Anti-maximum principle for cooperative system involving Schrödinger operator in \mathbb{R}^N

Bénédicte Alziary and Naziha Besbas

CEREMATH, Université des Sciences Sociales.
21 Allées de Brienne, F-31042 Toulouse Cedex, France
email: naziha@math1.univ-tlse1.fr

Abstract

We obtain a result concerning the anti-maximum principle for weak solutions $U = (u, v) \in \mathbb{R}^N$ of the following cooperative elliptic system:

\[
\begin{aligned}
\mathcal{A}u(x) &:= (-\Delta + q(|x|))u(x) = \lambda u(x) + bv(x) + f(x) \\
\mathcal{A}v(x) &:= (-\Delta + q(|x|))v(x) = cu(x) + \lambda v(x) + g(x)
\end{aligned}
\]

$u(x) \to 0$, $v(x) \to 0$, as $|x| \to +\infty$.

Here $\mathcal{A} = -\Delta + q(x)$ in $L^2(\mathbb{R}^2)$ is the Schrödinger operator. We assume that the potential $q(x) \equiv q(|x|)$, is strictly positive, locally bounded, and has superquadratic growth as $|x| \to \infty$; b, c are strictly positive constants. We show that there exists a simple eigenvalue Λ_1 of (S) with positive eigenfunction Φ_1. Then we prove an anti-maximum principle in the following form: Let $f, g \in L^2(\mathbb{R}^2)$ be positive functions which are “sufficiently smooth” perturbations of a radially symmetric function, then there exists $\delta = \delta(f, g, b, c) > 0$ such that for $\lambda \in (\Lambda_1, \Lambda_1 + \delta)$ the weak solution U satisfies $U = (u, v) \leq -C\Phi_1$ where $C = C(f, g, \lambda)$ is a positive constant.

Keywords: Schrödinger operator, maximum principle, anti-maximum principle.

AMS Classification: 35-P.D.E-

1 Schrödinger equation in \mathbb{R}^N

We first recall recent results obtained for the scalar case in [1, 2].

We recall the Schrödinger equation in \mathbb{R}^N:

\[
\mathcal{A}u := (-\Delta + q)u = \lambda u + f \quad \text{in } \mathbb{R}^N, \quad f \in L^2(\mathbb{R}^N)
\]

The potential q is assumed to be continuous in \mathbb{R}^N satisfying $q \in L^1_{loc}(\mathbb{R}^N)$, $q \geq C > 0$ and $q(x) \to \infty$ when $|x| \to \infty$. λ is a real parameter.
1.1 Maximum principle: φ_1-positivity

Hypothesis 1.1 The potential $q: IR_+ \to IR$ is locally essentially bounded, $q(r) \geq \text{const} > 0$ for $r \geq 0$, and there exists a constant $c_1 > 0$ such that

$$c_1 Q(r) \leq q(r) - \frac{1}{4r^2} \quad \text{for} \quad R_0 \leq r < \infty.$$

where $Q(r)$ is a function of $|x|$, $R_0 \leq r < \infty$, for some $R_0 > 0$:

$$
\begin{align*}
Q(r) &> 0, \quad Q \text{ is locally absolutely continuous}, \\
Q'(r) &\geq 0, \quad \text{and} \quad \int_{R_0}^{\infty} Q(r)^{-1/2} \, dr < \infty.
\end{align*}
$$

Theorem 1.2 [2] Let the hypothesis 1.1 be satisfied. Assume that $u \in \mathcal{D}(A)$, $Au - \lambda u = f \in L^2(IR^2)$, $\lambda \in IR$, and $f \geq 0$ a.e. in IR^2 with $f > 0$ in some set of positive Lebesgue measure. Then, for every $\lambda \in (-\infty, \lambda_1)$, there exists a constant $c > 0$ (depending upon f and λ) such that

$$u \geq c\varphi_1 \quad \text{in} \quad IR^2.$$

1.2 Anti-maximum principle: φ_1-negativity

We get an anti-maximum principle for systems (S) involving some potentials with a superquadratic growth at infinity. Here we study 2×2 systems; analogous results can be obtained for the case of N equations - see [3].

We define $X^{1,2}$ the space of Lebesgue measurable functions $f: IR^2 \to IR$ having the following properties:

$$\frac{\partial f}{\partial \theta}(r, \bullet) \in L^2(-\pi, \pi) \quad \text{for all} \quad r \geq 0$$

and there is a constant $C \geq 0$ such that

$$\left| f(r, \theta) \right| + \left(\int_{\theta} \left| \frac{\partial f}{\partial \theta}(r, \theta) \right|^2 \, d\theta \right)^{1/2} \leq C\varphi_1(r)$$

for almost every $r \geq 0$ and $\theta \in [-\pi, \pi]$.

Theorem 1.3 Let hypothesis 1.1 be satisfied. Assume that $u \in \mathcal{D}(A)$ satisfies (1), $f \geq 0$, $f \in X^{1,2}$, then there exists a positive number δ (depending upon f) such that, for every $\lambda \in (\lambda_1, \lambda_1 + \delta)$, we have

$$u \leq -c \varphi_1 \quad \text{in} \quad IR^2.$$

38
2 Results

2.1 Estimate of the constant

Theorem 2.1 Let the hypothesis (6) be satisfied [3]. Assume that \(u \in \mathcal{D}(A) \), \(Au - \lambda u = f \in L^2(\mathbb{R}^2) \), \(\lambda \in \mathbb{R} \), and \(f \geq 0 \) a.e. in \(\mathbb{R}^2 \) with \(f > 0 \) in some set of positive Lebesgue measure. If \(f \in X^{1,2} \), then there exists a positive number \(\delta = \delta(f) > 0 \) and \(C(f, \lambda) > 0 \) such that, for every \(\lambda \in (\lambda_1, \lambda_1 + \delta) \), on \(a : \)

\[
\begin{align*}
 u &\leq -C(f, \lambda)\varphi_1 \text{ in } \mathbb{R}^2 \\
 \delta &\geq \min(\delta_1, C^{-1} \alpha) \quad (7)
\end{align*}
\]

and

\[
C(f, \lambda) = (\lambda - \lambda_1)^{-1} - \Gamma \alpha \quad (8)
\]

Where;

\[
\begin{align*}
 \delta_1 &= Sp[(A - \lambda)^{-1}]^{-1} \\
 \alpha &= \int_{\mathbb{R}^2} f \varphi_1; \\
 \Gamma &= (2C_f + \|f\|_{X^{1,2}})(2C_g)^{-1/2} \int_{R_1}^{+\infty} Q(r)^{-1/2} + M(R_1)(2C_f M(R_1) R_1^2/2 + \|f\|_{X^{1,2}}); \\
 M(R_1) &= \max_{0 \leq s \leq r \leq R_1} \varphi_1(s)/\varphi_1(r).
\end{align*}
\]

2.2 Anti-maximum Principle for a linear cooperative system \(2 \times 2 \)

We decouple systems (S)

\[
\begin{pmatrix}
 A & 0 \\
 0 & A
\end{pmatrix} - \begin{pmatrix}
 \sqrt{bc} & 0 \\
 0 & -\sqrt{bc}
\end{pmatrix} PU = \lambda PU + PF \quad (9)
\]

Where \(U = \begin{pmatrix} u \\ v \end{pmatrix} \), \(F = \begin{pmatrix} f \\ g \end{pmatrix} \) and \(P = \begin{pmatrix} 1/2 & 1/2 \gamma \\ 1/2 & -1/2 \gamma \end{pmatrix}; \gamma = \sqrt{c/b} > 0 \)

Theorem 2.2 Assume that \(b > 0 \), \(c > 0 \) (a strictly cooperative system) and \(0 \leq f, g \in L^2(\mathbb{R}^2) \) with \(f \) and \(g \in X^{1,2} \). Then

There exists an eigenvalue \(\Lambda_1 \) with a positive eigenfunction \(\Phi_1 \) defined by

\[
\begin{align*}
 \Lambda_1 &= \lambda_1 - \sqrt{bc} > 0 \\
 \Phi_1 &= \begin{pmatrix} \sqrt{bc} \\ c \end{pmatrix} \varphi_1
\end{align*}
\]
and there exists a constant $\delta = \delta(f, g, b, c) > 0$ such that, for every $\lambda \in (\Lambda_1, \Lambda_1 + \delta)$, the weak solution $PU = (\tilde{u}, \tilde{v})$ to (9) satisfies

$$PF = \left(\begin{array}{c} 0 \neq \tilde{j} > 0 \\ 0 \neq \tilde{g} > 0 \end{array} \right) \implies PU = \left(\begin{array}{c} \tilde{u} < 0 \\ \tilde{v} > 0 \end{array} \right)$$

The weak solution $U = (u, v)$ to (S) satisfies

$$U = \begin{pmatrix} u \\ v \end{pmatrix} \leq -C\Phi_1$$

Where $C = C(f, g, \lambda) > 0$.

References

