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Abstract. Given a vector field U(x) and a nonnegative potential V(x) on a smooth open
bounded set Ω of IRn, we shall discuss some regularity results for the following equation

−∆ω + U · ∇ω + Vω = f in Ω (0.1)

whenever δ f is a bounded Radon measure with δ(x) is the distance between x and the
boundary ∂Ω.

§1. Introduction

To explain the origin of our study, let us recall some recent results concerning the very weak
solution in the sense of Brezis concerning the Laplacian operator, (say U = V = 0 in the
above equation)
and when f belongs to L1

+(Ω, δ)\L1(Ω; δ(1 + | ln δ|))) with δ(x) = dist (x, ∂Ω), then (see [10])

ω < W1
0 L(Log L) =

{
v ∈ W1,1

0 (Ω) : ∇v ∈ L(Log L)n
}
,

and ∫
Ω

|∇ω| |Log δ|dx = +∞.

More, we have (see [11]) the

Theorem 1. Let
W+ =

{
ψ ∈ W2,n (Ω) ∩ H1

0(Ω) : −∆ψ > 0
}

and
L+ =

{
f ∈ L1

+(Ω; δ) : ∃ψ ∈ W+ s.t
∫

Ω

f (x)ψ(x)dx = +∞
}
.

Then the unique solution u ∈ Ln′,∞(Ω) of∫
Ω

u∆ϕ =

∫
Ω

fϕ, ∀ϕ ∈ C2
0(Ω) =

{
ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω

}
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verifies ∫
Ω

|∇u|dx = +∞ : u < W1,1(Ω).

But we know (see [1]), that

W1(L(Log L)
)
⊂ Ln′ (Log L)β(n′−1) ∀ β > 1, n′ =

n
n − 1

.

and this last set is included in the so called small Lebesgue spaces

L(n′,1 ⊂ L(n′,α, 0 < α < 1.

Nevertheless, we have shown in [6] that if f is in L1(Ω; δ(1 + |Log δ|)α),
1
n′
< α 6 1 then the

unique solution u of the equation (0.1) belongs to L(n′,θ(Ω) for some θ.
More precisely, we have shown in [4, 6] the following

Theorem 2. Let Ω be a bounded open set of class C2 of IRn, |Ω| = 1, α >
1
n′

where n′ =

n
n − 1

, f ∈ L1(Ω; δ). Consider u ∈ Ln′,∞(Ω), the v.w.s. of

−

∫
Ω

u∆ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω. (1.1)

Then,

1. if f ∈ L1
(
Ω; δ(1 + |Log δ|)α

)
, and α >

1
n′

u ∈ L(n′,nα−n+1(Ω) = GΓ(n′, 1;wα), wα(t) = t−1(1 − Log t)α−1− 1
n′

and
||u||GΓ(n′,1;wα) 6 K0| f |L1(Ω;δ(1+|Log δ|)α) (1.2)

2. if α =
1
n′

then

u ∈ Ln′ (Ω) and similar estimate as (1.2) holds.

In a recent paper [5], we improve the inequality (1.2) namely for the dimension 2 by

getting similar information for α 6
1
2

. Here, we want to extend those results replacing the
Laplacian operator by a more general one as it is given in (0.1). Namely, we shall prove the
following:

Theorem 3. Let U be in Lp(Ω)n, p > n, div (U) = 0 inD′(Ω), U · ν = 0 on ∂Ω, V ∈ Lp(Ω),

V > 0, β >
n − 1

n
, f ∈ L1(Ω; δ(1 + |Log δ|)β), β =

n − 1 + θ

n
, θ = nβ − n + 1.

Then the unique solution u ∈ Ln′,∞(Ω) of∫
Ω

u
[
− ∆ϕ − U · ∇ϕ + Vϕ

]
dx =

∫
Ω

fϕdx ∀ϕ ∈ C2
0(Ω) (1.3)
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belongs to L(n′,θ(Ω) and there exists a constant c (depending only of the data U V and Ω)
such that

||u||L(n′ ,θ 6 c
∫

Ω

| f |δ(1 + |Log |)βdx.

When f is in L(Log L)β, we may obtain a similar result concerning the gradient of u but

under weaker assumptions on the operator, we will show for β >
1
n′

||∇u||L(n′ ,nβ−n+1 6 c|| f ||L(Log L)β . (1.4)

§2. Notation Primary results

For a measurable function f : Ω→ IR, we set for t > 0

D f (t) = measure
{
x ∈ Ω : | f (x)| > t

}
and f∗ the decreasing rearrangement of | f |, for s ∈

(
0, |Ω|

)
f∗(s) = inf

{
t : D f (t) 6 s

}
, |Ω| is the measure of Ω,

that we shall assume to be equal to 1 for simplicity.
If A1 and A2 are two quantities depending on some parameters, we shall write

A1 . A2 if there exists c > 0 (independent of the parameters) such that A1 6 cA2

A1 ' A2 if and only if A1 . A2 and A2 . A1

We recall also the following definition of interpolation spaces. Let (X0, || · ||0), (X1, || · ||1)
two Banach spaces contained continuously in a Hausdorff topological vector space (that is
(X0, X1) is a compatible couple). For g ∈ X0 + X1, t > 0 one defines the so called K functional
K(g, t; X0, X1)=̇K(g, t) by setting

K(g, t) = inf
g=g0+g1

(
||g0||0 + t||g1||1

)
. (2.1)

For 0 6 θ 6 1, 1 6 p 6 +∞, α ∈ IR we shall consider

(X0, X1)θ,p;α =
{
g ∈ X0 + X1, ||g||θ,p;α = ||t−θ−

1
p
(
1 − Log t

)αK(g, t)||Lp(0,1) is finite
}
.

Here || · ||V denotes the norm in a Banach space V . The weighted Lebesgue space Lp(0, 1;ω),
0 < p 6 +∞ is endowed with the usual norm or quasi norm, where ω is a weight function
on (0, 1), Lp

+(0, 1, ω) =
{
f ∈ Lp(0, 1;ω), f > 0}. Our definition of the interpolation space is

different from the usual one (see [2, 13]) since we restrict the norms on the interval (0, 1).
If we consider ordered couple, i.e. X1 ↪→ X0 and α = 0,

(X0, X1)θ,p;0 = (X0, X1)θ,p

is the interpolation space as it is defined by J. Peetre (see [2, 13, 3]).

C2
0(Ω) =

{
ϕ : Ω→ IR, twicely differentiable and vanishing at the boundary}

W1V =
{
ϕ ∈ L1

loc(Ω) : ∇ϕ ∈ Vn
}
.
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2.1. A few description of GΓ(p,m;w1, w2)

Definition 1 (of a Generalized Gamma space with double weights). Let w1, w2 be two
weights on (0, 1), m ∈ [1,+∞], 1 6 p < +∞. We assume the following conditions:

c1) There exists K12 > 0 such that w2(2t) 6 K12w2(t) ∀ t ∈ (0, 1/2). The space Lp(0, 1;w2)
is continuously embedded in L1(0, 1).

c2) The function
∫ t

0
w2(σ)dσ belongs to L

m
p (0, 1;w1).

A generalized Gamma space with double weights is the set

GΓ(p,m;w1, w2) =

{
v : Ω→ IR measurable

∫ t

0
v

p
∗ (σ)w2(σ)dσ is in L

m
p (0, 1;w1)

}
.

A similar definition has been considered in [8]. They were interested in the embeddings
between GΓ-spaces.

Properties. Let GΓ(p,m;w1, w2) be a Generalized Gamma space with double weights and
let us define for v ∈ GΓ(p,m;w1, w2)

ρ(v) =

∫ 1

0
w1(t)

(∫ t

0
v

p
∗ (σ)w2(σ)dσ

) m
p

dt


1
m

with the obvious change for m = +∞.
Then,

1. ρ is a quasinorm.

2. GΓ(p,m;w1, w2) endowed with ρ is a quasi-Banach function space.

3. If w2 = 1
GΓ(p,m;w1, 1) = GΓ(p,m;w1).

Example 1 (of weights). Let w1(t) = (1 − Log t)γ, w2(t) = (1 − Log t)β wit (γ, β) ∈ IR2.
Then

w2 satisfies condition c1) and w1 and w2 are in Lmax(γ;β)
exp

(
]0, 1[

)
.

Definition 2 (of the small Lebesgue space). The small Lebesgue space associated to the
parameter p ∈]1,+∞[ and θ > 0 is the set

L(p,θ(Ω) =

{
f : Ω→ IR measurable such that

‖ f ‖(p,θ =

∫ 1

0
(1 − Log t)−

θ
p +θ−1

(∫ t

0
f p
∗ (σ)dσ

)1/p dt
t
< +∞

}
.

Let us notice that the small Lebesgue space is a G-gamma space.
Definition 3 (of the Grand Lebesgue space). The associate space of the small Lebesgue space
is denoted by Lp),θ(Ω) for 1 < p < +∞, θ > 0 and is defined as

Lp),θ(Ω) =

{
f : Ω→ IR measurable such that ‖ f ‖p),θ = sup

0<ε<p−1

(
εθ

∫
Ω

| f |p−εdx
) 1

p−ε

is finite
}
.
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Properties of small and Grand Lebesgue spaces.

1. They are rearrangement invariant Banach function spaces. One has the following
equivalent norm :

||u||L(p,θ(Ω) = inf
u=

∑
k uk

∑
k

inf
0<ε<p′−1

ε−
θ

(p′−ε)

(∫
Ω

|uk |
(p′−ε)′dx

) 1
(p′−ε)′


||u||p),θ ≈ sup

0<t<|Ω|

(
1 − Log t

)− θ
p

(∫ |Ω|

t
u∗(s)pds

) 1
p

.

2.
⋃
ε>0

Lp+ε(Ω)
⊂

,
⋃
β>1

Lp(Log L)
βθ

p′−1 (Ω)
⊂

, L(p,θ(Ω) ⊂ Lp(Log L)
θ

p′−1 .

3. Lp(Ω)
⊂

,
Lp

Log θL
(Ω)

⊂

, Lp),θ(Ω)
⊂

,
⋂
α>1

Lp

Log αθL
(Ω)

⊂

,
⋂

0<ε<p−1

Lp−ε

4.
∫

Ω

u · vdx 6 ||u||L(p′ ,θ ||v||Lp),θ ,
1
p

+
1
p′

= 1.

V MO(Ω) =

{
f ∈ L1(Ω) : lim

R→0
sup

r<R,x0∈Ω

1
rn

∫
B(x0,r)∩Ω

| f − fr |dx = 0
}

here fr =
1

|B(x0; r) ∩Ω|

∫
B(x0;r)∩Ω

f (x)dx.

§3. Proof of Theorem 3

The proof of Theorem 3 follows the same scheme as in [6] by considering the following dual
problem

Lemma 4. For any g ∈ Ln),θ
+ (Ω), V ∈ Ln),θ(Ω) and θ > 0 the unique solution ϕ ∈ H1

0(Ω) ∩
L∞(Ω) of

−∆ϕ + U · ∇ϕ + V ϕ = g in H−1(Ω) (3.1)

satisfies ϕ ∈ W2Ln),θ(Ω) and there exists a constant cn > 0 independent of θ such that

||ϕ||W2Ln),θ(Ω) 6 cn||g||Ln),θ(Ω).

Here, we assume the same integrability for U as in Theorem 3.

Proof. The existence, uniqueness of ϕ is given in [4]. Indeed, we have for n > 2,

Ln),θ(Ω) ⊂ Ln−ε(Ω), ∀ 0 < ε <
1
2
.

Thus g ∈ L
n
2 ,1(Ω) ⊂ H−1(Ω).

To obtain the W2Ln),θ regularity, we may assume first V and g bounded. Then following
Proposition 11 of [4], we have ϕ ∈ W2Lp(Ω), p > n.
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Let us show that, we have ε0 > 0 and a constant c0 > 0 depending only on the data U, V, Ω

such that ∀ε ∈ [0, ε0]
||ϕ||W2Ln−ε 6 c0||g||Ln−ε . (3.2)

Let 0 < ε <
1
2

. Then from the equation satisfied by ϕ, one has :

||∆ϕ||Ln−ε 6 ||U · ∇ϕ||Ln−ε + ||V ϕ||Ln−ε + ||g||Ln−ε . (3.3)

Since ϕ ∈ L∞(Ω) and
||ϕ||L∞ 6 cn||g||L

n
2 ,1
6 cn||g||Ln),θ . (3.4)

So that
||V ϕ||Ln−ε 6 c||V ||Ln−ε ||ϕ||L∞ 6 c||V ||Ln−ε ||g||Ln),θ . (3.5)

By Hölder inequality, for p > n,

||U · ∇ϕ||Ln−ε 6 ||U ||Lp ||∇ϕ||
L

p(n−ε)
p−n+ε
6 c||U ||Lp ||∇ϕ||Lp(n) where p(n) =

pn
p − n

. (3.6)

We shall choose ε0 > 0 : (n−ε0)∗ > p(n) i.e 0 < ε < min
(1
2

;
n(p − n)
2p − n

)
. In that case, we have

the compact embedding W2Ln−ε0 (Ω) ⊂> W1Lp(n)(Ω). Therefore ∀ η > 0, there exists cη > 0
such that

||∇ϕ||Lp(n) 6 η||ϕ||W2Ln−ε0 + cη||ϕ||L2 . (3.7)

From Agmon-Douglis-Niremberg’s theorem and Marcienkiewicz interpolation’s theorem,
one has a constant cn > 0 such that

||ϕ||W2Ln−ε 6 cn||∆ϕ||Ln−ε ∀ϕ ∈ W2Ln−ε(Ω) ∩ H1
0(Ω) and ∀ ε ∈ [0, ε0]. (3.8)

Combining relations (3.3) to (3.8), we deduce for all η > 0, one has a constant cη > 0, for all
ε ∈ [0, ε0]

||ϕ||W2Ln−ε 6 η||U ||Lp ||ϕ||W2Ln−ε + cη||U ||Lp ||ϕ||L∞ + c′||V ||Ln−ε ||g||Ln),θ + ||g||Ln−ε . (3.9)

Since we have

||g||Ln),θ ' sup
0<ε< n−1

2

(
εθ

∫
Ω

|g|n−ε(x)dx
) 1

n−ε

;

we deduce from relation (3.9) :

||ϕ||W2Ln),θ (1 − η||U ||Lp ) 6 cη||U ||Lp ||g||Ln),θ + c(1 + ||V ||Ln),θ )||g||Ln),θ .

Choosing η||U ||Lp 6
1
2

, we then have a constant c depending only on U and Ω.

||ϕ||W2Ln),θ 6 c(1 + ||V ||Ln),θ )||g||Ln),θ . (3.10)

We conclude by usual density argument, say

replacing g by gk(x) = min
(
k; |g(x)|

)
sign (g(x)), Vk = min(V; k).

the solution of ϕk of

−∆ϕk + U · ∇ϕk + Vk ϕ = gk

ϕk ∈ H1
0(Ω) ∩ L∞(Ω)

satisfies (3.10).

Let k → ∞, the uniqueness of solution (1.3) gives the result. �
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§4. Regularity for data in L(Log L)α for a full linear operator

In [6], we have shown the following

Theorem 5. Let Ω be a bounded open set of IRn, n > 3 of class C1,1, A(x) = (ai j(x))i, j, x ∈ Ω

a bounded coercitive matrix. Assume that ai j ∈ V MO(Ω) and let f be in L(Log L)α, α >
n − 1

n
. Then, the weak solution of

div (A(x)∇u) = f in Ω

u ∈ W1
0 Ln′ (Ω)

satisfies
||∇u||L(n′ ,nα−n+1 6 c(n;α)|| f ||L(Log L)α . (4.1)

We want to extend the above result replacing the main operator by

Lu=̇ − div
(
A(x)∇u

)
+ B(x) · ∇u − div

(
C(x)u

)
+ V(x)u.

For this, we will assume that

H1. C(x) = (ci(x))i∈{1,...,n}, B(x) = (bi(x)) are such that ci, bi are in Ln(Ω) for all i and
V ∈ L

n
2 (Ω), A is symmetric.

H2. There exists a constant c0 > 0: V − div (C) > c0 > 0 inD′(Ω)

We recall the following results (see [9]).

Lemma 6. Under the above assumptions on A, B, C and V, F ∈ Lp(Ω)n, 1 < p < n. There
exists an unique solution u ∈ W1,p

0 (Ω) of

Lu = −div (F) inD′(Ω).

Moreover, there exists a constant k(p) > 0 (independent of f and u) such that

||∇u||
L

np
n−p (Ω)

6 k(p)||F||Lp(Ω)n . (4.2)

Lemma 7 (see [7]). Let 1 < p < n, f ∈ Lp(Ω) and v the unique solution of −∆v = f in
D′(Ω), v ∈ W1,p

0 (Ω). Then there exist a constant cn independent of p, f and v such that

||∇v||
L

np
n−p (Ω)

6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω). (4.3)

Lemma 8. Let f ∈ Lp(Ω), 1 < p <
n(n − 1)

n2 − n − 1
, p∗ =

pn
n − p

.

Then, there exist a constant c′n independent of p, f such that the unique solution u ∈ W1,p
0 (Ω)

of Lu = f inD′(Ω) satisfies

||∇u||Lp∗ 6
c′n

(p − 1)
n−1

n

|| f ||Lp(Ω). (4.4)
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Proof. Let r ∈
[

n
n − 1

= n′,
n − 1
n − 2

= (n − 1)′
]

and v ∈ W1,r
0 (Ω) : −∆v ∈ Lm(Ω) with

1
m

=

1
r

+
1
n

. From Lemma 6 for any solution u ∈ W1,n′
0 (Ω) of Lu = −∆v, one has

||∇u||Ln′ (Ω) 6 k(n′)||∇v||Ln′ (Ω). (4.5)

and
||∇u||L(n−1)′ (Ω) 6 k((n − 1)′)||∇v||L(n−1)′ (Ω). (4.6)

Applying the Marcinkiewicz real interpolation method, we deduce that we have

||∇u||Lr(Ω) 6 Max (k(n′); k(n − 1)′)||∇v||Lr(Ω). (4.7)

Taking 1 < p <
n(n − 1)

n2 − n − 1
, we have n′ < p∗ < (n − 1)′ and choosing v such that −∆v = f ∈

Lp(Ω), v ∈ W1,p(Ω) then applying Lemma 7, relation (4.7) leads to :

||∇u||Lp∗ (Ω) 6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω). �

Theorem 9. Let f ∈ L(Log L)α, α >
n − 1

n
, u satisfying Lu = f in D′(Ω), u ∈ W1

0 Ln′,∞(Ω).
Then

1. |∇u| ∈ L(n′,nα−n+1(Ω).

2. ||∇u||L(n′ ,nα−n+1(Ω) 6 c(n;α)|| f ||L(Log L)α .

Proof. Its follows the same arguments as in [6] using relation (4.4) and a suitable decompo-
sition of f , whenever f > 0. We drop the details. �

We may weaken hypothesis H2. on V and C(x) by assuming
H3. V − div (C) > 0 inD′(Ω).

But we shall add an assumption as

H4. V −
1
2

div (C + B) > 0 inD′(Ω).

Hypothesis H4. ensures that for all T ∈ H−1(Ω) the problem Lu = T in D′(Ω) (resp.
L∗u = T ) possesses an unique solution u ∈ H1

0(Ω), L∗ is the adjoint operator of L. As a
by product of such result and Lemma 6 one has :

Lemma 10. Let r ∈
[

2n
n + 2

,
2n

n − 2

]
, n > 3, F ∈ Lr(Ω)n. Then, there exists an unique

u ∈ W1,r
0 (Ω) of Lu = −div (F) inD′(Ω). Moreover,

∃c(r) > 0 : ||∇u||Lr 6 c(r)||F||Lr . (4.8)

Proof. Let F ∈ Lr(Ω)n, r ∈
[
2,

2n
n − 2

]
. Since F ∈ L2(Ω)n, we may use hypothesis H4. to

deduce that the problem Lu = −div (F) has an unique solution u ∈ H1
0(Ω). Let F0 ∈ L2∗ (Ω)n

such −div (F0) = u and

||F0||L2∗ 6 c||u||L2 6 c||F||L2 6 c||F||Lr . (4.9)
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We may write the equation Lu = −div (F) as

−div
(
A(x)∇u

)
+ B(x)∇u − div

(
C(x)u

)
+ (V + 1)u = −div (F0 + F), F0 + F ∈ Lr(Ω)n

One has V + 1 − div (C) > 1 > 0.
Applying Lemma 6, we deduce that u ∈ W1,r

0 (Ω) and

||∇u||Lr 6 c(r)||F0 + F||Lr 6 c(r)||F||Lr . (4.10)

For r ∈
[

2n
n + 2

, 2
]
, we argue by duality to conclude that one has an unique function u ∈

W1,r
0 (Ω) such that Lu = −div (F) inD′(Ω)

||∇u||Lr 6 c(r)||F||Lr . � (4.11)

Thank to the above Lemma, we have:

Lemma 11. Let r ∈ [n′, (n − 1)′] then there exists a constant k(n) > 0

||∇u||Lr 6 k(n)||F||Lr

whenever u satisfies: Lu = −div (F) inD′(Ω).

We conclude as before to derive the following:

Lemma 12. Let f ∈ Lp(Ω), 1 < p <
n(n − 1)

n2 − n − 1
, p∗ =

pn
n − p

= −p(n). Then the unique

solution u of Lu = f , u ∈ W1,p
0 (Ω) satisfies

||∇u||Lp∗ 6
cn

(p − 1)
n−1

n

|| f ||Lp(Ω).

Theorem 13. Assume H1. H3. and H4. Then for f ∈ L(Log L)α, α >
n − 1

n
, n > 3. There

exists an unique solution u ∈ L(n′,nα−n+1(Ω) satisfying Lu = f in D′(Ω). Moreover, there
exists a constant c(n;α) > 0 such that:

||∇u||L(n′ ,nα−n+1(Ω) 6 c(n;α)|| f ||L(Log L)α .

Proof. The proof follows the same argument as in [6]. �

Recent developments concerning equation (2.1) but with singular potential as Colomb’s
potential is given in [12].
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