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ANALYSIS OF A COUPLED
PARABOLIC-HYPERBOLIC PROBLEM
G. Aguilar, L. Lévi and M. Madaune-Tort

Abstract. This paper deals with the mathematical analysis of a quasilinear parabolic-
hyperbolic problem in a multidimensional bounded donfairin a regionQp, a diffusion-
advection-reaction type equation is set while in the compleme®ars Q \ Qp, only
advection-reaction terms are taken into account. To begin we provide the definition of
a weak solution through an entropy inequality on the whole domain. Since the interface
dQpNJQp contains outward characteristics for the first-order operat@pirthe unique-

ness proof starts by considering first the hyperbolic zone and then the parabolic one. The
existence property uses the vanishing viscosity method and to pass to the limit on the
hyperbolic zone, we refer to the notion of process solution.
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81. Introduction

We are interested in a coupling of a quasilinear parabolic equation with an hyperbolic first-
order equation in a bounded domdnof R", n> 1. This problem arises from several sim-
plified physical models like infiltration processes in a stratified subsoil viewed as two layers
with different geological characteristics and such that in the second layer we can neglect the
effects of diffusivity (see also [4]). For any positive and finltethe problem in hand reads

as follows: find a measurable and bounded functiam Q =|0, T[x Q such that

&u—_zaxi(Kh(u)axiP)+gh(t,x,u):0 in Qn, (1)
atu—lzlaxi(Kp(u)axiP)+gp(t,x,u):Ad)(u) in Qp, (2)
u=0 on]0,T[xdQ, u(0,.)=up on Q, 3)

with the geometrical configuratio = Q,UQ, andQ,N Q, = 0. Besides, fot in {h, p},

Q =0, T[x Q. Of course, suitable conditions across the interface between the two regions
Qp andQ;, are needed. If we refer to the analysis of F. Gastaldiadnith [4], these transmis-

sion conditions have to be formally written:

—Kh(u)OP.vy = (O¢ (u) + Kp(u)OP).vp on Znp, (4)

whereXp, =]0,T[xhpandlyp=FyNFp andl = dQ;. Moreoverv, denotes the outward
normal unit vector defined#"-a.e. on%; and forqin [0,n+ 1], /9 is theg-dimensional
Hausdorff measure. Lastly?’™ (T, N (I} \ Fhp)) =0.
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1.1. Main assumptions on data

The pressure fiel® belongs toV%+*(Q) and fulfills AP = 0 which is not restrictive as soon
as (1) and (2) involve reaction terms. In addition

rhp C {66 Mhi DP((;).Vh < 0}. (5)
Forl in {h, p}, the reaction terng belongs tonV>+*(]0, T[xQ x R) and we set

Mg = esssup  |dug(t,x,u)],
(t,x,u)€]0,T[xQ xR

and the initial dataip belongs td-"(Q). Thus we are able to define the nondecreasing time-
depending function

M
M:te[0,T] = M(t) = HUOHLw(Q) eM1t+W2(eM1t —1),
1

whereM; = Mg+ Mép and

Mz = max t,x,0 max t,x,0)|.
2 ]OﬁT[XQh‘gh( 3 Ny )|+]0,T[><Qp|gp( Ny )|
To simplify we writeM = M(T) and we assume that the following local hypotheses are
fulfilled:

i) Kp is a Lipschitzian function ofi—M,M] while Ky is a nondecreasingd.ipschitzian
function on[—M,M] with constants respectivel&g andK/, . Besides, thanks to a
translation argument, it is not a restriction to supposekhéd) = K,(0) = 0.

ii) ¢ is a nondecreasing Lipschitzian function §aM,M] such that¢ ! exists, this
including the case wher?({x € [-M,M], ¢'(x) = 0}) = 0, where.¥ refers to the
Lebesgue measure @ Furthermorep(0) = 0.

Remarkl. The monotonicity oKy and (5) show that on the transmission zétj@P.vi, < 0.

That wayZ, is really included in the set of outward characteristics for the first-order opera-
tor in the hyperbolic domain and along the interface the information is leaving the hyperbolic
domain. This essential property will guide us for the statement of uniqueness by first consid-
ering the behavior of a solution in the hyperbolic area and then in the parabolic one.

1.2. Notations and functional spaces

In the sequelg (resp.o) is variable ofz; (resp.l), i € {h,hp, p}. This way,c = (t, o) for
anyt of [0, T]. It will be referred to the Hilbert space

W(0,T) = {ve L?(0,T;H}(Q)) ; v e L2(0,T;H 1(Q))},

used with the graph’s norm. We dendte.) the pairing betweehi}(Q) andH~%(Q). Be-
sides, we also need to consider the Hilbert space

V ={veHYQp);v=0a.e. oM p\hp},
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used with[|v]ly = ||| 2(q - We denote(.,.)) the pairing betweel andV’.
Lastly, to simplify the writing,

F (%, u,k) = sign(u—K) ((Kp(u) — Kp(K)) Ia, (X) + (Kn(u) — Kn(k)) I, ()
= Fp(U, k) Lo, (X) + [Kn(u) — Kn (k)| Ig, (%),
G(t,x,u,k) = sign(u—Kk)gp(t,x,u) I, (X) + sign(u — K)gn(t,x, u) Io, (X)
= Gp(u,Kk) Ig, (X) + Gn(u,K) Lo, (X),
Fi(@.0,6) = 5 {1Kn(@) ~ Kn(B)| - [Kn(©) ~ Kn(b)|+ [Kn(@) ~ Kn(©)]
In this framework, we set:

Definition 1. A functionu is a weak solution to the coupling Problem (1)—(4) if and only if
u belongs td_*(Q), ¢(u) to L?(0,T;V) and:

i) forall 9 € 2(] — 0, T[xQ), ¢ > 0, and for any redk,

/\ufk\at(pdxdtf/ D\¢(u)f¢(k)|.D(pdxdt+/ luo — K| (0,.) dx
Q Qp Q

(6)
—/ F(x7u,k)DP.D(pdxdt—/ G(t,x,u,k)pdxdt> 0,
Q Q
i) forall ¢ € LY(Zx\ Znp), ¢ > 0, and for any reak,
esslim/  Zn(u(c +1w),0,K)OP(3).vhl d.7#" < 0. )

=07 JIn\Zpp

82. The uniqueness property

The proofs of all what follows may be found in [1]

2.1. Study in the hyperbolic zone

We derive from (6) and (7) and by using (5) an entropy inequality on the hyperbolic domain
that will be the starting point to establish a time-Lipschitzian dependericé,) of a weak
solution to (1)-(4) with respect to the corresponding initial data. To begin let us state:

Proposition 1. Let u be a bounded and measurable function on Q satisfying (6) and (7).
Then for any real k and ang of 2(]0,T[xR"), ¢ >0,

= [, (4= a0~ Kn(u) ~ Kn(10] CPLp - Gn(K)) it
h
<[ 5y, KO IP(G) () A" ®)

—esslim IKn(u(o +tvh))| OP(6).vho(o) do2".
=07 JEp\Zpp
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From Proposition 1 and thanks to the method of doubling variables, we derive:
Theorem 2. Let u; and y be two bounded and measurable functions gns&isfying (6)
and (7) respectively for initial datagy and w». Then

fora.e.tin]O,T[,/ [ug(t,.) — ua(t, )|dx<e§ht/ |ug,1 — Up 2| dx.
Qn Qn '

2.2. Study in the parabolic zone

By restricting (6) on the parabolic zone, we give first some information on the regularity for
du. Then we characteriaeon Q, through a variational equality including an advection term
that corresponds to entering data from the hyperbolic zone. Indeed:

Proposition 3. Let u be a bounded function on Q such that(u) belongs to B(Q,)" and
satisfying (6). The®.u belongs to £(0,T;V’). Furthermore, for anyp in L?(0,T;V),

/.T<<3tu,(p>>dt+/ Dtp(u).Dtpdde—/ Kp(U)OP.Ogdxdt
° o 9)
+/ gp(t,x,u (pdxdt+essllm Kn(u(o +tvn))OP(0).vho do#" =

7—0 th

2.3. The uniqueness theorem

Theorem 2 ensures a unigueness property on the hyperbolic zone. On the parabolic one,
the lack of regularity of the time partial derivative of a weak solution to (1)—(4) requires a
doubling the time variable. Furthermore, to deal with the convective term, we assume that
there exists a red in ]1/2,+[ and a positive constaff such that

V(xY) € [-M,M]?, [(Kpo ¢ H)(X) = (Koo o H)(y)| <€ [x—y|°. (10)
Then we have:
Theorem 4. Assume that (10) holds. Then (1)—(4) admits at most one weak solution.

83. Existence Property
3.1. The Viscous Problem

We obtain an existence result for (1)—(4) through the vanishing viscosity method that consists
here in introducing, for any positive, ¢ = ¢ + €lr and the next formal problem : find a
bounded and measurable functignon Q such that

—iaximh(ug)axi )+ Gn(t., Us) = A0 (i) in Q. a1

u{-}_.Zlaxi(Kp(ue)aXiP)+gp(t7X7u8) =A@ (Ug) in Qp, (12)

Uu=0 onZ U (0,.)=up in Q, (13)
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and to have a well-posed problem, we express the transmission conditions&g£oss
Ug|Qh = ng|Qp on Zpp.

Our objective is first to establish that for a fixed Problem (11)—(13) has a unique weak
solutionu,. Secondly, we look foa priori estimates fofu;).~o that are sufficient to study
its limit whene goes to 0. To begin we state:

Theorem 5. For any positivee, there exists a unique weak solutiop to the regularized
problem (11)—(13) in WO, T) NL*(Q). This solution fulfills

Us(0,.) =up a.e.in Q, (14)
and the variational equality, for any v ina-ﬂQ) and fora.e. tin0, T},
(GkUg, V) + /Q (Ae(X) 00 (Ug).Ov+ K (X, Ug ) OP.OV+g(t, X, Ue )v) dx= 0, (15)
where to simplify the writing:
K(x,U) = Kn(u) I, (X) + Kp(u) I, (X), Ae(x) = €lg, (X) +1q,(X),
g(t, X, u) = gn(t, %, u) Ig, (X) +gp(t,x,u) Ig, (X).

In addition, v/t & U is an element of 4(Q).

Proof. Some commentaries: the existence property for (14)-(15) uses the Schauder-Tycho-
noff fixed point theorem and the uniqueness statement is based on an Holmgren-type duality
method. This duality method is also used to derive the additional local smoothness property
for the time-partial derivative afi;. O

Let us now mention tha priori estimates satisfied by the sequence of viscous solutions
(Ug)e~0 that are the starting point to study its limit whemoes to 0. The lack of regularity
of the initial data but also the fact that the diffusive term depends on the space variable through
Ae only allow us to establish:

Proposition 6. There exists a constant C independent feosuch that

uellio@) < MI|(Re) 200 (ue) | g < €. llaktellizorn-2(@)) < C-

3.2. The viscous limit

A priori estimates collected in Proposition 6 are not sufficient to derive a compactness argu-
ment proper to study the behavior @f; ).~ and characterize the corresponding limit. That
is why we assume that

¢ 1 is Holder continuous with an exponefiin |0, 1]. (16)

With this assumption and by referring to the arguments put forward in [3, Chapter 2], we
state:
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Proposition 7. Under (16) there exists a measurable function u 8{@) with ¢(u) in
L?(0,T;V) such that, up to a subsequence whegoes to0", the sequencéue)e-o con-
verges towards u in?(Q) weakx, in L9(Qp) for any finite g and a.e. on Q Besides we also
have

Oge (ue) — O (u) weakly in 12(Qp)", e0ge(ue) — 0" strongly in L*(Qn)".

We characterizel on the hyperbolic zone by taking advantage of the maximum principle
for u; (see Proposition 6) and of

Claim 8. (see [2].) Let¢ be an open bounded subsef®f(q > 1) and (un)n~0 & Sequence
of measurable functions ofi such that:

Then, there exist a subsequeneg))n-0 and a measurable function in L*(]0,1[x 0)
such that, for all continuous and bounded functions fcor] — M, M|,

VE € LY(0), nﬂmw/ﬁf(x,uwn))é dx— /]Olwf(x,n(a,w))dagdx

Here by considering the sequence of solutions to viscous problems (11)—(13) we prove
that

Theorem 9. The coupled parabolic-hyperbolic problem (1)—(4) has at least a weak solution
u that is the limit in 1(Q), 1 < g < +, and a.e. on Q of the whole sequence of solutions to
viscous Problems (11)—(13) whergoes ta0™.

Proof. We consider the function highlighted in Proposition 7. Sinc@|q, )e>0 is uni-
formly bounded, there exist a subsequence — still labgligld, ).~0 — and a measurable and
bounded functiorr — called aprocess- on|0, 1[x Qy, such that, for any continuous bounded
function y on Qx| — M, M[ and for anyé of LY(Qy),

Iim/ w(t,x,ue)édxdt:/ Wit x (e, t, X)) dadxdt (17)
0+ Jo, 10.4{xQn

Our aim is first to establish that, on the hyperbolic zone,gfeeessr is reduced tai|g,,
independently fronx in ]0, 1], and secondly to prove thatis a weak solution to (1)—(4) for

initial dataug. We reach these two objectives by considering a family of boundary entropy-
entropy flux pair(H;, Qi ), i € {1,2}, | € {h, p}, defined for anymin N* any realk through

Hi(z k) = <(z k)2+ (;)2>1/2r1n’
Ho(z,K) = ((dist(z,ﬂ(o, K))+ (;)Z) v 1

m

Qii(zk) = AzalHi(r,k)K((T)dr.
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We take the scalar product irf(]0, T[x Q) between
A Ug — div (e (X) D¢ (Ug ) + K (X, Ug)OP) +g(t,x,us) =0 a.e. onQ,

and the functiorviH; (ug, k)&, where; belongs toZ(] — o, T[xQ), {1 > 0 while {; is in
P(] — o0, T[xR"M), & > 0. As for anyi in {1,2}, d1Hi (U, k)& = 0 0ndQ. We take thee-limit
separately on the parabolic and hyperbolic zones by using (17) and Propositioni % Eor
and{y in 2(] — e, T[xQyp), the limit with m provides ¢lg= da dxd?):

~ [ (r-K&G - R mKOPOG - Gh(rK)G) da< [ uo—K (0, dx
10,1[xQn o
Fori =2 and{z in 2(Qy), it comes:
—/ (Ha(m,k) ok §2 — Qo (7, k) OP.OC2 — Gop (7, k) &2) dg < O,
10,1[xQn

where, forl in {h, p},
Gi,l (77.', k) =0 (t,X, ﬂ)alHi(ﬂ:a k)

At this point we adapt F. Otto’s reasoning providing that

esslim Q2n(z(a,0+1v),k)OP(0).v{dad#" <0,
—0~ ]O.l[xzh\zhp

forany( of Li(zh\zhp). Condition (7) forr follows by observing thatQ, h)icn+ converges
uniformly to %,(z,0,k) asm goes tot-.

Eventually, the process fulfills (7) and (8), where the integrations with respect to the
Lebesgue measure am \ Zhp, Qn andQy, are respectively turned into integrations with re-
spect to the Lebesgue measure]Oi[x>p \ Zhp, ]0,1[xQ and]0,1[xQp. This way, as a
consequence of Theorem 27if andm, are two process solutions for initial daigy andug 2
respectively, then for a.€in ]0, T|,

/ |7r1(a,t,x)—7r2([3,t,x)\dadﬁdxdtg/ o — Ugz| dxéent,
B ]O,l[XQh o Qh i

Classically we first deduce that, whegi = ug 2 onQy, there exists a functiom, on Qp such
that, a.e. orQp, un(.) = m(a,.) = m(B,.) for a.e.a andf in ]0,1]. Another consequence
of the uniqueness property is that the whole sequéngk-o strongly converges tay in
L9(Qn), 1< g < +o0. Thusu, = Ujg, a.e. onQy andu fulfills (6)—(7). O
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