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Abstract

In this paper we deal with time-harmonic Maxwell’s equations in Lipschitz and
multiply connected bounded regions of IR®. We prove the wellposedness of the
current source problem by means of an appropriate compact operator.
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1 Preliminaries.

The harmonic magnetic field H in a cavity Q of IR® is described by curl-curl system

curl (¢ ‘curlu) — w?pu = curl(e '),

1
div (pu) = 0. W

where 7 is the imposed source of electric current density. The parameters € and pu refer to
the premittivity and the permeability of the medium. For a perfect conducting boundary

092, the magnetic field satisfies the boundary condition

Note that the electric field is given by E = (iwe) !(curlu — 7). When the domain is
smooth, the analysis of the time harmonic Maxwell’s equations has been carried through

successfully by means of the Maxwell operator (see, e. g., [7], [3]). However, when the
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domain is non-smooth, namely if {2 contains inward edges and corners, the treatment
of time-harmonic Maxwell’s equations involves some serious complications. This is due
mainly to the appearance of singularities near these corners and edges (see [2]).
The purpose of this paper is to treat the current source problem (1)+(2) in a non-smooth
and multiply connected domains of IR*. The approach we use for solving (1) is based on
a formulation of this problem in terms of an adequate compact vector potential operator.
Let © be a bounded open set of IR® and denote by 05 its boundary. We assume that
Q) is Lipschitz-continuous and that its boundary 0f is the union of p + 1 connected com-
ponents I'y,...,I', where I'y is the boundary of the only unbounded connected component
of IR*/Q). Note that p = 0 when 02 is connected. We assume also that € is connected
but not necessarily simply-connected. If € is multiply-connected, we suppose that there

exists m smooth surfaces X1, ..., ¥, (“cuts”) such that

1. For any ¢ € {1,...,m}, ¥; is an open part of a smooth manifold M.
2. For any i € {1,...,m}, the boundary of ¥; is contained in 0f.

3. The intersection 3; N'Y; is empty if i # j.

4. The open set (OZ =Q/ U ¥, is simply connected and pseudo-Lipschitz!.
i=1
By convention, we set m = 0 when (2 is simply-connected. In the sequel we denote by
(.,.) the scalar product in L?(Q). For any i < m, H'/?(%;) is the space of restrictions to
5; of the distributions belonging to H2(M;) and HY2(3;)" is its dual space.

Now, consider the spaces

H(div; Q) = {ve L*(Q)?|divve L*(Q)},
H(curl; Q) = {ve L?(Q)® | curlve L*(Q)3},

equipped with the usual norms ||v|| div; o) and || v|| H( We recall the following

curl; )
properties of these spaces

1. Let v € H(div; Q). Then, v has a normal component v.n in H~'/2(9Q) and the

following Green’s formula holds
Vo € HY(Q), (v,Vy) = —(divv,¢) + (v.n,9)on. (3)

Moreover, for any i € {1,...,m}, v has also a normal component v.n in H/2(%;)’
and (see [1], Lemma 3.10):

m

Vo e Hl(goz)’ ﬂv.VQdm+ﬁ(div v) Odx = Z(v.n, [0]:) s, (4)

Q Q i=1

where []; denotes the jump of 6 through ¥;.

see [1] for the definition.
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2. Similarly, if v € H(curl; ), then v has a tangential component v x n in H~/2(9Q)3

and the following Green’s formula holds
Ywe H'Y(Q)?, (curlv, w) = (v, curl w) + (v x n, w)yq. (5)
Observe that this formula remains valid if w € H(curl; Q) and v € Hy(curl; ).
Consider also the following subspaces of H (div; 2) and H (curl; 2):

Hy(div; Q) = {ve H(div; Q) | v.n=0on I},
Ho(curl; Q) = {ve H(cur; Q)| vxn=0onT}.

We introduce now the spaces

Yr(Q) = Hy(div; Q) N H(curl; Q),
Yn(Q) = H(div; Q) N Hy(curl; ),

equipped with the norm [[v]ly = (|olJ3 o + [[div olf3 + leurl v]3 )2, and we set

Gr = {veYr(Q)|divv=0, curlv= 0},
Gy = {veYy(Q)|divv=0, curlv=0}.

Lemma 1 ([4], [1]). The spaces Gr and Gy are finite dimensional and dim Gp =
m, dim Gy = p. Moreover, there exists a basis (q;)i=1...m (resp. (f;)i=1...p) of Gr (resp.
of Gn) such that:

\V/’i, ] € {1, ,m} <qi.n, 1>2j = (51'7]‘, \V/Z, j € {1, ,p} (f;n, ]‘>Fj = (51'7]‘. (6)

We shall denote by Pr (resp. Py) the orthogonal projection from Y (€2) (resp. from
Yn(€2)) on Gr (resp. on Gy) with respect to inner product associated with the norm

|.]ly- It is worth noting that

m

Pyv = Z@-’”e Dy, q;

=1

for any v € L*(Q2)? such that divv =0 (see [4], [1]).

Lemma 2 ([4], [1]). The mapping

v — [vlyp) = (ldivollfq + [eurlof§ o + ) [(v.n, s, )12,
1=1

is a norm on the space Yp(Q) equivalent to the norm ||.||y. Similarly, the mapping

p

v — [y, o) = ([div oll§ o + eurl vl§ o + > [(v.n, 1)r,|*)2, is a norm on the space
i=1

Yn(Q2) equivalent to the norm ||.|ly.

In the sequel, we set
v
o e (7)
vEYT(Q), v£0 ||’U||07Q

Then, according to Lemma 2, we have ag > 0.
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1.1 Statement of the problem. The main result.

Let us consider the system: given j € L*(Q)3, we look for u € Y, (Q)

curlcurlu — k*u = curlj, (8)
divu = 0, 9)
curlu x njgg = jxmn, (10)

where k is the wave number given by k = /e w with € and p supposed non-negative and
constants. Observe that the boundary condition (10) is meaningfull if j € H(curl, Q)
(thus curl u € H(curl,)). If j belongs only to L?*(€2)3, we interpret the problem (8)-(10)
in a weaker form; a vector field w in Y7(Q) is called a generalized or a weak solution of
(8)-(10) if it satisfies

(curl u, curl v) +7(div w, div v) + 6 (Pru, Prv) —k*(u, v) = (j, curlv), Vv € Y7 (Q), (11)

where v and ¢ are two nonnegative real constants. The following proposition state the

relationship between the weak problem (11) and the continuous problem (8):

Proposition 1. Let j € L*(Q)3 and suppose that k > 0 and that v and & are such that:

v>0,6>0 and
k2 k?
5 g EV(A™), 5 #1, (12)

where EV (A™") is the set of eigenvalues of the Laplace operator with an homogenous
Neumann condition. Then, any solution of (11) satisfies (8) and (9) in the sense of
distributions. Moreover, if j belongs to H(curl;$?), then the problems (11) and (8)-(10)

are equivalent.

When the wave number £ is smaller than the parameter aq defined by (7), the existence
and the uniqueness of solutions of (11) stem immediately from Lax-Milgram theorem.

Here, we treat the problem (11) when k is not necessarily small. We state the following

Theorem 1. Assume that j € L*(2)3 and that (12) is fullfilled. Then, there exists a

countable sequence of real values {«a;,i € IN}, tending to +oo such that
1. If k & {c;,1 € N} then (11) admits one and only one solution u € Yr(9).

2. If k = oy, for some m € IN, then the homogeneous problem (when j = 0) admits a
finite dimensional space E,, of solutions, and (11) is solvable in Yr(82) iff

(g,curlyp) =0, Vo € E,,. (13)

If this condition is fulfilled, the solution of (11) is unique up to elements of E,,.
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We state also the following regularity results when the domain has a smooth boundary
and when it is a parallelepiped (as involved by pseudo-spectral and spectral methods).
Note that the general case of a polygonal domain contains some technical complications,
due to the appearance of the singularities, and which are beyond the scope of this paper
(see, e. g., [2]) (observe that the inclusion Y7(Q2) C H'(Q2)® does not hold in general).

Corollary 1. Assume that ) is of class C"™' with m > 2 and let j € L*(Q)3 such that
curlj € H™2(Q)3, jx ne H™3/2(0Q)3.
Then, the solution w of (11) belongs to H™(£2)3.

Corollary 2. Assume that Q is a rectangular parallelepiped of IR*. Suppose that j €
H(curl; Q) and satifies jx n=0 on 9. Then, the solution of the problem (11) belongs
to H*(Q)3.

Proof of Theorem 1.

The proof of Theorem 1 is composed of four steps. In step 1 we introduce and study a
new operator. Step 2 deals with its adjoint operator. In the third step we rewrite the

problem in a Fredholm form. The Fredholm’s alternative is finally applied in step 4.
STEP 1. AN OPERATOR.

Consider the closed subspace of H(div ;)
X ={ve L*(Q)?*] divv=0and (v.n,1)r, =0, 1<i<p} (14)
For any vector function w in X consider the problem: Find z € Y () such that
curlz=w, divz=0, Vie{l,...m} (zn,1)s, =0. (15)

Lemma 3 ([1]). The problem (15) has a unique solution z € Yr(S2) and there exists a
constant C', depending only on €2 such that

12llvz ) < C(Q)][wlo.o- (16)

In the sequel, we shall denote by K the linear and continuous operator from X into
X defined by
K: we X — ze X solution of (15),

Lemma 4. IC is a compact operator.

Proof of Lemma 4 — For proving the compactness of IC, the following lemma turns

to be useful. The reader can consult [5] (Theorem 3.1) for the proof.
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Lemma 5. A function w in L*(Q)? belongs to X if and only if there exists a vector func-
tion @ in H*(Q)? satisfying w = curly. Moreover, there exists a constant C depending
only on ) such that for any ¢ € X, the corresponding vector function v can be chosen
such that

sl @3 < Cllwlog.

Now, let w,, be a sequence in X such that ||w,||oq < C1, where C} is a constant not
depending on n. Then, by virtue of Lemma 5, there exists a sequence ¢,, in H'(Q)? such
that: Vn, curley, = w,, ||@,ll1.0 < C. Thus, there exists a subsequence still denoted by
®,, which converges strongly in L?(2)3.

Now, for any n, let s, be the unique solution in H'()/IR of the Neumann problem
YU e HY(Q)/IR, / Vs, VU = / 0, Vldz
Q Q

and set ¢! = @, — Prg,,, where ¢, = ¢, — Vs,,. The sequence ¢, belongs to Y, (€2).
Moreover, it is quite obvious that (s,), converges in H*(Q2)3/IR. Thus, ¢, converges in

L?(92)3 to an element @ of Y7(Q2). Moreover, Pre, converges also to Prg since

1Pré,lloe < l@alloo-
We conclude by observing that ¢, = Kw,. ©
STEP 2. THE ADJOINT OPERATOR.
We need the following lemma
Lemma 6 ([1], [4]). A field v in H(div ;) satisfies
dive=0, v.n=0 on 0, (vnl)y, =0,i=1..m,
if and only if there exists a unique vector potential ® € Yy (£2) such that
curl® =v, div® =0, (P.n,1)r, =0,i=1,...,p. (17)

In particular, this lemma implies that any vector field w in L*(Q2)* admits a unique
decomposition into the form

w= %q + curl @, (18)

where @ belongs to Yy (Q2) and verifies div® = 0, (®.n, 1)r, =0, 0 <i < p, while ¢ be-
longs to the space © = {s € Hl((O)) | [s]s, = constant, 1 <i < m}, and is the unique so-

lution in ©/IR of the quasi-Neumann problem

Vp € O, ﬂVs.Vpdm:/w.%pdm,
Q Q
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where %p denotes the extension in L?*(2)3 of the gradient Vp considered in the sense of

distributions in D’(Q)). Moreover, the decomposition (18) is unique in (©/IR) x Yn(€2).
The operator IC* is defined as follows

K we Q)P — ®c X,
where @ is the unique fonction in the decomposition (18). K* is a continuous operator
from L?(Q) into X. The following lemma gives the relationship between K and K*:
Lemma 7. The restriction of IC* to X is the adjoint operator of K.

STEP 3. A NEW FORMULATION OF THE PROBLEM

Let us now rewrite the problem (11) in terms of the operator IC.
Proposition 2. Let j € L*(Q)? and let 0 € H}(Y) be solution of the Dirichlet problem
A =divije H'(Q),0=0onT.
We set j, =j— V60 € H(div;Q), j5 =3, — Pnj,.- Then, u is solution of (11) iff @ = u—
IC5* belongs to X and is solution of the problem
0 — KKK = FPKK KCH (19)
Proof of Proposition 2— Firstly, observe that if we set £ = j— 7 = V60 + Prj,, then
£ € H(curl;Q) and curl£ =0, £ x n= 0 on 0.
1. Let w solution of (11). Then, it stems from Proposition 1 that u satisfies (8) and
(9) and Pru = 0. We set 1 = u — Kj*. It follows immediately that @ belongs to
X NYr(Q) and
curl curld — k%t = K*KC5°, Prii = 0. (20)
Thus, curld belongs to H(curl; ). Furthermore, (11) yields
(curld, curl v) — k*(1, v) = k*(IC5*, v) + (£, curl v), Vv € Y7(Q).
Choosing v € H'(Q)? gives (curlii X n, v)gq = 0. Thus curlii x m = 0 on 9. It
follows that curld = IC*(k*@t + k*IC5). Moreover, it = K*ICKC* (0 + K5).
2. Conversly, let @t be solution of (19). Then,
curld = K curl (IKIC* (@ + IC5)) = K*IC* (4 + KCF).
Thus,
(curld, curlv) = E*(IKC* (0 + K7°), curl v) = k*(curl (K*(i + K7)), v)
— R0+ KT 1) = K, v),
since curl (IKC*(a+KC5")) = a+Kj5". Hence, u = a+IK5" € Y (Q) satisfies divu = 0,
Pru = 0, and (curl u, curl v) — k*(u, v) = (5, curlv) = (j,curlv). Thus, u is

solution of (11) which is the desired result. ¢
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STEP 4. FREDHOLM ALTERNATIVE.

Consider the operator T' = ICK*. Then, T is obviously self-adjoint and is compact by
virtue of Lemma 4. Let s > s3 > ... > s2 > ... be the real countable sequence of its
eigenvalues. The numbers 1, g, ..., Sy, ... are indeed the s-values (or singular values) of the
operator K (namely, the cigenvalues of (]CKC*)2). These numbers are in general different
from the eigenvalues of IC since it is not a normal operator. The reader can consult [6]
for more details about that question.

Now, applying the Fredholm alternative to the inhomogeneous problem (19) yields
1
o If % & {s1, S2, ...}, then the (19) admits one and only one solution.

1
o If L= Sm for some m € {1,2,..}, then (19) is solvable iff the right hand side verifies

(KK'K5",¢) =0, (21)

for any ¢ satisfying ICIC*p = siep. If this solvability condition is fulfilled, then (19)
has a unique solution up to eigenfunctions of T' corresponding to the eigenvalue s2,.

Let us rewrite this solvability condition (21) differently. We have
0 = (KK'Kj", @) = (77, KKK @) = 5,(5". ) = 57, (1 — £, K"p)
— (- t,curlp) = s (j,curl ).
since s%,curlyp = curl (IKK*p) = K*¢ and curl€ = 0. This ends the proof of

Theorem 1. ¢
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