uε(0, .) = u0 a.e. in Ω, (14)

and the variational equality, for any v in H10(Ω) and for a.e. t in]0,T[,

〈∂tuε ,v〉+
∫

Ω

(
λε(x)∇φε(uε).∇v+K(x,uε)∇P.∇v+g(t,x,uε)v

)
dx= 0, (15)

where to simplify the writing:

K(x,u) = Kh(u)IΩh(x)+Kp(u)IΩp(x), λε(x) = ε IΩh(x)+ IΩp(x),

g(t,x,u) = gh(t,x,u)IΩh(x)+gp(t,x,u)IΩp(x).

In addition,
√

t ∂tuε is an element of L2(Q).

Proof. Some commentaries: the existence property for (14)–(15) uses the Schauder-Tycho-
noff fixed point theorem and the uniqueness statement is based on an Holmgren-type duality
method. This duality method is also used to derive the additional local smoothness property
for the time-partial derivative ofuε .

Let us now mention thea priori estimates satisfied by the sequence of viscous solutions
(uε)ε>0 that are the starting point to study its limit whenε goes to 0+. The lack of regularity
of the initial data but also the fact that the diffusive term depends on the space variable through
λε only allow us to establish:

Proposition 6. There exists a constant C independent fromε such that

‖uε‖L∞(Q) ≤M
∥∥(λε)1/2∇φε(uε)

∥∥
L2(Q)n ≤C, ‖∂tuε‖L2(0,T;H−1(Ω)) ≤C.

3.2. The viscous limit

A priori estimates collected in Proposition 6 are not sufficient to derive a compactness argu-
ment proper to study the behavior of(uε)ε>0 and characterize the corresponding limit. That
is why we assume that

φ
−1 is Hölder continuous with an exponentθ in ]0,1[. (16)

With this assumption and by referring to the arguments put forward in [3, Chapter 2], we
state:
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Proposition 7. Under (16) there exists a measurable function u of L∞(Q) with φ(u) in
L2(0,T;V) such that, up to a subsequence whenε goes to0+, the sequence(uε)ε>0 con-
verges towards u in L∞(Q) weak∗, in Lq(Qp) for any finite q and a.e. on Qp. Besides we also
have

∇φε(uε) ⇀ ∇φ(u) weakly in L2(Qp)n, ε∇φε(uε)→ 0+ strongly in L2(Qh)n.

We characterizeu on the hyperbolic zone by taking advantage of the maximum principle
for uε (see Proposition 6) and of

Claim 8. (see [2].) LetO be an open bounded subset ofRq (q≥ 1) and(un)n>0 a sequence
of measurable functions onO such that:

∃M > 0, ∀n > 0, ‖un‖L∞(O) ≤M.

Then, there exist a subsequence(uϕ(n))n>0 and a measurable functionπ in L∞(]0,1[×O)
such that, for all continuous and bounded functions f onO×]−M,M[,

∀ξ ∈ L1(O), lim
n→+∞

∫
O

f (x,uϕ(n))ξ dx=
∫

]0,1[×O
f (x,π(α,w))dα ξ dx.

Here by considering the sequence of solutions to viscous problems (11)–(13) we prove
that

Theorem 9. The coupled parabolic-hyperbolic problem (1)–(4) has at least a weak solution
u that is the limit in Lq(Q), 1≤ q < +∞, and a.e. on Q of the whole sequence of solutions to
viscous Problems (11)–(13) whenε goes to0+.

Proof. We consider the functionu highlighted in Proposition 7. Since(uε |Ωh)ε>0 is uni-
formly bounded, there exist a subsequence – still labelled(uε |Ωh)ε>0 – and a measurable and
bounded functionπ – called aprocess– on ]0,1[×Qh such that, for any continuous bounded
functionψ onQh×]−M,M[ and for anyξ of L1(Qh),

lim
ε→0+

∫
Qh

ψ(t,x,uε)ξ dxdt=
∫

]0,1[×Qh

ψ(t,x,π(α, t,x))ξ dα dxdt. (17)

Our aim is first to establish that, on the hyperbolic zone, theprocessπ is reduced tou|Ωh,
independently fromα in ]0,1[, and secondly to prove thatu is a weak solution to (1)–(4) for
initial datau0. We reach these two objectives by considering a family of boundary entropy-
entropy flux pair(Hi ,Qi,l ), i ∈ {1,2}, l ∈ {h, p}, defined for anym in N∗ any realk through

H1(z,k) =
(

(z−k)2 +
( 1

m

)2
)1/2

− 1
m

,

H2(z,k) =
((

dist(z,I (0,k))
)2 +

( 1
m

)2
)1/2

− 1
m

,

Qi,l (z,k) =
∫ z

k
∂1Hi(τ,k)K′l (τ)dτ.
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We take the scalar product inL2(]0,T[×Ω) between

∂tuε −div
(
λε(x)∇φε(uε)+K(x,uε)∇P

)
+g(t,x,uε) = 0 a.e. onQ,

and the function∂1Hi(uε ,k)ζi , whereζ1 belongs toD(]−∞,T[×Ω), ζ1 ≥ 0 while ζ2 is in
D(]−∞,T[×Rn), ζ2≥ 0. As for anyi in {1,2}, ∂1Hi(uε ,k)ζi = 0 on∂Ω. We take theε-limit
separately on the parabolic and hyperbolic zones by using (17) and Proposition 7. Fori = 1
andζ1 in D(]−∞,T[×Ωh), the limit with m provides (dq≡ dα dxdt):

−
∫

]0,1[×Qh

(
|π−k|∂tζ1−Fh(x,π,k)∇P.∇ζ1−Gh(π,k)ζ1

)
dq≤

∫
Ωh

|u0−k|ζ1(0, .)dx.

For i = 2 andζ2 in D(Qh), it comes:

−
∫

]0,1[×Qh

(
H2(π,k)∂tζ2−Q2,h(π,k)∇P.∇ζ2−G2,h(π,k)ζ2

)
dq≤ 0,

where, forl in {h, p},
Gi,l (π,k) = gl (t,x,π)∂1Hi(π,k).

At this point we adapt F. Otto’s reasoning providing that

ess lim
τ→0−

∫
]0,1[×Σh\Σhp

Q2,h(π(α,σ + τν),k)∇P(σ̄).νζ dα dH n≤ 0,

for anyζ of L1
+(Σh\Σhp). Condition (7) forπ follows by observing that(Q2,h)l∈N∗ converges

uniformly toFh(z,0,k) asm goes to+∞.
Eventually, the processπ fulfills (7) and (8), where the integrations with respect to the

Lebesgue measure onΣh \Σhp, Ωh andQh are respectively turned into integrations with re-
spect to the Lebesgue measure on]0,1[×Σh \Σhp, ]0,1[×Ωh and]0,1[×Qh. This way, as a
consequence of Theorem 2, ifπ1 andπ2 are two process solutions for initial datau0,1 andu0,2

respectively, then for a.e.t in ]0,T[,∫
]0,1[×Ωh

|π1(α, t,x)−π2(β , t,x)| dα dβ dxdt≤
∫

Ωh

|u0,1−u0,2| dxeM′gh
t
.

Classically we first deduce that, whenu0,1 = u0,2 onΩh, there exists a functionuh onQh such
that, a.e. onQh, uh(.) = π1(α, .) = π2(β , .) for a.e.α andβ in ]0,1[. Another consequence
of the uniqueness property is that the whole sequence(uε)ε>0 strongly converges touh in
Lq(Qh), 1≤ q < +∞. Thusuh = u|Ωh a.e. onQh andu fulfills (6)–(7).
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