BEST REGULARITY FOR A SCHRÖDINGER TYPE EQUATION WITH NON SMOOTH DATA AND INTERPOLATION SPACES

Jean Michel Rakotoson

Keywords: Grand and Small Lebesgue spaces, classical Lorentz-spaces, Interpolation, very weak solution.
AMS classification: Primary 46E30,46B70, 35J65.

$$
\begin{align*}
& \text { Abstract. Given a vector field } U(x) \text { and a nonnegative potential } V(x) \text { on a smooth open } \\
& \text { bounded set } \Omega \text { of } \mathbb{R}^{n} \text {, we shall discuss some regularity results for the following equation } \\
& \qquad-\Delta \omega+U \cdot \nabla \omega+V \omega=f \quad \text { in } \Omega \tag{0.1}\\
& \text { whenever } \delta f \text { is a bounded Radon measure with } \delta(x) \text { is the distance between } x \text { and the } \\
& \text { boundary } \partial \Omega \text {. }
\end{align*}
$$

§1. Introduction

To explain the origin of our study, let us recall some recent results concerning the very weak solution in the sense of Brezis concerning the Laplacian operator, (say $U=V=0$ in the above equation)
and when f belongs to $\left.L_{+}^{1}(\Omega, \delta) \backslash L^{1}(\Omega ; \delta(1+|\ln \delta|))\right)$ with $\delta(x)=\operatorname{dist}(x, \partial \Omega)$, then (see [10])

$$
\omega \notin W_{0}^{1} L(\log L)=\left\{v \in W_{0}^{1,1}(\Omega): \nabla v \in L(\log L)^{n}\right\},
$$

and

$$
\int_{\Omega}|\nabla \omega||\log \delta| d x=+\infty
$$

More, we have (see [11]) the
Theorem 1. Let

$$
W_{+}=\left\{\psi \in W^{2, n}(\Omega) \cap H_{0}^{1}(\Omega):-\Delta \psi \geqslant 0\right\}
$$

and

$$
L_{+}=\left\{f \in L_{+}^{1}(\Omega ; \delta): \exists \psi \in W_{+} \text {s.t } \int_{\Omega} f(x) \psi(x) d x=+\infty\right\} .
$$

Then the unique solution $u \in L^{n^{\prime}, \infty}(\Omega)$ of

$$
\int_{\Omega} u \Delta \varphi=\int_{\Omega} f \varphi, \forall \varphi \in C_{0}^{2}(\bar{\Omega})=\left\{\varphi \in C^{2}(\bar{\Omega}): \varphi=0 \text { on } \partial \Omega\right\}
$$

verifies

$$
\int_{\Omega}|\nabla u| d x=+\infty: u \notin W^{1,1}(\Omega) .
$$

But we know (see [1]), that

$$
W^{1}(L(\log L)) \subset L^{n^{\prime}}(\log L)^{\beta\left(n^{\prime}-1\right)} \quad \forall \beta>1, n^{\prime}=\frac{n}{n-1} .
$$

and this last set is included in the so called small Lebesgue spaces

$$
L^{\left(n^{\prime}, 1\right.} \subset L^{\left(n^{\prime}, \alpha\right.}, \quad 0<\alpha<1 .
$$

Nevertheless, we have shown in [6] that if f is in $L^{1}\left(\Omega ; \delta(1+|\log \delta|)^{\alpha}\right), \frac{1}{n^{\prime}}<\alpha \leqslant 1$ then the unique solution u of the equation (0.1) belongs to $L^{\left(n^{\prime}, \theta\right.}(\Omega)$ for some θ.
More precisely, we have shown in $[4,6]$ the following
Theorem 2. Let Ω be a bounded open set of class C^{2} of $\mathbb{R}^{n},|\Omega|=1, \alpha \geqslant \frac{1}{n^{\prime}}$ where $n^{\prime}=$ $\frac{n}{n-1}, f \in L^{1}(\Omega ; \delta)$. Consider $u \in L^{n^{\prime}, \infty}(\Omega)$, the v.w.s. of

$$
\begin{equation*}
-\int_{\Omega} u \Delta \varphi d x=\int_{\Omega} f \varphi d x \quad \forall \varphi \in C^{2}(\bar{\Omega}), \varphi=0 \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

Then,

1. if $f \in L^{1}\left(\Omega ; \delta(1+|\log \delta|)^{\alpha}\right)$, and $\alpha>\frac{1}{n^{\prime}}$

$$
u \in L^{\left(n^{\prime}, n \alpha-n+1\right.}(\Omega)=G \Gamma\left(n^{\prime}, 1 ; w_{\alpha}\right), w_{\alpha}(t)=t^{-1}(1-\log t)^{\alpha-1-\frac{1}{n^{\prime}}}
$$

and

$$
\begin{equation*}
\|u\|_{G \Gamma\left(n^{\prime}, 1 ; w_{\alpha}\right)} \leqslant K_{0}|f|_{L^{1}\left(\Omega ; \delta(1+\mid \log \delta)^{\alpha}\right)} \tag{1.2}
\end{equation*}
$$

2. if $\alpha=\frac{1}{n^{\prime}}$ then

$$
u \in L^{n^{\prime}}(\Omega) \text { and similar estimate as (1.2) holds. }
$$

In a recent paper [5], we improve the inequality (1.2) namely for the dimension 2 by getting similar information for $\alpha \leqslant \frac{1}{2}$. Here, we want to extend those results replacing the Laplacian operator by a more general one as it is given in (0.1). Namely, we shall prove the following:
Theorem 3. Let U be in $L^{p}(\Omega)^{n}, p>n$, $\operatorname{div}(U)=0$ in $\mathcal{D}^{\prime}(\Omega), U \cdot v=0$ on $\partial \Omega, V \in L^{p}(\Omega)$, $V \geqslant 0, \beta>\frac{n-1}{n}, f \in L^{1}\left(\Omega ; \delta(1+|\log \delta|)^{\beta}\right), \beta=\frac{n-1+\theta}{n}, \theta=n \beta-n+1$.
Then the unique solution $u \in L^{n^{\prime}, \infty}(\Omega)$ of

$$
\begin{equation*}
\int_{\Omega} u[-\Delta \varphi-U \cdot \nabla \varphi+V \varphi] d x=\int_{\Omega} f \varphi d x \quad \forall \varphi \in C_{0}^{2}(\bar{\Omega}) \tag{1.3}
\end{equation*}
$$

belongs to $L^{\left(n^{\prime}, \theta\right.}(\Omega)$ and there exists a constant c (depending only of the data $U V$ and Ω) such that

$$
\|u\|_{L^{\left(n^{\prime}, \theta\right.}} \leqslant c \int_{\Omega}|f| \delta(1+|\log |)^{\beta} d x
$$

When f is in $L(\log L)^{\beta}$, we may obtain a similar result concerning the gradient of u but under weaker assumptions on the operator, we will show for $\beta>\frac{1}{n^{\prime}}$

$$
\begin{equation*}
\|\nabla u\|_{L^{n^{\prime}, n \beta-n+1}} \leqslant c\|f\|_{L(\log L)^{\beta}} \tag{1.4}
\end{equation*}
$$

§2. Notation Primary results

For a measurable function $f: \Omega \rightarrow \mathbb{R}$, we set for $t \geqslant 0$

$$
D_{f}(t)=\text { measure }\{x \in \Omega:|f(x)|>t\}
$$

and f_{*} the decreasing rearrangement of $|f|$, for $s \in(0,|\Omega|)$

$$
f_{*}(s)=\inf \left\{t: D_{f}(t) \leqslant s\right\},|\Omega| \text { is the measure of } \Omega
$$

that we shall assume to be equal to 1 for simplicity.
If A_{1} and A_{2} are two quantities depending on some parameters, we shall write
$A_{1} \lesssim A_{2}$ if there exists $c>0$ (independent of the parameters) such that $A_{1} \leqslant c A_{2}$

$$
A_{1} \simeq A_{2} \text { if and only if } A_{1} \lesssim A_{2} \text { and } A_{2} \lesssim A_{1}
$$

We recall also the following definition of interpolation spaces. Let $\left(X_{0},\|\cdot\|_{0}\right),\left(X_{1},\|\cdot\|_{1}\right)$ two Banach spaces contained continuously in a Hausdorff topological vector space (that is (X_{0}, X_{1}) is a compatible couple). For $g \in X_{0}+X_{1}, t>0$ one defines the so called K functional $K\left(g, t ; X_{0}, X_{1}\right) \doteq K(g, t)$ by setting

$$
\begin{equation*}
K(g, t)=\inf _{g=g_{0}+g_{1}}\left(\left\|g_{0}\right\|_{0}+t\left\|g_{1}\right\|_{1}\right) \tag{2.1}
\end{equation*}
$$

For $0 \leqslant \theta \leqslant 1,1 \leqslant p \leqslant+\infty, \alpha \in \mathbb{R}$ we shall consider

$$
\left(X_{0}, X_{1}\right)_{\theta, p ; \alpha}=\left\{g \in X_{0}+X_{1},\|g\|_{\theta, p ; \alpha}=\left\|t^{-\theta-\frac{1}{p}}(1-\log t)^{\alpha} K(g, t)\right\|_{L^{p}(0,1)} \text { is finite }\right\} .
$$

Here $\|\cdot\|_{V}$ denotes the norm in a Banach space V. The weighted Lebesgue space $L^{p}(0,1 ; \omega)$, $0<p \leqslant+\infty$ is endowed with the usual norm or quasi norm, where ω is a weight function on $(0,1), L_{+}^{p}(0,1, \omega)=\left\{f \in L^{p}(0,1 ; \omega), f \geqslant 0\right\}$. Our definition of the interpolation space is different from the usual one (see $[2,13]$) since we restrict the norms on the interval $(0,1)$.

If we consider ordered couple, i.e. $X_{1} \hookrightarrow X_{0}$ and $\alpha=0$,

$$
\left(X_{0}, X_{1}\right)_{\theta, p ; 0}=\left(X_{0}, X_{1}\right)_{\theta, p}
$$

is the interpolation space as it is defined by J . Peetre (see $[2,13,3]$).
$C_{0}^{2}(\bar{\Omega})=\{\varphi: \bar{\Omega} \rightarrow \mathbb{R}$, twicely differentiable and vanishing at the boundary $\}$

$$
W^{1} V=\left\{\varphi \in L_{l o c}^{1}(\Omega): \nabla \varphi \in V^{n}\right\} .
$$

2.1. A few description of $G \Gamma\left(p, m ; w_{1}, w_{2}\right)$

Definition 1 (of a Generalized Gamma space with double weights). Let w_{1}, w_{2} be two weights on $(0,1), m \in[1,+\infty], 1 \leqslant p<+\infty$. We assume the following conditions:
c1) There exists $K_{12}>0$ such that $w_{2}(2 t) \leqslant K_{12} w_{2}(t) \forall t \in(0,1 / 2)$. The space $L^{p}\left(0,1 ; w_{2}\right)$ is continuously embedded in $L^{1}(0,1)$.
c2) The function $\int_{0}^{t} w_{2}(\sigma) d \sigma$ belongs to $L^{\frac{m}{p}}\left(0,1 ; w_{1}\right)$.
A generalized Gamma space with double weights is the set

$$
G \Gamma\left(p, m ; w_{1}, w_{2}\right)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable } \int_{0}^{t} v_{*}^{p}(\sigma) w_{2}(\sigma) d \sigma \text { is in } L^{\frac{m}{p}}\left(0,1 ; w_{1}\right)\right\}
$$

A similar definition has been considered in [8]. They were interested in the embeddings between $G \Gamma$-spaces.

Properties. Let $G \Gamma\left(p, m ; w_{1}, w_{2}\right)$ be a Generalized Gamma space with double weights and let us define for $v \in G \Gamma\left(p, m ; w_{1}, w_{2}\right)$

$$
\rho(v)=\left[\int_{0}^{1} w_{1}(t)\left(\int_{0}^{t} v_{*}^{p}(\sigma) w_{2}(\sigma) d \sigma\right)^{\frac{m}{p}} d t\right]^{\frac{1}{m}}
$$

with the obvious change for $m=+\infty$.
Then,

1. ρ is a quasinorm.
2. $G \Gamma\left(p, m ; w_{1}, w_{2}\right)$ endowed with ρ is a quasi-Banach function space.
3. If $w_{2}=1$

$$
G \Gamma\left(p, m ; w_{1}, 1\right)=G \Gamma\left(p, m ; w_{1}\right)
$$

Example 1 (of weights). Let $w_{1}(t)=(1-\log t)^{\gamma}, \quad w_{2}(t)=(1-\log t)^{\beta}$ wit $(\gamma, \beta) \in \mathbb{R}^{2}$.
Then

$$
\left.w_{2} \text { satisfies condition } \mathrm{c} 1\right) \text { and } w_{1} \text { and } w_{2} \text { are in } L_{e x p}^{\max (\gamma ; \beta)}(] 0,1[)
$$

Definition 2 (of the small Lebesgue space). The small Lebesgue space associated to the parameter $p \in] 1,+\infty[$ and $\theta>0$ is the set

$$
\begin{aligned}
& L^{(p, \theta}(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \text { measurable such that } \\
& \left.\qquad\|f\|_{(p, \theta}=\int_{0}^{1}(1-\log t)^{-\frac{\theta}{p}+\theta-1}\left(\int_{0}^{t} f_{*}^{p}(\sigma) d \sigma\right)^{1 / p} \frac{d t}{t}<+\infty\right\} .
\end{aligned}
$$

Let us notice that the small Lebesgue space is a G-gamma space.
Definition 3 (of the Grand Lebesgue space). The associate space of the small Lebesgue space is denoted by $L^{p), \theta}(\Omega)$ for $1<p<+\infty, \theta>0$ and is defined as $L^{p, \theta}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}\right.$ measurable such that $\|f\|_{p), \theta}=\sup _{0<\varepsilon<p-1}\left(\varepsilon^{\theta} \int_{\Omega}|f|^{p-\varepsilon} d x\right)^{\frac{1}{p-\varepsilon}}$ is finite $\}$.

Properties of small and Grand Lebesgue spaces.

1. They are rearrangement invariant Banach function spaces. One has the following equivalent norm :

$$
\begin{gathered}
\|u\|_{L^{(p, \theta}(\Omega)}=\inf _{u=\sum_{k} u_{k}}\left\{\sum_{k} \inf _{0<\varepsilon<p^{\prime}-1} \varepsilon^{-\frac{\theta}{\left(p^{\prime}-\varepsilon\right)}}\left(\int_{\Omega}\left|u_{k}\right|^{\left(p^{\prime}-\varepsilon\right)^{\prime}} d x\right)^{\frac{1}{\left(p^{\prime}-\varepsilon\right)^{\prime}}}\right\} \\
\|u\|_{p), \theta} \approx \sup _{0 \lll|\Omega|}(1-\log t)^{-\frac{\theta}{p}}\left(\int_{t}^{|\Omega|} u_{*}(s)^{p} d s\right)^{\frac{1}{p}}
\end{gathered}
$$

2. $\bigcup_{\varepsilon>0} L^{p+\varepsilon}(\Omega) \nsubseteq \bigcup_{\beta>1} L^{p}(\log L)^{\frac{\beta \theta}{p^{\prime-1}}}(\Omega) \neq L^{(p, \theta}(\Omega) \subset L^{p}(\log L)^{\frac{\theta}{p^{\prime}-1}}$.
3. $L^{p}(\Omega) \nsubseteq \frac{L^{p}}{\log ^{\theta} L}(\Omega) \neq L^{p), \theta}(\Omega) \nsubseteq \bigcap_{\alpha>1} \frac{L^{p}}{\log ^{\alpha \theta} L}(\Omega) \nsubseteq \bigcap_{0<\varepsilon<p-1} L^{p-\varepsilon}$
4. $\int_{\Omega} u \cdot v d x \leqslant\|u\|_{L^{\left(p^{\prime}, \theta\right.}}\|v\|_{L^{p, \theta}, \theta}, \frac{1}{p}+\frac{1}{p^{\prime}}=1$.

$$
V M O(\Omega)=\left\{f \in L^{1}(\Omega): \lim _{R \rightarrow 0} \sup _{r<R, x_{0} \in \Omega} \frac{1}{r^{n}} \int_{B\left(x_{0}, r\right) \cap \Omega}\left|f-f_{r}\right| d x=0\right\}
$$

here $f_{r}=\frac{1}{\left|B\left(x_{0} ; r\right) \cap \Omega\right|} \int_{B\left(x_{0} ; r\right) \cap \Omega} f(x) d x$.

§3. Proof of Theorem 3

The proof of Theorem 3 follows the same scheme as in [6] by considering the following dual problem
Lemma 4. For any $g \in L_{+}^{n), \theta}(\Omega), V \in L^{n), \theta}(\Omega)$ and $\theta>0$ the unique solution $\varphi \in H_{0}^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$ of

$$
\begin{equation*}
-\Delta \varphi+U \cdot \nabla \varphi+V \varphi=g \text { in } H^{-1}(\Omega) \tag{3.1}
\end{equation*}
$$

satisfies $\varphi \in W^{2} L^{n), \theta}(\Omega)$ and there exists a constant $c_{n}>0$ independent of θ such that

$$
\|\varphi\|_{W^{2} L^{n, \theta}(\Omega)} \leqslant c_{n}\|g\|_{L^{n, \theta},(\Omega)} .
$$

Here, we assume the same integrability for U as in Theorem 3.
Proof. The existence, uniqueness of φ is given in [4]. Indeed, we have for $n \geqslant 2$,

$$
L^{n), \theta}(\Omega) \subset L^{n-\varepsilon}(\Omega), \quad \forall 0<\varepsilon<\frac{1}{2} .
$$

Thus $g \in L^{\frac{n}{2}, 1}(\Omega) \subset H^{-1}(\Omega)$.
To obtain the $W^{2} L^{n), \theta}$ regularity, we may assume first V and g bounded. Then following Proposition 11 of [4], we have $\varphi \in W^{2} L^{p}(\Omega), p>n$.

Let us show that, we have $\varepsilon_{0}>0$ and a constant $c_{0}>0$ depending only on the data U, V, Ω such that $\forall \varepsilon \in\left[0, \varepsilon_{0}\right]$

$$
\begin{equation*}
\|\varphi\|_{W^{2} L^{n-\varepsilon}} \leqslant c_{0}\|g\|_{L^{n-\varepsilon}} . \tag{3.2}
\end{equation*}
$$

Let $0<\varepsilon<\frac{1}{2}$. Then from the equation satisfied by φ, one has :

$$
\begin{equation*}
\|\Delta \varphi\|_{L^{n-\varepsilon}} \leqslant\|U \cdot \nabla \varphi\|_{L^{n-\varepsilon}}+\|V \varphi\|_{L^{n-\varepsilon}}+\|g\|_{L^{n-\varepsilon}} . \tag{3.3}
\end{equation*}
$$

Since $\varphi \in L^{\infty}(\Omega)$ and

$$
\begin{equation*}
\|\varphi\|_{L^{\infty}} \leqslant c_{n}\|g\|_{L^{\frac{n}{2}}, 1} \leqslant c_{n}\|g\|_{L^{n,)},} . \tag{3.4}
\end{equation*}
$$

So that

$$
\begin{equation*}
\|V \varphi\|_{L^{n-\varepsilon}} \leqslant c\|V\|_{L^{n-\varepsilon}}\|\varphi\|_{L^{\infty}} \leqslant c\|V\|_{L^{n-\varepsilon}}\|g\|_{L^{n,)},} . \tag{3.5}
\end{equation*}
$$

By Hölder inequality, for $p>n$,

$$
\begin{equation*}
\|U \cdot \nabla \varphi\|_{L^{n-\varepsilon}} \leqslant\|U\|_{L^{p}}\|\nabla \varphi\|_{L^{\frac{p(n-\varepsilon}{p-n+\varepsilon}}} \leqslant c\|U\|_{L^{p}}\|\nabla \varphi\|_{L^{p(n)}} \text { where } p(n)=\frac{p n}{p-n} . \tag{3.6}
\end{equation*}
$$

We shall choose $\varepsilon_{0}>0:\left(n-\varepsilon_{0}\right)^{*}>p(n)$ i.e $0<\varepsilon<\min \left(\frac{1}{2} ; \frac{n(p-n)}{2 p-n}\right)$. In that case, we have the compact embedding $W^{2} L^{n-\varepsilon_{0}}(\Omega) \hookrightarrow W^{1} L^{p(n)}(\Omega)$. Therefore $\forall \eta>0$, there exists $c_{\eta}>0$ such that

$$
\begin{equation*}
\|\nabla \varphi\|_{L^{p(n)}} \leqslant \eta\|\varphi\|_{W^{2} L^{n-\varepsilon_{0}}}+c_{\eta}\|\varphi\|_{L^{2}} . \tag{3.7}
\end{equation*}
$$

From Agmon-Douglis-Niremberg's theorem and Marcienkiewicz interpolation's theorem, one has a constant $c_{n}>0$ such that

$$
\begin{equation*}
\|\varphi\|_{W^{2} L^{n-\varepsilon}} \leqslant c_{n}\|\Delta \varphi\|_{L^{n-\varepsilon}} \quad \forall \varphi \in W^{2} L^{n-\varepsilon}(\Omega) \cap H_{0}^{1}(\Omega) \text { and } \forall \varepsilon \in\left[0, \varepsilon_{0}\right] . \tag{3.8}
\end{equation*}
$$

Combining relations (3.3) to (3.8), we deduce for all $\eta>0$, one has a constant $c_{\eta}>0$, for all $\varepsilon \in\left[0, \varepsilon_{0}\right]$

$$
\begin{equation*}
\|\varphi\|_{W^{2} L^{n-\varepsilon}} \leqslant \eta\|U\|_{L^{p}}\|\varphi\|_{W^{2} L^{n-\varepsilon}}+c_{\eta}\|U\|_{L^{p}}\|\varphi\|_{L^{\infty}}+c^{\prime}\|V\|_{L^{n-\varepsilon}}\|g\|_{L^{n, \theta}}+\|g\|_{L^{n-\varepsilon}} . \tag{3.9}
\end{equation*}
$$

Since we have

$$
\|g\|_{L^{n, \theta}} \simeq \sup _{0<\varepsilon<\frac{n-1}{2}}\left(\varepsilon^{\theta} \int_{\Omega}|g|^{n-\varepsilon}(x) d x\right)^{\frac{1}{n-\varepsilon}}
$$

we deduce from relation (3.9) :

$$
\|\varphi\|_{W^{2} L^{n, \theta}}\left(1-\eta\|U\|_{L^{p}}\right) \leqslant c_{\eta}\|U\|_{L^{p}}\|g\|_{L^{n}, \theta}+c\left(1+\|V\|_{L^{n, \theta},}\right)\|g\|_{L^{n}, \theta} .
$$

Choosing $\eta\|U\|_{L^{p}} \leqslant \frac{1}{2}$, we then have a constant c depending only on U and Ω.

$$
\begin{equation*}
\|\varphi\|_{W^{2} L^{n, \theta},} \leqslant c\left(1+\|V\|_{L^{n, \theta} \theta}\|g\|_{L^{n, \theta},} .\right. \tag{3.10}
\end{equation*}
$$

We conclude by usual density argument, say
replacing g by $g_{k}(x)=\min (k ;|g(x)|) \operatorname{sign}(g(x)), V_{k}=\min (V ; k)$.
the solution of φ_{k} of $\left\{\begin{array}{l}-\Delta \varphi_{k}+U \cdot \nabla \varphi_{k}+V_{k} \varphi=g_{k} \\ \varphi_{k} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\end{array} \quad\right.$ satisfies (3.10).
Let $k \rightarrow \infty$, the uniqueness of solution (1.3) gives the result.

§4. Regularity for data in $L(\log L)^{\alpha}$ for a full linear operator

In [6], we have shown the following
Theorem 5. Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geqslant 3$ of class $C^{1,1}, A(x)=\left(a_{i j}(x)\right)_{i, j}, x \in \Omega$ a bounded coercitive matrix. Assume that $a_{i j} \in \operatorname{VMO}(\Omega)$ and let f be in $L(\log L)^{\alpha}, \alpha>$ $\frac{n-1}{n}$. Then, the weak solution of

$$
\left\{\begin{array}{l}
\operatorname{div}(A(x) \nabla u)=f \text { in } \Omega \\
u \in W_{0}^{1} L^{n^{\prime}}(\Omega)
\end{array}\right.
$$

satisfies

$$
\begin{equation*}
\|\nabla u\|_{L^{\left(n^{\prime}, n \alpha-n+1\right.}} \leqslant c(n ; \alpha)\|f\|_{L(\log L)^{\alpha}} . \tag{4.1}
\end{equation*}
$$

We want to extend the above result replacing the main operator by

$$
\mathcal{L} u \doteq-\operatorname{div}(A(x) \nabla u)+B(x) \cdot \nabla u-\operatorname{div}(C(x) u)+V(x) u .
$$

For this, we will assume that
H1. $C(x)=\left(c_{i}(x)\right)_{i \in\{1, \ldots, n\}}, B(x)=\left(b_{i}(x)\right)$ are such that c_{i}, b_{i} are in $L^{n}(\Omega)$ for all i and $V \in L^{\frac{n}{2}}(\Omega), A$ is symmetric.
H2. There exists a constant $c_{0}>0: V-\operatorname{div}(C) \geqslant c_{0}>0$ in $\mathcal{D}^{\prime}(\Omega)$
We recall the following results (see [9]).
Lemma 6. Under the above assumptions on A, B, C and $V, F \in L^{p}(\Omega)^{n}, 1<p<n$. There exists an unique solution $u \in W_{0}^{1, p}(\Omega)$ of

$$
\mathcal{L} u=-\operatorname{div}(F) \text { in } \mathcal{D}^{\prime}(\Omega) .
$$

Moreover, there exists a constant $k(p)>0$ (independent of f and u) such that

$$
\begin{equation*}
\|\nabla u\|_{L^{n p}(\Omega)} \leqslant k(p)\|F\|_{L^{p}(\Omega)^{n}} . \tag{4.2}
\end{equation*}
$$

Lemma 7 (see [7]). Let $1<p<n, f \in L^{p}(\Omega)$ and v the unique solution of $-\Delta v=f$ in $\mathcal{D}^{\prime}(\Omega), v \in W_{0}^{1, p}(\Omega)$. Then there exist a constant c_{n} independent of p, f and v such that

$$
\begin{equation*}
\|\nabla v\|_{L^{\frac{n p}{n-p}(\Omega)}} \leqslant \frac{c_{n}}{(p-1)^{\frac{n-1}{n}}}\|f\|_{L^{p}(\Omega)} . \tag{4.3}
\end{equation*}
$$

Lemma 8. Let $f \in L^{p}(\Omega), 1<p<\frac{n(n-1)}{n^{2}-n-1}, p^{*}=\frac{p n}{n-p}$.
Then, there exist a constant c_{n}^{\prime} independent of p, f such that the unique solution $u \in W_{0}^{1, p}(\Omega)$ of $\mathcal{L} u=f$ in $\mathcal{D}^{\prime}(\Omega)$ satisfies

$$
\begin{equation*}
\|\nabla u\|_{L^{p^{*}}} \leqslant \frac{c_{n}^{\prime}}{(p-1)^{\frac{n-1}{n}}}\|f\|_{L^{p}(\Omega)} \tag{4.4}
\end{equation*}
$$

Proof. Let $r \in\left[\frac{n}{n-1}=n^{\prime}, \frac{n-1}{n-2}=(n-1)^{\prime}\right]$ and $v \in W_{0}^{1, r}(\Omega):-\Delta v \in L^{m}(\Omega)$ with $\frac{1}{m}=$ $\frac{1}{r}+\frac{1}{n}$. From Lemma 6 for any solution $u \in W_{0}^{1, n^{\prime}}(\Omega)$ of $\mathcal{L} u=-\Delta v$, one has

$$
\begin{equation*}
\|\nabla u\|_{L^{n^{\prime}}(\Omega)} \leqslant k\left(n^{\prime}\right)\|\nabla v\|_{L^{n^{\prime}}(\Omega)} . \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla u\|_{L^{(n-1)^{\prime}}(\Omega)} \leqslant k\left((n-1)^{\prime}\right)\|\nabla v\|_{L^{(n-1)^{\prime}}(\Omega)} . \tag{4.6}
\end{equation*}
$$

Applying the Marcinkiewicz real interpolation method, we deduce that we have

$$
\begin{equation*}
\|\nabla u\|_{L^{\prime}(\Omega)} \leqslant \operatorname{Max}\left(k\left(n^{\prime}\right) ; k(n-1)^{\prime}\right)\|\nabla v\|_{L^{r}(\Omega)} . \tag{4.7}
\end{equation*}
$$

Taking $1<p<\frac{n(n-1)}{n^{2}-n-1}$, we have $n^{\prime}<p^{*}<(n-1)^{\prime}$ and choosing v such that $-\Delta v=f \in$ $L^{p}(\Omega), v \in W^{1, p}(\Omega)$ then applying Lemma 7, relation (4.7) leads to :

$$
\|\nabla u\|_{L^{p^{*}}(\Omega)} \leqslant \frac{c_{n}}{(p-1)^{\frac{n-1}{n}}}\|f\|_{L^{p}(\Omega)} .
$$

Theorem 9. Let $f \in L(\log L)^{\alpha}, \alpha>\frac{n-1}{n}$, u satisfying $\mathcal{L} u=f$ in $\mathcal{D}^{\prime}(\Omega), u \in W_{0}^{1} L^{n^{\prime}, \infty}(\Omega)$. Then

1. $|\nabla u| \in L^{\left(n^{\prime}, n \alpha-n+1\right.}(\Omega)$.
2. $\|\nabla u\|_{L^{\left(n^{\prime}, n \alpha-n+1\right.}(\Omega)} \leqslant c(n ; \alpha)\|f\|_{L(\log L)^{\alpha}}$.

Proof. Its follows the same arguments as in [6] using relation (4.4) and a suitable decomposition of f, whenever $f \geqslant 0$. We drop the details.

We may weaken hypothesis H 2 . on V and $C(x)$ by assuming
H3. $V-\operatorname{div}(C) \geqslant 0$ in $\mathcal{D}^{\prime}(\Omega)$.
But we shall add an assumption as
H4. $V-\frac{1}{2} \operatorname{div}(C+B) \geqslant 0$ in $\mathcal{D}^{\prime}(\Omega)$.
Hypothesis H4. ensures that for all $T \in H^{-1}(\Omega)$ the problem $\mathcal{L} u=T$ in $\mathcal{D}^{\prime}(\Omega)$ (resp. $\mathcal{L}^{*} u=T$) possesses an unique solution $u \in H_{0}^{1}(\Omega), \mathcal{L}^{*}$ is the adjoint operator of \mathcal{L}. As a by product of such result and Lemma 6 one has :
Lemma 10. Let $r \in\left[\frac{2 n}{n+2}, \frac{2 n}{n-2}\right], n \geqslant 3, F \in L^{r}(\Omega)^{n}$. Then, there exists an unique $u \in W_{0}^{1, r}(\Omega)$ of $\mathcal{L} u=-\operatorname{div}(F)$ in $\mathcal{D}^{\prime}(\Omega)$. Moreover,

$$
\begin{equation*}
\exists c(r)>0:\|\nabla u\|_{L^{r}} \leqslant c(r)\|F\|_{L^{r}} . \tag{4.8}
\end{equation*}
$$

Proof. Let $F \in L^{r}(\Omega)^{n}, r \in\left[2, \frac{2 n}{n-2}\right]$. Since $F \in L^{2}(\Omega)^{n}$, we may use hypothesis H4. to deduce that the problem $\mathcal{L} u=-\operatorname{div}(F)$ has an unique solution $u \in H_{0}^{1}(\Omega)$. Let $F_{0} \in L^{2^{*}}(\Omega)^{n}$ such $-\operatorname{div}\left(F_{0}\right)=u$ and

$$
\begin{equation*}
\left\|F_{0}\right\|_{L^{2^{2}}} \leqslant c\|u\|_{L^{2}} \leqslant c\|F\|_{L^{2}} \leqslant c\|F\|_{L^{r}} . \tag{4.9}
\end{equation*}
$$

We may write the equation $\mathcal{L} u=-\operatorname{div}(F)$ as

$$
-\operatorname{div}(A(x) \nabla u)+B(x) \nabla u-\operatorname{div}(C(x) u)+(V+1) u=-\operatorname{div}\left(F_{0}+F\right), \quad F_{0}+F \in L^{r}(\Omega)^{n}
$$

One has $V+1-\operatorname{div}(C) \geqslant 1>0$.
Applying Lemma 6, we deduce that $u \in W_{0}^{1, r}(\Omega)$ and

$$
\begin{equation*}
\|\nabla u\|_{L^{r}} \leqslant c(r)\left\|F_{0}+F\right\|_{L^{r}} \leqslant c(r)\|F\|_{L^{r}} \tag{4.10}
\end{equation*}
$$

For $r \in\left[\frac{2 n}{n+2}, 2\right]$, we argue by duality to conclude that one has an unique function $u \in$ $W_{0}^{1, r}(\Omega)$ such that $\mathcal{L} u=-\operatorname{div}(F)$ in $\mathcal{D}^{\prime}(\Omega)$

$$
\begin{equation*}
\|\nabla u\|_{L^{r}} \leqslant c(r)\|F\|_{L^{r}} \tag{4.11}
\end{equation*}
$$

Thank to the above Lemma, we have:
Lemma 11. Let $r \in\left[n^{\prime},(n-1)^{\prime}\right]$ then there exists a constant $k(n)>0$

$$
\|\nabla u\|_{L^{r}} \leqslant k(n)\|F\|_{L^{r}}
$$

whenever u satisfies: $\mathcal{L} u=-\operatorname{div}(F)$ in $\mathcal{D}^{\prime}(\Omega)$.
We conclude as before to derive the following:
Lemma 12. Let $f \in L^{p}(\Omega), 1<p<\frac{n(n-1)}{n^{2}-n-1}, p^{*}=\frac{p n}{n-p}=-p(n)$. Then the unique solution u of $\mathcal{L} u=f, u \in W_{0}^{1, p}(\Omega)$ satisfies

$$
\|\nabla u\|_{L^{p^{*}}} \leqslant \frac{c_{n}}{(p-1)^{\frac{n-1}{n}}}\|f\|_{L^{p}(\Omega)}
$$

Theorem 13. Assume H1. H3. and H4. Then for $f \in L(\log L)^{\alpha}, \alpha>\frac{n-1}{n}, n \geqslant 3$. There exists an unique solution $u \in L^{\left(n^{\prime}, n \alpha-n+1\right.}(\Omega)$ satisfying $\mathcal{L} u=f$ in $\mathcal{D}^{\prime}(\Omega)$. Moreover, there exists a constant $c(n ; \alpha)>0$ such that:

$$
\|\nabla u\|_{L^{\left(n^{\prime}, n \alpha-n+1\right.}(\Omega)} \leqslant c(n ; \alpha)\|f\|_{L(\log L)^{\alpha}} .
$$

Proof. The proof follows the same argument as in [6].
Recent developments concerning equation (2.1) but with singular potential as Colomb's potential is given in [12].

References

[1] Adams, R. Sobolev spaces. Academic Press, 1975.
[2] Bennett, C., and Sharpley, R. Interpolation of Operators. Academic Press, 1988.
[3] Bergh, J., and Lofstrom, J. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New-York, 1976.
[4] Díaz, J. I., Gómez-Castro, D., Rakotoson, J. M., and Temam, R. Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach. D.C.D.S. 38, 2 (2018), 509-546.
[5] Fiorenza, A., Formica, M. R., Gogatishvili, A., and Rakotoson, J. M. Some new results related to $G \Gamma$-spaces and interpolation. submitted for a publication.
[6] Fiorenza, A., Formica, M. R., and Rakotoson, J. M. Pointwise estimates for $G \Gamma$ functions and applications. Differential and Integral equations 30, 11-12 (2017), 809824.
[7] Fiorenza, A., and Krbec., M. On an optimal decomposition in Zygmund spaces. Georg. Math. J. 9, 2 (2002), 271-286.
[8] Gogatishvili, A., Krepela, M., Pick, L., and Soudsky, F. Embeddings of Lorentz-type spaces involving weighted integral means. J. Funct. Anal 273, 9 (2017), 2939-2980.
[9] Ragusa, A. Elliptic boundary value problem in vanishing mean oscillations hypothesis. Comment. Math. Univ Carolina 40, 4 (1999), 651-663.
[10] Rakotoson, J. M. New hardy inequalities and behaviour of linear elliptic equations. Journal of Functional Analysis 263 (2012), 2893-2920.
[11] Rakotoson, J. M. A sufficient condition for a bow-up in the space of absolutely continuous functions for very weak solution. Applied Math. Optim. 73, 1 (2016), 153-163.
[12] Rakotoson, J. M. Potential-capacity and some applications. Asymptotic Analysis 1-28. DOI:10.3233/ASY-191523, see also arxiv 182.04061V1. (2019).
[13] Tartar, L. An introduction to Sobolev spaces and Interpolation spaces. Springer-Verlag Berlin, 2007.

J. M. Rakotoson

Laboratoire de Mathématiques et Applications - Université de Poitiers, Avenue Marie et Pierre Curie,Téléport 2,
BP 30179, 86692 Futuroscope Chasseneuil Cedex, France
rako@math.univ-poitiers.fr, jean.michel.rakotoson@univ-poitiers.fr

